1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_sched_job.h" 7 8 #include <uapi/drm/xe_drm.h> 9 #include <linux/dma-fence-chain.h> 10 #include <linux/slab.h> 11 12 #include "xe_device.h" 13 #include "xe_exec_queue.h" 14 #include "xe_gt.h" 15 #include "xe_hw_engine_types.h" 16 #include "xe_hw_fence.h" 17 #include "xe_lrc.h" 18 #include "xe_macros.h" 19 #include "xe_pm.h" 20 #include "xe_sync_types.h" 21 #include "xe_trace.h" 22 #include "xe_vm.h" 23 24 static struct kmem_cache *xe_sched_job_slab; 25 static struct kmem_cache *xe_sched_job_parallel_slab; 26 27 int __init xe_sched_job_module_init(void) 28 { 29 xe_sched_job_slab = 30 kmem_cache_create("xe_sched_job", 31 sizeof(struct xe_sched_job) + 32 sizeof(struct xe_job_ptrs), 0, 33 SLAB_HWCACHE_ALIGN, NULL); 34 if (!xe_sched_job_slab) 35 return -ENOMEM; 36 37 xe_sched_job_parallel_slab = 38 kmem_cache_create("xe_sched_job_parallel", 39 sizeof(struct xe_sched_job) + 40 sizeof(struct xe_job_ptrs) * 41 XE_HW_ENGINE_MAX_INSTANCE, 0, 42 SLAB_HWCACHE_ALIGN, NULL); 43 if (!xe_sched_job_parallel_slab) { 44 kmem_cache_destroy(xe_sched_job_slab); 45 return -ENOMEM; 46 } 47 48 return 0; 49 } 50 51 void xe_sched_job_module_exit(void) 52 { 53 kmem_cache_destroy(xe_sched_job_slab); 54 kmem_cache_destroy(xe_sched_job_parallel_slab); 55 } 56 57 static struct xe_sched_job *job_alloc(bool parallel) 58 { 59 return kmem_cache_zalloc(parallel ? xe_sched_job_parallel_slab : 60 xe_sched_job_slab, GFP_KERNEL); 61 } 62 63 bool xe_sched_job_is_migration(struct xe_exec_queue *q) 64 { 65 return q->vm && (q->vm->flags & XE_VM_FLAG_MIGRATION); 66 } 67 68 static void job_free(struct xe_sched_job *job) 69 { 70 struct xe_exec_queue *q = job->q; 71 bool is_migration = xe_sched_job_is_migration(q); 72 73 kmem_cache_free(xe_exec_queue_is_parallel(job->q) || is_migration ? 74 xe_sched_job_parallel_slab : xe_sched_job_slab, job); 75 } 76 77 static struct xe_device *job_to_xe(struct xe_sched_job *job) 78 { 79 return gt_to_xe(job->q->gt); 80 } 81 82 /* Free unused pre-allocated fences */ 83 static void xe_sched_job_free_fences(struct xe_sched_job *job) 84 { 85 int i; 86 87 for (i = 0; i < job->q->width; ++i) { 88 struct xe_job_ptrs *ptrs = &job->ptrs[i]; 89 90 if (ptrs->lrc_fence) 91 xe_lrc_free_seqno_fence(ptrs->lrc_fence); 92 dma_fence_chain_free(ptrs->chain_fence); 93 } 94 } 95 96 struct xe_sched_job *xe_sched_job_create(struct xe_exec_queue *q, 97 u64 *batch_addr) 98 { 99 bool is_migration = xe_sched_job_is_migration(q); 100 struct xe_sched_job *job; 101 int err; 102 int i; 103 u32 width; 104 105 /* only a kernel context can submit a vm-less job */ 106 XE_WARN_ON(!q->vm && !(q->flags & EXEC_QUEUE_FLAG_KERNEL)); 107 108 job = job_alloc(xe_exec_queue_is_parallel(q) || is_migration); 109 if (!job) 110 return ERR_PTR(-ENOMEM); 111 112 job->q = q; 113 kref_init(&job->refcount); 114 xe_exec_queue_get(job->q); 115 116 err = drm_sched_job_init(&job->drm, q->entity, 1, NULL); 117 if (err) 118 goto err_free; 119 120 for (i = 0; i < q->width; ++i) { 121 struct dma_fence *fence = xe_lrc_alloc_seqno_fence(); 122 struct dma_fence_chain *chain; 123 124 if (IS_ERR(fence)) { 125 err = PTR_ERR(fence); 126 goto err_sched_job; 127 } 128 job->ptrs[i].lrc_fence = fence; 129 130 if (i + 1 == q->width) 131 continue; 132 133 chain = dma_fence_chain_alloc(); 134 if (!chain) { 135 err = -ENOMEM; 136 goto err_sched_job; 137 } 138 job->ptrs[i].chain_fence = chain; 139 } 140 141 width = q->width; 142 if (is_migration) 143 width = 2; 144 145 for (i = 0; i < width; ++i) 146 job->ptrs[i].batch_addr = batch_addr[i]; 147 148 xe_pm_runtime_get_noresume(job_to_xe(job)); 149 trace_xe_sched_job_create(job); 150 return job; 151 152 err_sched_job: 153 xe_sched_job_free_fences(job); 154 drm_sched_job_cleanup(&job->drm); 155 err_free: 156 xe_exec_queue_put(q); 157 job_free(job); 158 return ERR_PTR(err); 159 } 160 161 /** 162 * xe_sched_job_destroy - Destroy XE schedule job 163 * @ref: reference to XE schedule job 164 * 165 * Called when ref == 0, drop a reference to job's xe_engine + fence, cleanup 166 * base DRM schedule job, and free memory for XE schedule job. 167 */ 168 void xe_sched_job_destroy(struct kref *ref) 169 { 170 struct xe_sched_job *job = 171 container_of(ref, struct xe_sched_job, refcount); 172 struct xe_device *xe = job_to_xe(job); 173 struct xe_exec_queue *q = job->q; 174 175 xe_sched_job_free_fences(job); 176 dma_fence_put(job->fence); 177 drm_sched_job_cleanup(&job->drm); 178 job_free(job); 179 xe_exec_queue_put(q); 180 xe_pm_runtime_put(xe); 181 } 182 183 /* Set the error status under the fence to avoid racing with signaling */ 184 static bool xe_fence_set_error(struct dma_fence *fence, int error) 185 { 186 unsigned long irq_flags; 187 bool signaled; 188 189 spin_lock_irqsave(fence->lock, irq_flags); 190 signaled = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags); 191 if (!signaled) 192 dma_fence_set_error(fence, error); 193 spin_unlock_irqrestore(fence->lock, irq_flags); 194 195 return signaled; 196 } 197 198 void xe_sched_job_set_error(struct xe_sched_job *job, int error) 199 { 200 if (xe_fence_set_error(job->fence, error)) 201 return; 202 203 if (dma_fence_is_chain(job->fence)) { 204 struct dma_fence *iter; 205 206 dma_fence_chain_for_each(iter, job->fence) 207 xe_fence_set_error(dma_fence_chain_contained(iter), 208 error); 209 } 210 211 trace_xe_sched_job_set_error(job); 212 213 dma_fence_enable_sw_signaling(job->fence); 214 xe_hw_fence_irq_run(job->q->fence_irq); 215 } 216 217 bool xe_sched_job_started(struct xe_sched_job *job) 218 { 219 struct xe_lrc *lrc = job->q->lrc[0]; 220 221 return !__dma_fence_is_later(xe_sched_job_lrc_seqno(job), 222 xe_lrc_start_seqno(lrc), 223 dma_fence_chain_contained(job->fence)->ops); 224 } 225 226 bool xe_sched_job_completed(struct xe_sched_job *job) 227 { 228 struct xe_lrc *lrc = job->q->lrc[0]; 229 230 /* 231 * Can safely check just LRC[0] seqno as that is last seqno written when 232 * parallel handshake is done. 233 */ 234 235 return !__dma_fence_is_later(xe_sched_job_lrc_seqno(job), 236 xe_lrc_seqno(lrc), 237 dma_fence_chain_contained(job->fence)->ops); 238 } 239 240 void xe_sched_job_arm(struct xe_sched_job *job) 241 { 242 struct xe_exec_queue *q = job->q; 243 struct dma_fence *fence, *prev; 244 struct xe_vm *vm = q->vm; 245 u64 seqno = 0; 246 int i; 247 248 /* Migration and kernel engines have their own locking */ 249 if (IS_ENABLED(CONFIG_LOCKDEP) && 250 !(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 251 lockdep_assert_held(&q->vm->lock); 252 if (!xe_vm_in_lr_mode(q->vm)) 253 xe_vm_assert_held(q->vm); 254 } 255 256 if (vm && !xe_sched_job_is_migration(q) && !xe_vm_in_lr_mode(vm) && 257 (vm->batch_invalidate_tlb || vm->tlb_flush_seqno != q->tlb_flush_seqno)) { 258 xe_vm_assert_held(vm); 259 q->tlb_flush_seqno = vm->tlb_flush_seqno; 260 job->ring_ops_flush_tlb = true; 261 } 262 263 /* Arm the pre-allocated fences */ 264 for (i = 0; i < q->width; prev = fence, ++i) { 265 struct dma_fence_chain *chain; 266 267 fence = job->ptrs[i].lrc_fence; 268 xe_lrc_init_seqno_fence(q->lrc[i], fence); 269 job->ptrs[i].lrc_fence = NULL; 270 if (!i) { 271 job->lrc_seqno = fence->seqno; 272 continue; 273 } else { 274 xe_assert(gt_to_xe(q->gt), job->lrc_seqno == fence->seqno); 275 } 276 277 chain = job->ptrs[i - 1].chain_fence; 278 dma_fence_chain_init(chain, prev, fence, seqno++); 279 job->ptrs[i - 1].chain_fence = NULL; 280 fence = &chain->base; 281 } 282 283 job->fence = dma_fence_get(fence); /* Pairs with put in scheduler */ 284 drm_sched_job_arm(&job->drm); 285 } 286 287 void xe_sched_job_push(struct xe_sched_job *job) 288 { 289 xe_sched_job_get(job); 290 trace_xe_sched_job_exec(job); 291 drm_sched_entity_push_job(&job->drm); 292 xe_sched_job_put(job); 293 } 294 295 /** 296 * xe_sched_job_last_fence_add_dep - Add last fence dependency to job 297 * @job:job to add the last fence dependency to 298 * @vm: virtual memory job belongs to 299 * 300 * Returns: 301 * 0 on success, or an error on failing to expand the array. 302 */ 303 int xe_sched_job_last_fence_add_dep(struct xe_sched_job *job, struct xe_vm *vm) 304 { 305 struct dma_fence *fence; 306 307 fence = xe_exec_queue_last_fence_get(job->q, vm); 308 309 return drm_sched_job_add_dependency(&job->drm, fence); 310 } 311 312 /** 313 * xe_sched_job_init_user_fence - Initialize user_fence for the job 314 * @job: job whose user_fence needs an init 315 * @sync: sync to be use to init user_fence 316 */ 317 void xe_sched_job_init_user_fence(struct xe_sched_job *job, 318 struct xe_sync_entry *sync) 319 { 320 if (sync->type != DRM_XE_SYNC_TYPE_USER_FENCE) 321 return; 322 323 job->user_fence.used = true; 324 job->user_fence.addr = sync->addr; 325 job->user_fence.value = sync->timeline_value; 326 } 327 328 struct xe_sched_job_snapshot * 329 xe_sched_job_snapshot_capture(struct xe_sched_job *job) 330 { 331 struct xe_exec_queue *q = job->q; 332 struct xe_device *xe = q->gt->tile->xe; 333 struct xe_sched_job_snapshot *snapshot; 334 size_t len = sizeof(*snapshot) + (sizeof(u64) * q->width); 335 u16 i; 336 337 snapshot = kzalloc(len, GFP_ATOMIC); 338 if (!snapshot) 339 return NULL; 340 341 snapshot->batch_addr_len = q->width; 342 for (i = 0; i < q->width; i++) 343 snapshot->batch_addr[i] = 344 xe_device_uncanonicalize_addr(xe, job->ptrs[i].batch_addr); 345 346 return snapshot; 347 } 348 349 void xe_sched_job_snapshot_free(struct xe_sched_job_snapshot *snapshot) 350 { 351 kfree(snapshot); 352 } 353 354 void 355 xe_sched_job_snapshot_print(struct xe_sched_job_snapshot *snapshot, 356 struct drm_printer *p) 357 { 358 u16 i; 359 360 if (!snapshot) 361 return; 362 363 for (i = 0; i < snapshot->batch_addr_len; i++) 364 drm_printf(p, "batch_addr[%u]: 0x%016llx\n", i, snapshot->batch_addr[i]); 365 } 366 367 int xe_sched_job_add_deps(struct xe_sched_job *job, struct dma_resv *resv, 368 enum dma_resv_usage usage) 369 { 370 return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage); 371 } 372