xref: /linux/drivers/gpu/drm/xe/xe_pt.c (revision e3610441d1fb47b1f00e4c38bdf333176e824729)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include <linux/dma-fence-array.h>
7 
8 #include "xe_pt.h"
9 
10 #include "regs/xe_gtt_defs.h"
11 #include "xe_bo.h"
12 #include "xe_device.h"
13 #include "xe_drm_client.h"
14 #include "xe_exec_queue.h"
15 #include "xe_gt.h"
16 #include "xe_gt_tlb_invalidation.h"
17 #include "xe_migrate.h"
18 #include "xe_pt_types.h"
19 #include "xe_pt_walk.h"
20 #include "xe_res_cursor.h"
21 #include "xe_sched_job.h"
22 #include "xe_sync.h"
23 #include "xe_trace.h"
24 #include "xe_ttm_stolen_mgr.h"
25 #include "xe_vm.h"
26 
27 struct xe_pt_dir {
28 	struct xe_pt pt;
29 	/** @children: Array of page-table child nodes */
30 	struct xe_ptw *children[XE_PDES];
31 };
32 
33 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
34 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
35 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
36 #else
37 #define xe_pt_set_addr(__xe_pt, __addr)
38 #define xe_pt_addr(__xe_pt) 0ull
39 #endif
40 
41 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
42 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
43 
44 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
45 
46 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
47 {
48 	return container_of(pt, struct xe_pt_dir, pt);
49 }
50 
51 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
52 {
53 	return container_of(pt_dir->children[index], struct xe_pt, base);
54 }
55 
56 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
57 			     unsigned int level)
58 {
59 	struct xe_device *xe = tile_to_xe(tile);
60 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
61 	u8 id = tile->id;
62 
63 	if (!xe_vm_has_scratch(vm))
64 		return 0;
65 
66 	if (level > MAX_HUGEPTE_LEVEL)
67 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
68 						 0, pat_index);
69 
70 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
71 		XE_PTE_NULL;
72 }
73 
74 static void xe_pt_free(struct xe_pt *pt)
75 {
76 	if (pt->level)
77 		kfree(as_xe_pt_dir(pt));
78 	else
79 		kfree(pt);
80 }
81 
82 /**
83  * xe_pt_create() - Create a page-table.
84  * @vm: The vm to create for.
85  * @tile: The tile to create for.
86  * @level: The page-table level.
87  *
88  * Allocate and initialize a single struct xe_pt metadata structure. Also
89  * create the corresponding page-table bo, but don't initialize it. If the
90  * level is grater than zero, then it's assumed to be a directory page-
91  * table and the directory structure is also allocated and initialized to
92  * NULL pointers.
93  *
94  * Return: A valid struct xe_pt pointer on success, Pointer error code on
95  * error.
96  */
97 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
98 			   unsigned int level)
99 {
100 	struct xe_pt *pt;
101 	struct xe_bo *bo;
102 	int err;
103 
104 	if (level) {
105 		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
106 
107 		pt = (dir) ? &dir->pt : NULL;
108 	} else {
109 		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
110 	}
111 	if (!pt)
112 		return ERR_PTR(-ENOMEM);
113 
114 	pt->level = level;
115 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
116 				  ttm_bo_type_kernel,
117 				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
118 				  XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
119 				  XE_BO_FLAG_PINNED |
120 				  XE_BO_FLAG_NO_RESV_EVICT |
121 				  XE_BO_FLAG_PAGETABLE);
122 	if (IS_ERR(bo)) {
123 		err = PTR_ERR(bo);
124 		goto err_kfree;
125 	}
126 	pt->bo = bo;
127 	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
128 
129 	if (vm->xef)
130 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
131 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
132 
133 	return pt;
134 
135 err_kfree:
136 	xe_pt_free(pt);
137 	return ERR_PTR(err);
138 }
139 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO);
140 
141 /**
142  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
143  * entries.
144  * @tile: The tile the scratch pagetable of which to use.
145  * @vm: The vm we populate for.
146  * @pt: The pagetable the bo of which to initialize.
147  *
148  * Populate the page-table bo of @pt with entries pointing into the tile's
149  * scratch page-table tree if any. Otherwise populate with zeros.
150  */
151 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
152 			  struct xe_pt *pt)
153 {
154 	struct iosys_map *map = &pt->bo->vmap;
155 	u64 empty;
156 	int i;
157 
158 	if (!xe_vm_has_scratch(vm)) {
159 		/*
160 		 * FIXME: Some memory is allocated already allocated to zero?
161 		 * Find out which memory that is and avoid this memset...
162 		 */
163 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
164 	} else {
165 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
166 		for (i = 0; i < XE_PDES; i++)
167 			xe_pt_write(vm->xe, map, i, empty);
168 	}
169 }
170 
171 /**
172  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
173  * a page-table at a certain level.
174  * @level: The level.
175  *
176  * Return: The ilog2 value of the size of the address range of a page-table
177  * at level @level.
178  */
179 unsigned int xe_pt_shift(unsigned int level)
180 {
181 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
182 }
183 
184 /**
185  * xe_pt_destroy() - Destroy a page-table tree.
186  * @pt: The root of the page-table tree to destroy.
187  * @flags: vm flags. Currently unused.
188  * @deferred: List head of lockless list for deferred putting. NULL for
189  *            immediate putting.
190  *
191  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
192  * and finally frees @pt. TODO: Can we remove the @flags argument?
193  */
194 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
195 {
196 	int i;
197 
198 	if (!pt)
199 		return;
200 
201 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
202 	xe_bo_unpin(pt->bo);
203 	xe_bo_put_deferred(pt->bo, deferred);
204 
205 	if (pt->level > 0 && pt->num_live) {
206 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
207 
208 		for (i = 0; i < XE_PDES; i++) {
209 			if (xe_pt_entry(pt_dir, i))
210 				xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
211 					      deferred);
212 		}
213 	}
214 	xe_pt_free(pt);
215 }
216 
217 /**
218  * DOC: Pagetable building
219  *
220  * Below we use the term "page-table" for both page-directories, containing
221  * pointers to lower level page-directories or page-tables, and level 0
222  * page-tables that contain only page-table-entries pointing to memory pages.
223  *
224  * When inserting an address range in an already existing page-table tree
225  * there will typically be a set of page-tables that are shared with other
226  * address ranges, and a set that are private to this address range.
227  * The set of shared page-tables can be at most two per level,
228  * and those can't be updated immediately because the entries of those
229  * page-tables may still be in use by the gpu for other mappings. Therefore
230  * when inserting entries into those, we instead stage those insertions by
231  * adding insertion data into struct xe_vm_pgtable_update structures. This
232  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
233  * added in a separate commit step. CPU-data is committed while still under the
234  * vm lock, the object lock and for userptr, the notifier lock in read mode.
235  * The GPU async data is committed either by the GPU or CPU after fulfilling
236  * relevant dependencies.
237  * For non-shared page-tables (and, in fact, for shared ones that aren't
238  * existing at the time of staging), we add the data in-place without the
239  * special update structures. This private part of the page-table tree will
240  * remain disconnected from the vm page-table tree until data is committed to
241  * the shared page tables of the vm tree in the commit phase.
242  */
243 
244 struct xe_pt_update {
245 	/** @update: The update structure we're building for this parent. */
246 	struct xe_vm_pgtable_update *update;
247 	/** @parent: The parent. Used to detect a parent change. */
248 	struct xe_pt *parent;
249 	/** @preexisting: Whether the parent was pre-existing or allocated */
250 	bool preexisting;
251 };
252 
253 struct xe_pt_stage_bind_walk {
254 	/** base: The base class. */
255 	struct xe_pt_walk base;
256 
257 	/* Input parameters for the walk */
258 	/** @vm: The vm we're building for. */
259 	struct xe_vm *vm;
260 	/** @tile: The tile we're building for. */
261 	struct xe_tile *tile;
262 	/** @default_pte: PTE flag only template. No address is associated */
263 	u64 default_pte;
264 	/** @dma_offset: DMA offset to add to the PTE. */
265 	u64 dma_offset;
266 	/**
267 	 * @needs_64k: This address range enforces 64K alignment and
268 	 * granularity.
269 	 */
270 	bool needs_64K;
271 	/**
272 	 * @vma: VMA being mapped
273 	 */
274 	struct xe_vma *vma;
275 
276 	/* Also input, but is updated during the walk*/
277 	/** @curs: The DMA address cursor. */
278 	struct xe_res_cursor *curs;
279 	/** @va_curs_start: The Virtual address corresponding to @curs->start */
280 	u64 va_curs_start;
281 
282 	/* Output */
283 	struct xe_walk_update {
284 		/** @wupd.entries: Caller provided storage. */
285 		struct xe_vm_pgtable_update *entries;
286 		/** @wupd.num_used_entries: Number of update @entries used. */
287 		unsigned int num_used_entries;
288 		/** @wupd.updates: Tracks the update entry at a given level */
289 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
290 	} wupd;
291 
292 	/* Walk state */
293 	/**
294 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
295 	 * 64K granularity detection.
296 	 */
297 	u64 l0_end_addr;
298 	/** @addr_64K: The start address of the current 64K chunk. */
299 	u64 addr_64K;
300 	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
301 	bool found_64K;
302 };
303 
304 static int
305 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
306 		 pgoff_t offset, bool alloc_entries)
307 {
308 	struct xe_pt_update *upd = &wupd->updates[parent->level];
309 	struct xe_vm_pgtable_update *entry;
310 
311 	/*
312 	 * For *each level*, we could only have one active
313 	 * struct xt_pt_update at any one time. Once we move on to a
314 	 * new parent and page-directory, the old one is complete, and
315 	 * updates are either already stored in the build tree or in
316 	 * @wupd->entries
317 	 */
318 	if (likely(upd->parent == parent))
319 		return 0;
320 
321 	upd->parent = parent;
322 	upd->preexisting = true;
323 
324 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
325 		return -EINVAL;
326 
327 	entry = wupd->entries + wupd->num_used_entries++;
328 	upd->update = entry;
329 	entry->ofs = offset;
330 	entry->pt_bo = parent->bo;
331 	entry->pt = parent;
332 	entry->flags = 0;
333 	entry->qwords = 0;
334 	entry->pt_bo->update_index = -1;
335 
336 	if (alloc_entries) {
337 		entry->pt_entries = kmalloc_array(XE_PDES,
338 						  sizeof(*entry->pt_entries),
339 						  GFP_KERNEL);
340 		if (!entry->pt_entries)
341 			return -ENOMEM;
342 	}
343 
344 	return 0;
345 }
346 
347 /*
348  * NOTE: This is a very frequently called function so we allow ourselves
349  * to annotate (using branch prediction hints) the fastpath of updating a
350  * non-pre-existing pagetable with leaf ptes.
351  */
352 static int
353 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
354 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
355 {
356 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
357 	struct xe_pt_update *child_upd = xe_child ?
358 		&xe_walk->wupd.updates[xe_child->level] : NULL;
359 	int ret;
360 
361 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
362 	if (unlikely(ret))
363 		return ret;
364 
365 	/*
366 	 * Register this new pagetable so that it won't be recognized as
367 	 * a shared pagetable by a subsequent insertion.
368 	 */
369 	if (unlikely(child_upd)) {
370 		child_upd->update = NULL;
371 		child_upd->parent = xe_child;
372 		child_upd->preexisting = false;
373 	}
374 
375 	if (likely(!upd->preexisting)) {
376 		/* Continue building a non-connected subtree. */
377 		struct iosys_map *map = &parent->bo->vmap;
378 
379 		if (unlikely(xe_child))
380 			parent->base.children[offset] = &xe_child->base;
381 
382 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
383 		parent->num_live++;
384 	} else {
385 		/* Shared pt. Stage update. */
386 		unsigned int idx;
387 		struct xe_vm_pgtable_update *entry = upd->update;
388 
389 		idx = offset - entry->ofs;
390 		entry->pt_entries[idx].pt = xe_child;
391 		entry->pt_entries[idx].pte = pte;
392 		entry->qwords++;
393 	}
394 
395 	return 0;
396 }
397 
398 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
399 				   struct xe_pt_stage_bind_walk *xe_walk)
400 {
401 	u64 size, dma;
402 
403 	if (level > MAX_HUGEPTE_LEVEL)
404 		return false;
405 
406 	/* Does the virtual range requested cover a huge pte? */
407 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
408 		return false;
409 
410 	/* Does the DMA segment cover the whole pte? */
411 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
412 		return false;
413 
414 	/* null VMA's do not have dma addresses */
415 	if (xe_vma_is_null(xe_walk->vma))
416 		return true;
417 
418 	/* Is the DMA address huge PTE size aligned? */
419 	size = next - addr;
420 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
421 
422 	return IS_ALIGNED(dma, size);
423 }
424 
425 /*
426  * Scan the requested mapping to check whether it can be done entirely
427  * with 64K PTEs.
428  */
429 static bool
430 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
431 {
432 	struct xe_res_cursor curs = *xe_walk->curs;
433 
434 	if (!IS_ALIGNED(addr, SZ_64K))
435 		return false;
436 
437 	if (next > xe_walk->l0_end_addr)
438 		return false;
439 
440 	/* null VMA's do not have dma addresses */
441 	if (xe_vma_is_null(xe_walk->vma))
442 		return true;
443 
444 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
445 	for (; addr < next; addr += SZ_64K) {
446 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
447 			return false;
448 
449 		xe_res_next(&curs, SZ_64K);
450 	}
451 
452 	return addr == next;
453 }
454 
455 /*
456  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
457  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
458  * device to the PTE.
459  * This function determines whether the address is part of such a
460  * segment. For VRAM in normal pagetables, this is strictly necessary on
461  * some devices.
462  */
463 static bool
464 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
465 {
466 	/* Address is within an already found 64k region */
467 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
468 		return true;
469 
470 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
471 	xe_walk->addr_64K = addr;
472 
473 	return xe_walk->found_64K;
474 }
475 
476 static int
477 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
478 		       unsigned int level, u64 addr, u64 next,
479 		       struct xe_ptw **child,
480 		       enum page_walk_action *action,
481 		       struct xe_pt_walk *walk)
482 {
483 	struct xe_pt_stage_bind_walk *xe_walk =
484 		container_of(walk, typeof(*xe_walk), base);
485 	u16 pat_index = xe_walk->vma->pat_index;
486 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
487 	struct xe_vm *vm = xe_walk->vm;
488 	struct xe_pt *xe_child;
489 	bool covers;
490 	int ret = 0;
491 	u64 pte;
492 
493 	/* Is this a leaf entry ?*/
494 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
495 		struct xe_res_cursor *curs = xe_walk->curs;
496 		bool is_null = xe_vma_is_null(xe_walk->vma);
497 
498 		XE_WARN_ON(xe_walk->va_curs_start != addr);
499 
500 		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
501 						 xe_res_dma(curs) + xe_walk->dma_offset,
502 						 xe_walk->vma, pat_index, level);
503 		pte |= xe_walk->default_pte;
504 
505 		/*
506 		 * Set the XE_PTE_PS64 hint if possible, otherwise if
507 		 * this device *requires* 64K PTE size for VRAM, fail.
508 		 */
509 		if (level == 0 && !xe_parent->is_compact) {
510 			if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
511 				xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K;
512 				pte |= XE_PTE_PS64;
513 			} else if (XE_WARN_ON(xe_walk->needs_64K)) {
514 				return -EINVAL;
515 			}
516 		}
517 
518 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
519 		if (unlikely(ret))
520 			return ret;
521 
522 		if (!is_null)
523 			xe_res_next(curs, next - addr);
524 		xe_walk->va_curs_start = next;
525 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
526 		*action = ACTION_CONTINUE;
527 
528 		return ret;
529 	}
530 
531 	/*
532 	 * Descending to lower level. Determine if we need to allocate a
533 	 * new page table or -directory, which we do if there is no
534 	 * previous one or there is one we can completely replace.
535 	 */
536 	if (level == 1) {
537 		walk->shifts = xe_normal_pt_shifts;
538 		xe_walk->l0_end_addr = next;
539 	}
540 
541 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
542 	if (covers || !*child) {
543 		u64 flags = 0;
544 
545 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
546 		if (IS_ERR(xe_child))
547 			return PTR_ERR(xe_child);
548 
549 		xe_pt_set_addr(xe_child,
550 			       round_down(addr, 1ull << walk->shifts[level]));
551 
552 		if (!covers)
553 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
554 
555 		*child = &xe_child->base;
556 
557 		/*
558 		 * Prefer the compact pagetable layout for L0 if possible. Only
559 		 * possible if VMA covers entire 2MB region as compact 64k and
560 		 * 4k pages cannot be mixed within a 2MB region.
561 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
562 		 * memory.
563 		 */
564 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
565 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
566 			walk->shifts = xe_compact_pt_shifts;
567 			xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
568 			flags |= XE_PDE_64K;
569 			xe_child->is_compact = true;
570 		}
571 
572 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
573 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
574 					 pte);
575 	}
576 
577 	*action = ACTION_SUBTREE;
578 	return ret;
579 }
580 
581 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
582 	.pt_entry = xe_pt_stage_bind_entry,
583 };
584 
585 /**
586  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
587  * range.
588  * @tile: The tile we're building for.
589  * @vma: The vma indicating the address range.
590  * @entries: Storage for the update entries used for connecting the tree to
591  * the main tree at commit time.
592  * @num_entries: On output contains the number of @entries used.
593  *
594  * This function builds a disconnected page-table tree for a given address
595  * range. The tree is connected to the main vm tree for the gpu using
596  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
597  * The function builds xe_vm_pgtable_update structures for already existing
598  * shared page-tables, and non-existing shared and non-shared page-tables
599  * are built and populated directly.
600  *
601  * Return 0 on success, negative error code on error.
602  */
603 static int
604 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
605 		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
606 {
607 	struct xe_device *xe = tile_to_xe(tile);
608 	struct xe_bo *bo = xe_vma_bo(vma);
609 	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
610 		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
611 	struct xe_res_cursor curs;
612 	struct xe_pt_stage_bind_walk xe_walk = {
613 		.base = {
614 			.ops = &xe_pt_stage_bind_ops,
615 			.shifts = xe_normal_pt_shifts,
616 			.max_level = XE_PT_HIGHEST_LEVEL,
617 		},
618 		.vm = xe_vma_vm(vma),
619 		.tile = tile,
620 		.curs = &curs,
621 		.va_curs_start = xe_vma_start(vma),
622 		.vma = vma,
623 		.wupd.entries = entries,
624 		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
625 	};
626 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
627 	int ret;
628 
629 	/**
630 	 * Default atomic expectations for different allocation scenarios are as follows:
631 	 *
632 	 * 1. Traditional API: When the VM is not in LR mode:
633 	 *    - Device atomics are expected to function with all allocations.
634 	 *
635 	 * 2. Compute/SVM API: When the VM is in LR mode:
636 	 *    - Device atomics are the default behavior when the bo is placed in a single region.
637 	 *    - In all other cases device atomics will be disabled with AE=0 until an application
638 	 *      request differently using a ioctl like madvise.
639 	 */
640 	if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
641 		if (xe_vm_in_lr_mode(xe_vma_vm(vma))) {
642 			if (bo && xe_bo_has_single_placement(bo))
643 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
644 			/**
645 			 * If a SMEM+LMEM allocation is backed by SMEM, a device
646 			 * atomics will cause a gpu page fault and which then
647 			 * gets migrated to LMEM, bind such allocations with
648 			 * device atomics enabled.
649 			 */
650 			else if (is_devmem && !xe_bo_has_single_placement(bo))
651 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
652 		} else {
653 			xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
654 		}
655 
656 		/**
657 		 * Unset AE if the platform(PVC) doesn't support it on an
658 		 * allocation
659 		 */
660 		if (!xe->info.has_device_atomics_on_smem && !is_devmem)
661 			xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE;
662 	}
663 
664 	if (is_devmem) {
665 		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
666 		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
667 	}
668 
669 	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
670 		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
671 
672 	xe_bo_assert_held(bo);
673 
674 	if (!xe_vma_is_null(vma)) {
675 		if (xe_vma_is_userptr(vma))
676 			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
677 					xe_vma_size(vma), &curs);
678 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
679 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
680 				     xe_vma_size(vma), &curs);
681 		else
682 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
683 					xe_vma_size(vma), &curs);
684 	} else {
685 		curs.size = xe_vma_size(vma);
686 	}
687 
688 	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
689 			       xe_vma_end(vma), &xe_walk.base);
690 
691 	*num_entries = xe_walk.wupd.num_used_entries;
692 	return ret;
693 }
694 
695 /**
696  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
697  * shared pagetable.
698  * @addr: The start address within the non-shared pagetable.
699  * @end: The end address within the non-shared pagetable.
700  * @level: The level of the non-shared pagetable.
701  * @walk: Walk info. The function adjusts the walk action.
702  * @action: next action to perform (see enum page_walk_action)
703  * @offset: Ignored on input, First non-shared entry on output.
704  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
705  *
706  * A non-shared page-table has some entries that belong to the address range
707  * and others that don't. This function determines the entries that belong
708  * fully to the address range. Depending on level, some entries may
709  * partially belong to the address range (that can't happen at level 0).
710  * The function detects that and adjust those offsets to not include those
711  * partial entries. Iff it does detect partial entries, we know that there must
712  * be shared page tables also at lower levels, so it adjusts the walk action
713  * accordingly.
714  *
715  * Return: true if there were non-shared entries, false otherwise.
716  */
717 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
718 				    struct xe_pt_walk *walk,
719 				    enum page_walk_action *action,
720 				    pgoff_t *offset, pgoff_t *end_offset)
721 {
722 	u64 size = 1ull << walk->shifts[level];
723 
724 	*offset = xe_pt_offset(addr, level, walk);
725 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
726 
727 	if (!level)
728 		return true;
729 
730 	/*
731 	 * If addr or next are not size aligned, there are shared pts at lower
732 	 * level, so in that case traverse down the subtree
733 	 */
734 	*action = ACTION_CONTINUE;
735 	if (!IS_ALIGNED(addr, size)) {
736 		*action = ACTION_SUBTREE;
737 		(*offset)++;
738 	}
739 
740 	if (!IS_ALIGNED(end, size)) {
741 		*action = ACTION_SUBTREE;
742 		(*end_offset)--;
743 	}
744 
745 	return *end_offset > *offset;
746 }
747 
748 struct xe_pt_zap_ptes_walk {
749 	/** @base: The walk base-class */
750 	struct xe_pt_walk base;
751 
752 	/* Input parameters for the walk */
753 	/** @tile: The tile we're building for */
754 	struct xe_tile *tile;
755 
756 	/* Output */
757 	/** @needs_invalidate: Whether we need to invalidate TLB*/
758 	bool needs_invalidate;
759 };
760 
761 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
762 				unsigned int level, u64 addr, u64 next,
763 				struct xe_ptw **child,
764 				enum page_walk_action *action,
765 				struct xe_pt_walk *walk)
766 {
767 	struct xe_pt_zap_ptes_walk *xe_walk =
768 		container_of(walk, typeof(*xe_walk), base);
769 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
770 	pgoff_t end_offset;
771 
772 	XE_WARN_ON(!*child);
773 	XE_WARN_ON(!level);
774 
775 	/*
776 	 * Note that we're called from an entry callback, and we're dealing
777 	 * with the child of that entry rather than the parent, so need to
778 	 * adjust level down.
779 	 */
780 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
781 				    &end_offset)) {
782 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
783 			      offset * sizeof(u64), 0,
784 			      (end_offset - offset) * sizeof(u64));
785 		xe_walk->needs_invalidate = true;
786 	}
787 
788 	return 0;
789 }
790 
791 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
792 	.pt_entry = xe_pt_zap_ptes_entry,
793 };
794 
795 /**
796  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
797  * @tile: The tile we're zapping for.
798  * @vma: GPU VMA detailing address range.
799  *
800  * Eviction and Userptr invalidation needs to be able to zap the
801  * gpu ptes of a given address range in pagefaulting mode.
802  * In order to be able to do that, that function needs access to the shared
803  * page-table entrieaso it can either clear the leaf PTEs or
804  * clear the pointers to lower-level page-tables. The caller is required
805  * to hold the necessary locks to ensure neither the page-table connectivity
806  * nor the page-table entries of the range is updated from under us.
807  *
808  * Return: Whether ptes were actually updated and a TLB invalidation is
809  * required.
810  */
811 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
812 {
813 	struct xe_pt_zap_ptes_walk xe_walk = {
814 		.base = {
815 			.ops = &xe_pt_zap_ptes_ops,
816 			.shifts = xe_normal_pt_shifts,
817 			.max_level = XE_PT_HIGHEST_LEVEL,
818 		},
819 		.tile = tile,
820 	};
821 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
822 	u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
823 
824 	if (!(pt_mask & BIT(tile->id)))
825 		return false;
826 
827 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
828 				xe_vma_end(vma), &xe_walk.base);
829 
830 	return xe_walk.needs_invalidate;
831 }
832 
833 static void
834 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
835 		       struct iosys_map *map, void *data,
836 		       u32 qword_ofs, u32 num_qwords,
837 		       const struct xe_vm_pgtable_update *update)
838 {
839 	struct xe_pt_entry *ptes = update->pt_entries;
840 	u64 *ptr = data;
841 	u32 i;
842 
843 	for (i = 0; i < num_qwords; i++) {
844 		if (map)
845 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
846 				  sizeof(u64), u64, ptes[i].pte);
847 		else
848 			ptr[i] = ptes[i].pte;
849 	}
850 }
851 
852 static void xe_pt_cancel_bind(struct xe_vma *vma,
853 			      struct xe_vm_pgtable_update *entries,
854 			      u32 num_entries)
855 {
856 	u32 i, j;
857 
858 	for (i = 0; i < num_entries; i++) {
859 		struct xe_pt *pt = entries[i].pt;
860 
861 		if (!pt)
862 			continue;
863 
864 		if (pt->level) {
865 			for (j = 0; j < entries[i].qwords; j++)
866 				xe_pt_destroy(entries[i].pt_entries[j].pt,
867 					      xe_vma_vm(vma)->flags, NULL);
868 		}
869 
870 		kfree(entries[i].pt_entries);
871 		entries[i].pt_entries = NULL;
872 		entries[i].qwords = 0;
873 	}
874 }
875 
876 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
877 {
878 	struct xe_vm *vm = xe_vma_vm(vma);
879 
880 	lockdep_assert_held(&vm->lock);
881 
882 	if (!xe_vma_is_userptr(vma) && !xe_vma_is_null(vma))
883 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
884 
885 	xe_vm_assert_held(vm);
886 }
887 
888 static void xe_pt_commit(struct xe_vma *vma,
889 			 struct xe_vm_pgtable_update *entries,
890 			 u32 num_entries, struct llist_head *deferred)
891 {
892 	u32 i, j;
893 
894 	xe_pt_commit_locks_assert(vma);
895 
896 	for (i = 0; i < num_entries; i++) {
897 		struct xe_pt *pt = entries[i].pt;
898 
899 		if (!pt->level)
900 			continue;
901 
902 		for (j = 0; j < entries[i].qwords; j++) {
903 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
904 
905 			xe_pt_destroy(oldpte, xe_vma_vm(vma)->flags, deferred);
906 		}
907 	}
908 }
909 
910 static void xe_pt_abort_bind(struct xe_vma *vma,
911 			     struct xe_vm_pgtable_update *entries,
912 			     u32 num_entries, bool rebind)
913 {
914 	int i, j;
915 
916 	xe_pt_commit_locks_assert(vma);
917 
918 	for (i = num_entries - 1; i >= 0; --i) {
919 		struct xe_pt *pt = entries[i].pt;
920 		struct xe_pt_dir *pt_dir;
921 
922 		if (!rebind)
923 			pt->num_live -= entries[i].qwords;
924 
925 		if (!pt->level)
926 			continue;
927 
928 		pt_dir = as_xe_pt_dir(pt);
929 		for (j = 0; j < entries[i].qwords; j++) {
930 			u32 j_ = j + entries[i].ofs;
931 			struct xe_pt *newpte = xe_pt_entry(pt_dir, j_);
932 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
933 
934 			pt_dir->children[j_] = oldpte ? &oldpte->base : 0;
935 			xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
936 		}
937 	}
938 }
939 
940 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
941 				      struct xe_vm_pgtable_update *entries,
942 				      u32 num_entries, bool rebind)
943 {
944 	u32 i, j;
945 
946 	xe_pt_commit_locks_assert(vma);
947 
948 	for (i = 0; i < num_entries; i++) {
949 		struct xe_pt *pt = entries[i].pt;
950 		struct xe_pt_dir *pt_dir;
951 
952 		if (!rebind)
953 			pt->num_live += entries[i].qwords;
954 
955 		if (!pt->level)
956 			continue;
957 
958 		pt_dir = as_xe_pt_dir(pt);
959 		for (j = 0; j < entries[i].qwords; j++) {
960 			u32 j_ = j + entries[i].ofs;
961 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
962 			struct xe_pt *oldpte = NULL;
963 
964 			if (xe_pt_entry(pt_dir, j_))
965 				oldpte = xe_pt_entry(pt_dir, j_);
966 
967 			pt_dir->children[j_] = &newpte->base;
968 			entries[i].pt_entries[j].pt = oldpte;
969 		}
970 	}
971 }
972 
973 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
974 			    u32 num_entries)
975 {
976 	u32 i;
977 
978 	for (i = 0; i < num_entries; i++)
979 		kfree(entries[i].pt_entries);
980 }
981 
982 static int
983 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
984 		   struct xe_vm_pgtable_update *entries, u32 *num_entries)
985 {
986 	int err;
987 
988 	*num_entries = 0;
989 	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
990 	if (!err)
991 		xe_tile_assert(tile, *num_entries);
992 
993 	return err;
994 }
995 
996 static void xe_vm_dbg_print_entries(struct xe_device *xe,
997 				    const struct xe_vm_pgtable_update *entries,
998 				    unsigned int num_entries, bool bind)
999 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
1000 {
1001 	unsigned int i;
1002 
1003 	vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1004 	       num_entries);
1005 	for (i = 0; i < num_entries; i++) {
1006 		const struct xe_vm_pgtable_update *entry = &entries[i];
1007 		struct xe_pt *xe_pt = entry->pt;
1008 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1009 		u64 end;
1010 		u64 start;
1011 
1012 		xe_assert(xe, !entry->pt->is_compact);
1013 		start = entry->ofs * page_size;
1014 		end = start + page_size * entry->qwords;
1015 		vm_dbg(&xe->drm,
1016 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1017 		       i, xe_pt->level, entry->ofs, entry->qwords,
1018 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1019 	}
1020 }
1021 #else
1022 {}
1023 #endif
1024 
1025 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1026 {
1027 	int i;
1028 
1029 	for (i = 0; i < num_syncs; i++) {
1030 		struct dma_fence *fence = syncs[i].fence;
1031 
1032 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1033 				       &fence->flags))
1034 			return false;
1035 	}
1036 
1037 	return true;
1038 }
1039 
1040 static int job_test_add_deps(struct xe_sched_job *job,
1041 			     struct dma_resv *resv,
1042 			     enum dma_resv_usage usage)
1043 {
1044 	if (!job) {
1045 		if (!dma_resv_test_signaled(resv, usage))
1046 			return -ETIME;
1047 
1048 		return 0;
1049 	}
1050 
1051 	return xe_sched_job_add_deps(job, resv, usage);
1052 }
1053 
1054 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1055 {
1056 	struct xe_bo *bo = xe_vma_bo(vma);
1057 
1058 	xe_bo_assert_held(bo);
1059 
1060 	if (bo && !bo->vm)
1061 		return job_test_add_deps(job, bo->ttm.base.resv,
1062 					 DMA_RESV_USAGE_KERNEL);
1063 
1064 	return 0;
1065 }
1066 
1067 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1068 		       struct xe_sched_job *job)
1069 {
1070 	int err = 0;
1071 
1072 	switch (op->base.op) {
1073 	case DRM_GPUVA_OP_MAP:
1074 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1075 			break;
1076 
1077 		err = vma_add_deps(op->map.vma, job);
1078 		break;
1079 	case DRM_GPUVA_OP_REMAP:
1080 		if (op->remap.prev)
1081 			err = vma_add_deps(op->remap.prev, job);
1082 		if (!err && op->remap.next)
1083 			err = vma_add_deps(op->remap.next, job);
1084 		break;
1085 	case DRM_GPUVA_OP_UNMAP:
1086 		break;
1087 	case DRM_GPUVA_OP_PREFETCH:
1088 		err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1089 		break;
1090 	default:
1091 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1092 	}
1093 
1094 	return err;
1095 }
1096 
1097 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1098 				 struct xe_vm *vm,
1099 				 struct xe_vma_ops *vops,
1100 				 struct xe_vm_pgtable_update_ops *pt_update_ops,
1101 				 struct xe_range_fence_tree *rftree)
1102 {
1103 	struct xe_range_fence *rtfence;
1104 	struct dma_fence *fence;
1105 	struct xe_vma_op *op;
1106 	int err = 0, i;
1107 
1108 	xe_vm_assert_held(vm);
1109 
1110 	if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1111 		return -ETIME;
1112 
1113 	if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1114 		return -ETIME;
1115 
1116 	if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1117 		err = job_test_add_deps(job, xe_vm_resv(vm),
1118 					pt_update_ops->wait_vm_bookkeep ?
1119 					DMA_RESV_USAGE_BOOKKEEP :
1120 					DMA_RESV_USAGE_KERNEL);
1121 		if (err)
1122 			return err;
1123 	}
1124 
1125 	rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1126 					    pt_update_ops->last);
1127 	while (rtfence) {
1128 		fence = rtfence->fence;
1129 
1130 		if (!dma_fence_is_signaled(fence)) {
1131 			/*
1132 			 * Is this a CPU update? GPU is busy updating, so return
1133 			 * an error
1134 			 */
1135 			if (!job)
1136 				return -ETIME;
1137 
1138 			dma_fence_get(fence);
1139 			err = drm_sched_job_add_dependency(&job->drm, fence);
1140 			if (err)
1141 				return err;
1142 		}
1143 
1144 		rtfence = xe_range_fence_tree_next(rtfence,
1145 						   pt_update_ops->start,
1146 						   pt_update_ops->last);
1147 	}
1148 
1149 	list_for_each_entry(op, &vops->list, link) {
1150 		err = op_add_deps(vm, op, job);
1151 		if (err)
1152 			return err;
1153 	}
1154 
1155 	if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) {
1156 		if (job)
1157 			err = xe_sched_job_last_fence_add_dep(job, vm);
1158 		else
1159 			err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm);
1160 	}
1161 
1162 	for (i = 0; job && !err && i < vops->num_syncs; i++)
1163 		err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1164 
1165 	return err;
1166 }
1167 
1168 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1169 {
1170 	struct xe_vma_ops *vops = pt_update->vops;
1171 	struct xe_vm *vm = vops->vm;
1172 	struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1173 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1174 		&vops->pt_update_ops[pt_update->tile_id];
1175 
1176 	return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops,
1177 				     pt_update_ops, rftree);
1178 }
1179 
1180 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1181 
1182 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1183 {
1184 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1185 	static u32 count;
1186 
1187 	if (count++ % divisor == divisor - 1) {
1188 		uvma->userptr.divisor = divisor << 1;
1189 		return true;
1190 	}
1191 
1192 	return false;
1193 }
1194 
1195 #else
1196 
1197 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1198 {
1199 	return false;
1200 }
1201 
1202 #endif
1203 
1204 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1205 			     struct xe_vm_pgtable_update_ops *pt_update)
1206 {
1207 	struct xe_userptr_vma *uvma;
1208 	unsigned long notifier_seq;
1209 
1210 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1211 
1212 	if (!xe_vma_is_userptr(vma))
1213 		return 0;
1214 
1215 	uvma = to_userptr_vma(vma);
1216 	notifier_seq = uvma->userptr.notifier_seq;
1217 
1218 	if (uvma->userptr.initial_bind && !xe_vm_in_fault_mode(vm))
1219 		return 0;
1220 
1221 	if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1222 				     notifier_seq) &&
1223 	    !xe_pt_userptr_inject_eagain(uvma))
1224 		return 0;
1225 
1226 	if (xe_vm_in_fault_mode(vm)) {
1227 		return -EAGAIN;
1228 	} else {
1229 		spin_lock(&vm->userptr.invalidated_lock);
1230 		list_move_tail(&uvma->userptr.invalidate_link,
1231 			       &vm->userptr.invalidated);
1232 		spin_unlock(&vm->userptr.invalidated_lock);
1233 
1234 		if (xe_vm_in_preempt_fence_mode(vm)) {
1235 			struct dma_resv_iter cursor;
1236 			struct dma_fence *fence;
1237 			long err;
1238 
1239 			dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
1240 					    DMA_RESV_USAGE_BOOKKEEP);
1241 			dma_resv_for_each_fence_unlocked(&cursor, fence)
1242 				dma_fence_enable_sw_signaling(fence);
1243 			dma_resv_iter_end(&cursor);
1244 
1245 			err = dma_resv_wait_timeout(xe_vm_resv(vm),
1246 						    DMA_RESV_USAGE_BOOKKEEP,
1247 						    false, MAX_SCHEDULE_TIMEOUT);
1248 			XE_WARN_ON(err <= 0);
1249 		}
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1256 			    struct xe_vm_pgtable_update_ops *pt_update)
1257 {
1258 	int err = 0;
1259 
1260 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1261 
1262 	switch (op->base.op) {
1263 	case DRM_GPUVA_OP_MAP:
1264 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1265 			break;
1266 
1267 		err = vma_check_userptr(vm, op->map.vma, pt_update);
1268 		break;
1269 	case DRM_GPUVA_OP_REMAP:
1270 		if (op->remap.prev)
1271 			err = vma_check_userptr(vm, op->remap.prev, pt_update);
1272 		if (!err && op->remap.next)
1273 			err = vma_check_userptr(vm, op->remap.next, pt_update);
1274 		break;
1275 	case DRM_GPUVA_OP_UNMAP:
1276 		break;
1277 	case DRM_GPUVA_OP_PREFETCH:
1278 		err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va),
1279 					pt_update);
1280 		break;
1281 	default:
1282 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1283 	}
1284 
1285 	return err;
1286 }
1287 
1288 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1289 {
1290 	struct xe_vm *vm = pt_update->vops->vm;
1291 	struct xe_vma_ops *vops = pt_update->vops;
1292 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1293 		&vops->pt_update_ops[pt_update->tile_id];
1294 	struct xe_vma_op *op;
1295 	int err;
1296 
1297 	err = xe_pt_pre_commit(pt_update);
1298 	if (err)
1299 		return err;
1300 
1301 	down_read(&vm->userptr.notifier_lock);
1302 
1303 	list_for_each_entry(op, &vops->list, link) {
1304 		err = op_check_userptr(vm, op, pt_update_ops);
1305 		if (err) {
1306 			up_read(&vm->userptr.notifier_lock);
1307 			break;
1308 		}
1309 	}
1310 
1311 	return err;
1312 }
1313 
1314 struct invalidation_fence {
1315 	struct xe_gt_tlb_invalidation_fence base;
1316 	struct xe_gt *gt;
1317 	struct dma_fence *fence;
1318 	struct dma_fence_cb cb;
1319 	struct work_struct work;
1320 	u64 start;
1321 	u64 end;
1322 	u32 asid;
1323 };
1324 
1325 static void invalidation_fence_cb(struct dma_fence *fence,
1326 				  struct dma_fence_cb *cb)
1327 {
1328 	struct invalidation_fence *ifence =
1329 		container_of(cb, struct invalidation_fence, cb);
1330 	struct xe_device *xe = gt_to_xe(ifence->gt);
1331 
1332 	trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base);
1333 	if (!ifence->fence->error) {
1334 		queue_work(system_wq, &ifence->work);
1335 	} else {
1336 		ifence->base.base.error = ifence->fence->error;
1337 		xe_gt_tlb_invalidation_fence_signal(&ifence->base);
1338 	}
1339 	dma_fence_put(ifence->fence);
1340 }
1341 
1342 static void invalidation_fence_work_func(struct work_struct *w)
1343 {
1344 	struct invalidation_fence *ifence =
1345 		container_of(w, struct invalidation_fence, work);
1346 	struct xe_device *xe = gt_to_xe(ifence->gt);
1347 
1348 	trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base);
1349 	xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start,
1350 				     ifence->end, ifence->asid);
1351 }
1352 
1353 static void invalidation_fence_init(struct xe_gt *gt,
1354 				    struct invalidation_fence *ifence,
1355 				    struct dma_fence *fence,
1356 				    u64 start, u64 end, u32 asid)
1357 {
1358 	int ret;
1359 
1360 	trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base);
1361 
1362 	xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false);
1363 
1364 	ifence->fence = fence;
1365 	ifence->gt = gt;
1366 	ifence->start = start;
1367 	ifence->end = end;
1368 	ifence->asid = asid;
1369 
1370 	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1371 	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1372 	if (ret == -ENOENT) {
1373 		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1374 		invalidation_fence_work_func(&ifence->work);
1375 	} else if (ret) {
1376 		dma_fence_put(&ifence->base.base);	/* Caller ref */
1377 		dma_fence_put(&ifence->base.base);	/* Creation ref */
1378 	}
1379 
1380 	xe_gt_assert(gt, !ret || ret == -ENOENT);
1381 }
1382 
1383 struct xe_pt_stage_unbind_walk {
1384 	/** @base: The pagewalk base-class. */
1385 	struct xe_pt_walk base;
1386 
1387 	/* Input parameters for the walk */
1388 	/** @tile: The tile we're unbinding from. */
1389 	struct xe_tile *tile;
1390 
1391 	/**
1392 	 * @modified_start: Walk range start, modified to include any
1393 	 * shared pagetables that we're the only user of and can thus
1394 	 * treat as private.
1395 	 */
1396 	u64 modified_start;
1397 	/** @modified_end: Walk range start, modified like @modified_start. */
1398 	u64 modified_end;
1399 
1400 	/* Output */
1401 	/* @wupd: Structure to track the page-table updates we're building */
1402 	struct xe_walk_update wupd;
1403 };
1404 
1405 /*
1406  * Check whether this range is the only one populating this pagetable,
1407  * and in that case, update the walk range checks so that higher levels don't
1408  * view us as a shared pagetable.
1409  */
1410 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1411 			     const struct xe_pt *child,
1412 			     enum page_walk_action *action,
1413 			     struct xe_pt_walk *walk)
1414 {
1415 	struct xe_pt_stage_unbind_walk *xe_walk =
1416 		container_of(walk, typeof(*xe_walk), base);
1417 	unsigned int shift = walk->shifts[level];
1418 	u64 size = 1ull << shift;
1419 
1420 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1421 	    ((next - addr) >> shift) == child->num_live) {
1422 		u64 size = 1ull << walk->shifts[level + 1];
1423 
1424 		*action = ACTION_CONTINUE;
1425 
1426 		if (xe_walk->modified_start >= addr)
1427 			xe_walk->modified_start = round_down(addr, size);
1428 		if (xe_walk->modified_end <= next)
1429 			xe_walk->modified_end = round_up(next, size);
1430 
1431 		return true;
1432 	}
1433 
1434 	return false;
1435 }
1436 
1437 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1438 				    unsigned int level, u64 addr, u64 next,
1439 				    struct xe_ptw **child,
1440 				    enum page_walk_action *action,
1441 				    struct xe_pt_walk *walk)
1442 {
1443 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1444 
1445 	XE_WARN_ON(!*child);
1446 	XE_WARN_ON(!level);
1447 
1448 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1449 
1450 	return 0;
1451 }
1452 
1453 static int
1454 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1455 				unsigned int level, u64 addr, u64 next,
1456 				struct xe_ptw **child,
1457 				enum page_walk_action *action,
1458 				struct xe_pt_walk *walk)
1459 {
1460 	struct xe_pt_stage_unbind_walk *xe_walk =
1461 		container_of(walk, typeof(*xe_walk), base);
1462 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1463 	pgoff_t end_offset;
1464 	u64 size = 1ull << walk->shifts[--level];
1465 	int err;
1466 
1467 	if (!IS_ALIGNED(addr, size))
1468 		addr = xe_walk->modified_start;
1469 	if (!IS_ALIGNED(next, size))
1470 		next = xe_walk->modified_end;
1471 
1472 	/* Parent == *child is the root pt. Don't kill it. */
1473 	if (parent != *child &&
1474 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1475 		return 0;
1476 
1477 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1478 				     &end_offset))
1479 		return 0;
1480 
1481 	err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1482 	if (err)
1483 		return err;
1484 
1485 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1486 
1487 	return 0;
1488 }
1489 
1490 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1491 	.pt_entry = xe_pt_stage_unbind_entry,
1492 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1493 };
1494 
1495 /**
1496  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1497  * operation
1498  * @tile: The tile we're unbinding for.
1499  * @vma: The vma we're unbinding.
1500  * @entries: Caller-provided storage for the update structures.
1501  *
1502  * Builds page-table update structures for an unbind operation. The function
1503  * will attempt to remove all page-tables that we're the only user
1504  * of, and for that to work, the unbind operation must be committed in the
1505  * same critical section that blocks racing binds to the same page-table tree.
1506  *
1507  * Return: The number of entries used.
1508  */
1509 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1510 				       struct xe_vm_pgtable_update *entries)
1511 {
1512 	struct xe_pt_stage_unbind_walk xe_walk = {
1513 		.base = {
1514 			.ops = &xe_pt_stage_unbind_ops,
1515 			.shifts = xe_normal_pt_shifts,
1516 			.max_level = XE_PT_HIGHEST_LEVEL,
1517 		},
1518 		.tile = tile,
1519 		.modified_start = xe_vma_start(vma),
1520 		.modified_end = xe_vma_end(vma),
1521 		.wupd.entries = entries,
1522 	};
1523 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1524 
1525 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1526 				xe_vma_end(vma), &xe_walk.base);
1527 
1528 	return xe_walk.wupd.num_used_entries;
1529 }
1530 
1531 static void
1532 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1533 				  struct xe_tile *tile, struct iosys_map *map,
1534 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1535 				  const struct xe_vm_pgtable_update *update)
1536 {
1537 	struct xe_vm *vm = pt_update->vops->vm;
1538 	u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1539 	int i;
1540 
1541 	if (map && map->is_iomem)
1542 		for (i = 0; i < num_qwords; ++i)
1543 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1544 				  sizeof(u64), u64, empty);
1545 	else if (map)
1546 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1547 			 num_qwords);
1548 	else
1549 		memset64(ptr, empty, num_qwords);
1550 }
1551 
1552 static void xe_pt_abort_unbind(struct xe_vma *vma,
1553 			       struct xe_vm_pgtable_update *entries,
1554 			       u32 num_entries)
1555 {
1556 	int i, j;
1557 
1558 	xe_pt_commit_locks_assert(vma);
1559 
1560 	for (i = num_entries - 1; i >= 0; --i) {
1561 		struct xe_vm_pgtable_update *entry = &entries[i];
1562 		struct xe_pt *pt = entry->pt;
1563 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1564 
1565 		pt->num_live += entry->qwords;
1566 
1567 		if (!pt->level)
1568 			continue;
1569 
1570 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1571 			pt_dir->children[j] =
1572 				entries[i].pt_entries[j - entry->ofs].pt ?
1573 				&entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1574 	}
1575 }
1576 
1577 static void
1578 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1579 			    struct xe_vm_pgtable_update *entries,
1580 			    u32 num_entries)
1581 {
1582 	int i, j;
1583 
1584 	xe_pt_commit_locks_assert(vma);
1585 
1586 	for (i = 0; i < num_entries; ++i) {
1587 		struct xe_vm_pgtable_update *entry = &entries[i];
1588 		struct xe_pt *pt = entry->pt;
1589 		struct xe_pt_dir *pt_dir;
1590 
1591 		pt->num_live -= entry->qwords;
1592 		if (!pt->level)
1593 			continue;
1594 
1595 		pt_dir = as_xe_pt_dir(pt);
1596 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1597 			entry->pt_entries[j - entry->ofs].pt =
1598 				xe_pt_entry(pt_dir, j);
1599 			pt_dir->children[j] = NULL;
1600 		}
1601 	}
1602 }
1603 
1604 static void
1605 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1606 				 struct xe_vma *vma)
1607 {
1608 	u32 current_op = pt_update_ops->current_op;
1609 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1610 	int i, level = 0;
1611 	u64 start, last;
1612 
1613 	for (i = 0; i < pt_op->num_entries; i++) {
1614 		const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1615 
1616 		if (entry->pt->level > level)
1617 			level = entry->pt->level;
1618 	}
1619 
1620 	/* Greedy (non-optimal) calculation but simple */
1621 	start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level));
1622 	last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1;
1623 
1624 	if (start < pt_update_ops->start)
1625 		pt_update_ops->start = start;
1626 	if (last > pt_update_ops->last)
1627 		pt_update_ops->last = last;
1628 }
1629 
1630 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1631 {
1632 	int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0;
1633 
1634 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1635 		return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1636 					       xe->info.tile_count << shift);
1637 
1638 	return 0;
1639 }
1640 
1641 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1642 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1643 			   struct xe_vma *vma)
1644 {
1645 	u32 current_op = pt_update_ops->current_op;
1646 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1647 	int err;
1648 
1649 	xe_bo_assert_held(xe_vma_bo(vma));
1650 
1651 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1652 	       "Preparing bind, with range [%llx...%llx)\n",
1653 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1654 
1655 	pt_op->vma = NULL;
1656 	pt_op->bind = true;
1657 	pt_op->rebind = BIT(tile->id) & vma->tile_present;
1658 
1659 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1660 	if (err)
1661 		return err;
1662 
1663 	err = xe_pt_prepare_bind(tile, vma, pt_op->entries,
1664 				 &pt_op->num_entries);
1665 	if (!err) {
1666 		xe_tile_assert(tile, pt_op->num_entries <=
1667 			       ARRAY_SIZE(pt_op->entries));
1668 		xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1669 					pt_op->num_entries, true);
1670 
1671 		xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1672 		++pt_update_ops->current_op;
1673 		pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1674 
1675 		/*
1676 		 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1677 		 * cached PTEs point to freed memory. On LR vms this is done
1678 		 * automatically when the context is re-enabled by the rebind worker,
1679 		 * or in fault mode it was invalidated on PTE zapping.
1680 		 *
1681 		 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1682 		 * PTE is already cached in the TLB so it needs to be invalidated.
1683 		 * On !LR VMs this is done in the ring ops preceding a batch, but on
1684 		 * non-faulting LR, in particular on user-space batch buffer chaining,
1685 		 * it needs to be done here.
1686 		 */
1687 		if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1688 		     xe_vm_in_preempt_fence_mode(vm)))
1689 			pt_update_ops->needs_invalidation = true;
1690 		else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1691 			/* We bump also if batch_invalidate_tlb is true */
1692 			vm->tlb_flush_seqno++;
1693 
1694 		vma->tile_staged |= BIT(tile->id);
1695 		pt_op->vma = vma;
1696 		xe_pt_commit_prepare_bind(vma, pt_op->entries,
1697 					  pt_op->num_entries, pt_op->rebind);
1698 	} else {
1699 		xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1700 	}
1701 
1702 	return err;
1703 }
1704 
1705 static int unbind_op_prepare(struct xe_tile *tile,
1706 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1707 			     struct xe_vma *vma)
1708 {
1709 	u32 current_op = pt_update_ops->current_op;
1710 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1711 	int err;
1712 
1713 	if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1714 		return 0;
1715 
1716 	xe_bo_assert_held(xe_vma_bo(vma));
1717 
1718 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1719 	       "Preparing unbind, with range [%llx...%llx)\n",
1720 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1721 
1722 	/*
1723 	 * Wait for invalidation to complete. Can corrupt internal page table
1724 	 * state if an invalidation is running while preparing an unbind.
1725 	 */
1726 	if (xe_vma_is_userptr(vma) && xe_vm_in_fault_mode(xe_vma_vm(vma)))
1727 		mmu_interval_read_begin(&to_userptr_vma(vma)->userptr.notifier);
1728 
1729 	pt_op->vma = vma;
1730 	pt_op->bind = false;
1731 	pt_op->rebind = false;
1732 
1733 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1734 	if (err)
1735 		return err;
1736 
1737 	pt_op->num_entries = xe_pt_stage_unbind(tile, vma, pt_op->entries);
1738 
1739 	xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1740 				pt_op->num_entries, false);
1741 	xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1742 	++pt_update_ops->current_op;
1743 	pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1744 	pt_update_ops->needs_invalidation = true;
1745 
1746 	xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1747 
1748 	return 0;
1749 }
1750 
1751 static int op_prepare(struct xe_vm *vm,
1752 		      struct xe_tile *tile,
1753 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1754 		      struct xe_vma_op *op)
1755 {
1756 	int err = 0;
1757 
1758 	xe_vm_assert_held(vm);
1759 
1760 	switch (op->base.op) {
1761 	case DRM_GPUVA_OP_MAP:
1762 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1763 			break;
1764 
1765 		err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma);
1766 		pt_update_ops->wait_vm_kernel = true;
1767 		break;
1768 	case DRM_GPUVA_OP_REMAP:
1769 		err = unbind_op_prepare(tile, pt_update_ops,
1770 					gpuva_to_vma(op->base.remap.unmap->va));
1771 
1772 		if (!err && op->remap.prev) {
1773 			err = bind_op_prepare(vm, tile, pt_update_ops,
1774 					      op->remap.prev);
1775 			pt_update_ops->wait_vm_bookkeep = true;
1776 		}
1777 		if (!err && op->remap.next) {
1778 			err = bind_op_prepare(vm, tile, pt_update_ops,
1779 					      op->remap.next);
1780 			pt_update_ops->wait_vm_bookkeep = true;
1781 		}
1782 		break;
1783 	case DRM_GPUVA_OP_UNMAP:
1784 		err = unbind_op_prepare(tile, pt_update_ops,
1785 					gpuva_to_vma(op->base.unmap.va));
1786 		break;
1787 	case DRM_GPUVA_OP_PREFETCH:
1788 		err = bind_op_prepare(vm, tile, pt_update_ops,
1789 				      gpuva_to_vma(op->base.prefetch.va));
1790 		pt_update_ops->wait_vm_kernel = true;
1791 		break;
1792 	default:
1793 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1794 	}
1795 
1796 	return err;
1797 }
1798 
1799 static void
1800 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
1801 {
1802 	init_llist_head(&pt_update_ops->deferred);
1803 	pt_update_ops->start = ~0x0ull;
1804 	pt_update_ops->last = 0x0ull;
1805 }
1806 
1807 /**
1808  * xe_pt_update_ops_prepare() - Prepare PT update operations
1809  * @tile: Tile of PT update operations
1810  * @vops: VMA operationa
1811  *
1812  * Prepare PT update operations which includes updating internal PT state,
1813  * allocate memory for page tables, populate page table being pruned in, and
1814  * create PT update operations for leaf insertion / removal.
1815  *
1816  * Return: 0 on success, negative error code on error.
1817  */
1818 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
1819 {
1820 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1821 		&vops->pt_update_ops[tile->id];
1822 	struct xe_vma_op *op;
1823 	int shift = tile->media_gt ? 1 : 0;
1824 	int err;
1825 
1826 	lockdep_assert_held(&vops->vm->lock);
1827 	xe_vm_assert_held(vops->vm);
1828 
1829 	xe_pt_update_ops_init(pt_update_ops);
1830 
1831 	err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
1832 				      tile_to_xe(tile)->info.tile_count << shift);
1833 	if (err)
1834 		return err;
1835 
1836 	list_for_each_entry(op, &vops->list, link) {
1837 		err = op_prepare(vops->vm, tile, pt_update_ops, op);
1838 
1839 		if (err)
1840 			return err;
1841 	}
1842 
1843 	xe_tile_assert(tile, pt_update_ops->current_op <=
1844 		       pt_update_ops->num_ops);
1845 
1846 #ifdef TEST_VM_OPS_ERROR
1847 	if (vops->inject_error &&
1848 	    vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
1849 		return -ENOSPC;
1850 #endif
1851 
1852 	return 0;
1853 }
1854 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO);
1855 
1856 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1857 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1858 			   struct xe_vma *vma, struct dma_fence *fence,
1859 			   struct dma_fence *fence2)
1860 {
1861 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1862 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1863 				   pt_update_ops->wait_vm_bookkeep ?
1864 				   DMA_RESV_USAGE_KERNEL :
1865 				   DMA_RESV_USAGE_BOOKKEEP);
1866 		if (fence2)
1867 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1868 					   pt_update_ops->wait_vm_bookkeep ?
1869 					   DMA_RESV_USAGE_KERNEL :
1870 					   DMA_RESV_USAGE_BOOKKEEP);
1871 	}
1872 	vma->tile_present |= BIT(tile->id);
1873 	vma->tile_staged &= ~BIT(tile->id);
1874 	if (xe_vma_is_userptr(vma)) {
1875 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
1876 		to_userptr_vma(vma)->userptr.initial_bind = true;
1877 	}
1878 
1879 	/*
1880 	 * Kick rebind worker if this bind triggers preempt fences and not in
1881 	 * the rebind worker
1882 	 */
1883 	if (pt_update_ops->wait_vm_bookkeep &&
1884 	    xe_vm_in_preempt_fence_mode(vm) &&
1885 	    !current->mm)
1886 		xe_vm_queue_rebind_worker(vm);
1887 }
1888 
1889 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1890 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1891 			     struct xe_vma *vma, struct dma_fence *fence,
1892 			     struct dma_fence *fence2)
1893 {
1894 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1895 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1896 				   pt_update_ops->wait_vm_bookkeep ?
1897 				   DMA_RESV_USAGE_KERNEL :
1898 				   DMA_RESV_USAGE_BOOKKEEP);
1899 		if (fence2)
1900 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1901 					   pt_update_ops->wait_vm_bookkeep ?
1902 					   DMA_RESV_USAGE_KERNEL :
1903 					   DMA_RESV_USAGE_BOOKKEEP);
1904 	}
1905 	vma->tile_present &= ~BIT(tile->id);
1906 	if (!vma->tile_present) {
1907 		list_del_init(&vma->combined_links.rebind);
1908 		if (xe_vma_is_userptr(vma)) {
1909 			lockdep_assert_held_read(&vm->userptr.notifier_lock);
1910 
1911 			spin_lock(&vm->userptr.invalidated_lock);
1912 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1913 			spin_unlock(&vm->userptr.invalidated_lock);
1914 		}
1915 	}
1916 }
1917 
1918 static void op_commit(struct xe_vm *vm,
1919 		      struct xe_tile *tile,
1920 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1921 		      struct xe_vma_op *op, struct dma_fence *fence,
1922 		      struct dma_fence *fence2)
1923 {
1924 	xe_vm_assert_held(vm);
1925 
1926 	switch (op->base.op) {
1927 	case DRM_GPUVA_OP_MAP:
1928 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1929 			break;
1930 
1931 		bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence,
1932 			       fence2);
1933 		break;
1934 	case DRM_GPUVA_OP_REMAP:
1935 		unbind_op_commit(vm, tile, pt_update_ops,
1936 				 gpuva_to_vma(op->base.remap.unmap->va), fence,
1937 				 fence2);
1938 
1939 		if (op->remap.prev)
1940 			bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
1941 				       fence, fence2);
1942 		if (op->remap.next)
1943 			bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
1944 				       fence, fence2);
1945 		break;
1946 	case DRM_GPUVA_OP_UNMAP:
1947 		unbind_op_commit(vm, tile, pt_update_ops,
1948 				 gpuva_to_vma(op->base.unmap.va), fence, fence2);
1949 		break;
1950 	case DRM_GPUVA_OP_PREFETCH:
1951 		bind_op_commit(vm, tile, pt_update_ops,
1952 			       gpuva_to_vma(op->base.prefetch.va), fence, fence2);
1953 		break;
1954 	default:
1955 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1956 	}
1957 }
1958 
1959 static const struct xe_migrate_pt_update_ops migrate_ops = {
1960 	.populate = xe_vm_populate_pgtable,
1961 	.clear = xe_migrate_clear_pgtable_callback,
1962 	.pre_commit = xe_pt_pre_commit,
1963 };
1964 
1965 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = {
1966 	.populate = xe_vm_populate_pgtable,
1967 	.clear = xe_migrate_clear_pgtable_callback,
1968 	.pre_commit = xe_pt_userptr_pre_commit,
1969 };
1970 
1971 /**
1972  * xe_pt_update_ops_run() - Run PT update operations
1973  * @tile: Tile of PT update operations
1974  * @vops: VMA operationa
1975  *
1976  * Run PT update operations which includes committing internal PT state changes,
1977  * creating job for PT update operations for leaf insertion / removal, and
1978  * installing job fence in various places.
1979  *
1980  * Return: fence on success, negative ERR_PTR on error.
1981  */
1982 struct dma_fence *
1983 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
1984 {
1985 	struct xe_vm *vm = vops->vm;
1986 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1987 		&vops->pt_update_ops[tile->id];
1988 	struct dma_fence *fence;
1989 	struct invalidation_fence *ifence = NULL, *mfence = NULL;
1990 	struct dma_fence **fences = NULL;
1991 	struct dma_fence_array *cf = NULL;
1992 	struct xe_range_fence *rfence;
1993 	struct xe_vma_op *op;
1994 	int err = 0, i;
1995 	struct xe_migrate_pt_update update = {
1996 		.ops = pt_update_ops->needs_userptr_lock ?
1997 			&userptr_migrate_ops :
1998 			&migrate_ops,
1999 		.vops = vops,
2000 		.tile_id = tile->id,
2001 	};
2002 
2003 	lockdep_assert_held(&vm->lock);
2004 	xe_vm_assert_held(vm);
2005 
2006 	if (!pt_update_ops->current_op) {
2007 		xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
2008 
2009 		return dma_fence_get_stub();
2010 	}
2011 
2012 #ifdef TEST_VM_OPS_ERROR
2013 	if (vops->inject_error &&
2014 	    vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
2015 		return ERR_PTR(-ENOSPC);
2016 #endif
2017 
2018 	if (pt_update_ops->needs_invalidation) {
2019 		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2020 		if (!ifence) {
2021 			err = -ENOMEM;
2022 			goto kill_vm_tile1;
2023 		}
2024 		if (tile->media_gt) {
2025 			mfence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2026 			if (!mfence) {
2027 				err = -ENOMEM;
2028 				goto free_ifence;
2029 			}
2030 			fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL);
2031 			if (!fences) {
2032 				err = -ENOMEM;
2033 				goto free_ifence;
2034 			}
2035 			cf = dma_fence_array_alloc(2);
2036 			if (!cf) {
2037 				err = -ENOMEM;
2038 				goto free_ifence;
2039 			}
2040 		}
2041 	}
2042 
2043 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2044 	if (!rfence) {
2045 		err = -ENOMEM;
2046 		goto free_ifence;
2047 	}
2048 
2049 	fence = xe_migrate_update_pgtables(tile->migrate, &update);
2050 	if (IS_ERR(fence)) {
2051 		err = PTR_ERR(fence);
2052 		goto free_rfence;
2053 	}
2054 
2055 	/* Point of no return - VM killed if failure after this */
2056 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2057 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2058 
2059 		xe_pt_commit(pt_op->vma, pt_op->entries,
2060 			     pt_op->num_entries, &pt_update_ops->deferred);
2061 		pt_op->vma = NULL;	/* skip in xe_pt_update_ops_abort */
2062 	}
2063 
2064 	if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2065 				  &xe_range_fence_kfree_ops,
2066 				  pt_update_ops->start,
2067 				  pt_update_ops->last, fence))
2068 		dma_fence_wait(fence, false);
2069 
2070 	/* tlb invalidation must be done before signaling rebind */
2071 	if (ifence) {
2072 		if (mfence)
2073 			dma_fence_get(fence);
2074 		invalidation_fence_init(tile->primary_gt, ifence, fence,
2075 					pt_update_ops->start,
2076 					pt_update_ops->last, vm->usm.asid);
2077 		if (mfence) {
2078 			invalidation_fence_init(tile->media_gt, mfence, fence,
2079 						pt_update_ops->start,
2080 						pt_update_ops->last, vm->usm.asid);
2081 			fences[0] = &ifence->base.base;
2082 			fences[1] = &mfence->base.base;
2083 			dma_fence_array_init(cf, 2, fences,
2084 					     vm->composite_fence_ctx,
2085 					     vm->composite_fence_seqno++,
2086 					     false);
2087 			fence = &cf->base;
2088 		} else {
2089 			fence = &ifence->base.base;
2090 		}
2091 	}
2092 
2093 	if (!mfence) {
2094 		dma_resv_add_fence(xe_vm_resv(vm), fence,
2095 				   pt_update_ops->wait_vm_bookkeep ?
2096 				   DMA_RESV_USAGE_KERNEL :
2097 				   DMA_RESV_USAGE_BOOKKEEP);
2098 
2099 		list_for_each_entry(op, &vops->list, link)
2100 			op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL);
2101 	} else {
2102 		dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base,
2103 				   pt_update_ops->wait_vm_bookkeep ?
2104 				   DMA_RESV_USAGE_KERNEL :
2105 				   DMA_RESV_USAGE_BOOKKEEP);
2106 
2107 		dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base,
2108 				   pt_update_ops->wait_vm_bookkeep ?
2109 				   DMA_RESV_USAGE_KERNEL :
2110 				   DMA_RESV_USAGE_BOOKKEEP);
2111 
2112 		list_for_each_entry(op, &vops->list, link)
2113 			op_commit(vops->vm, tile, pt_update_ops, op,
2114 				  &ifence->base.base, &mfence->base.base);
2115 	}
2116 
2117 	if (pt_update_ops->needs_userptr_lock)
2118 		up_read(&vm->userptr.notifier_lock);
2119 
2120 	return fence;
2121 
2122 free_rfence:
2123 	kfree(rfence);
2124 free_ifence:
2125 	kfree(cf);
2126 	kfree(fences);
2127 	kfree(mfence);
2128 	kfree(ifence);
2129 kill_vm_tile1:
2130 	if (err != -EAGAIN && tile->id)
2131 		xe_vm_kill(vops->vm, false);
2132 
2133 	return ERR_PTR(err);
2134 }
2135 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO);
2136 
2137 /**
2138  * xe_pt_update_ops_fini() - Finish PT update operations
2139  * @tile: Tile of PT update operations
2140  * @vops: VMA operations
2141  *
2142  * Finish PT update operations by committing to destroy page table memory
2143  */
2144 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2145 {
2146 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2147 		&vops->pt_update_ops[tile->id];
2148 	int i;
2149 
2150 	lockdep_assert_held(&vops->vm->lock);
2151 	xe_vm_assert_held(vops->vm);
2152 
2153 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2154 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2155 
2156 		xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2157 	}
2158 	xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2159 }
2160 
2161 /**
2162  * xe_pt_update_ops_abort() - Abort PT update operations
2163  * @tile: Tile of PT update operations
2164  * @vops: VMA operationa
2165  *
2166  *  Abort PT update operations by unwinding internal PT state
2167  */
2168 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2169 {
2170 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2171 		&vops->pt_update_ops[tile->id];
2172 	int i;
2173 
2174 	lockdep_assert_held(&vops->vm->lock);
2175 	xe_vm_assert_held(vops->vm);
2176 
2177 	for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2178 		struct xe_vm_pgtable_update_op *pt_op =
2179 			&pt_update_ops->ops[i];
2180 
2181 		if (!pt_op->vma || i >= pt_update_ops->current_op)
2182 			continue;
2183 
2184 		if (pt_op->bind)
2185 			xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2186 					 pt_op->num_entries,
2187 					 pt_op->rebind);
2188 		else
2189 			xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2190 					   pt_op->num_entries);
2191 	}
2192 
2193 	xe_pt_update_ops_fini(tile, vops);
2194 }
2195