1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <linux/dma-fence-array.h> 7 8 #include "xe_pt.h" 9 10 #include "regs/xe_gtt_defs.h" 11 #include "xe_bo.h" 12 #include "xe_device.h" 13 #include "xe_drm_client.h" 14 #include "xe_exec_queue.h" 15 #include "xe_gt.h" 16 #include "xe_gt_tlb_invalidation.h" 17 #include "xe_migrate.h" 18 #include "xe_pt_types.h" 19 #include "xe_pt_walk.h" 20 #include "xe_res_cursor.h" 21 #include "xe_sched_job.h" 22 #include "xe_sync.h" 23 #include "xe_trace.h" 24 #include "xe_ttm_stolen_mgr.h" 25 #include "xe_vm.h" 26 27 struct xe_pt_dir { 28 struct xe_pt pt; 29 /** @children: Array of page-table child nodes */ 30 struct xe_ptw *children[XE_PDES]; 31 }; 32 33 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 34 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 35 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 36 #else 37 #define xe_pt_set_addr(__xe_pt, __addr) 38 #define xe_pt_addr(__xe_pt) 0ull 39 #endif 40 41 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 42 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 43 44 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 45 46 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 47 { 48 return container_of(pt, struct xe_pt_dir, pt); 49 } 50 51 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) 52 { 53 return container_of(pt_dir->children[index], struct xe_pt, base); 54 } 55 56 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 57 unsigned int level) 58 { 59 struct xe_device *xe = tile_to_xe(tile); 60 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 61 u8 id = tile->id; 62 63 if (!xe_vm_has_scratch(vm)) 64 return 0; 65 66 if (level > MAX_HUGEPTE_LEVEL) 67 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 68 0, pat_index); 69 70 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 71 XE_PTE_NULL; 72 } 73 74 static void xe_pt_free(struct xe_pt *pt) 75 { 76 if (pt->level) 77 kfree(as_xe_pt_dir(pt)); 78 else 79 kfree(pt); 80 } 81 82 /** 83 * xe_pt_create() - Create a page-table. 84 * @vm: The vm to create for. 85 * @tile: The tile to create for. 86 * @level: The page-table level. 87 * 88 * Allocate and initialize a single struct xe_pt metadata structure. Also 89 * create the corresponding page-table bo, but don't initialize it. If the 90 * level is grater than zero, then it's assumed to be a directory page- 91 * table and the directory structure is also allocated and initialized to 92 * NULL pointers. 93 * 94 * Return: A valid struct xe_pt pointer on success, Pointer error code on 95 * error. 96 */ 97 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 98 unsigned int level) 99 { 100 struct xe_pt *pt; 101 struct xe_bo *bo; 102 int err; 103 104 if (level) { 105 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 106 107 pt = (dir) ? &dir->pt : NULL; 108 } else { 109 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 110 } 111 if (!pt) 112 return ERR_PTR(-ENOMEM); 113 114 pt->level = level; 115 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 116 ttm_bo_type_kernel, 117 XE_BO_FLAG_VRAM_IF_DGFX(tile) | 118 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 119 XE_BO_FLAG_PINNED | 120 XE_BO_FLAG_NO_RESV_EVICT | 121 XE_BO_FLAG_PAGETABLE); 122 if (IS_ERR(bo)) { 123 err = PTR_ERR(bo); 124 goto err_kfree; 125 } 126 pt->bo = bo; 127 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 128 129 if (vm->xef) 130 xe_drm_client_add_bo(vm->xef->client, pt->bo); 131 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 132 133 return pt; 134 135 err_kfree: 136 xe_pt_free(pt); 137 return ERR_PTR(err); 138 } 139 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO); 140 141 /** 142 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 143 * entries. 144 * @tile: The tile the scratch pagetable of which to use. 145 * @vm: The vm we populate for. 146 * @pt: The pagetable the bo of which to initialize. 147 * 148 * Populate the page-table bo of @pt with entries pointing into the tile's 149 * scratch page-table tree if any. Otherwise populate with zeros. 150 */ 151 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 152 struct xe_pt *pt) 153 { 154 struct iosys_map *map = &pt->bo->vmap; 155 u64 empty; 156 int i; 157 158 if (!xe_vm_has_scratch(vm)) { 159 /* 160 * FIXME: Some memory is allocated already allocated to zero? 161 * Find out which memory that is and avoid this memset... 162 */ 163 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 164 } else { 165 empty = __xe_pt_empty_pte(tile, vm, pt->level); 166 for (i = 0; i < XE_PDES; i++) 167 xe_pt_write(vm->xe, map, i, empty); 168 } 169 } 170 171 /** 172 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 173 * a page-table at a certain level. 174 * @level: The level. 175 * 176 * Return: The ilog2 value of the size of the address range of a page-table 177 * at level @level. 178 */ 179 unsigned int xe_pt_shift(unsigned int level) 180 { 181 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 182 } 183 184 /** 185 * xe_pt_destroy() - Destroy a page-table tree. 186 * @pt: The root of the page-table tree to destroy. 187 * @flags: vm flags. Currently unused. 188 * @deferred: List head of lockless list for deferred putting. NULL for 189 * immediate putting. 190 * 191 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 192 * and finally frees @pt. TODO: Can we remove the @flags argument? 193 */ 194 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 195 { 196 int i; 197 198 if (!pt) 199 return; 200 201 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 202 xe_bo_unpin(pt->bo); 203 xe_bo_put_deferred(pt->bo, deferred); 204 205 if (pt->level > 0 && pt->num_live) { 206 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 207 208 for (i = 0; i < XE_PDES; i++) { 209 if (xe_pt_entry(pt_dir, i)) 210 xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, 211 deferred); 212 } 213 } 214 xe_pt_free(pt); 215 } 216 217 /** 218 * DOC: Pagetable building 219 * 220 * Below we use the term "page-table" for both page-directories, containing 221 * pointers to lower level page-directories or page-tables, and level 0 222 * page-tables that contain only page-table-entries pointing to memory pages. 223 * 224 * When inserting an address range in an already existing page-table tree 225 * there will typically be a set of page-tables that are shared with other 226 * address ranges, and a set that are private to this address range. 227 * The set of shared page-tables can be at most two per level, 228 * and those can't be updated immediately because the entries of those 229 * page-tables may still be in use by the gpu for other mappings. Therefore 230 * when inserting entries into those, we instead stage those insertions by 231 * adding insertion data into struct xe_vm_pgtable_update structures. This 232 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 233 * added in a separate commit step. CPU-data is committed while still under the 234 * vm lock, the object lock and for userptr, the notifier lock in read mode. 235 * The GPU async data is committed either by the GPU or CPU after fulfilling 236 * relevant dependencies. 237 * For non-shared page-tables (and, in fact, for shared ones that aren't 238 * existing at the time of staging), we add the data in-place without the 239 * special update structures. This private part of the page-table tree will 240 * remain disconnected from the vm page-table tree until data is committed to 241 * the shared page tables of the vm tree in the commit phase. 242 */ 243 244 struct xe_pt_update { 245 /** @update: The update structure we're building for this parent. */ 246 struct xe_vm_pgtable_update *update; 247 /** @parent: The parent. Used to detect a parent change. */ 248 struct xe_pt *parent; 249 /** @preexisting: Whether the parent was pre-existing or allocated */ 250 bool preexisting; 251 }; 252 253 struct xe_pt_stage_bind_walk { 254 /** base: The base class. */ 255 struct xe_pt_walk base; 256 257 /* Input parameters for the walk */ 258 /** @vm: The vm we're building for. */ 259 struct xe_vm *vm; 260 /** @tile: The tile we're building for. */ 261 struct xe_tile *tile; 262 /** @default_pte: PTE flag only template. No address is associated */ 263 u64 default_pte; 264 /** @dma_offset: DMA offset to add to the PTE. */ 265 u64 dma_offset; 266 /** 267 * @needs_64k: This address range enforces 64K alignment and 268 * granularity. 269 */ 270 bool needs_64K; 271 /** 272 * @vma: VMA being mapped 273 */ 274 struct xe_vma *vma; 275 276 /* Also input, but is updated during the walk*/ 277 /** @curs: The DMA address cursor. */ 278 struct xe_res_cursor *curs; 279 /** @va_curs_start: The Virtual address corresponding to @curs->start */ 280 u64 va_curs_start; 281 282 /* Output */ 283 struct xe_walk_update { 284 /** @wupd.entries: Caller provided storage. */ 285 struct xe_vm_pgtable_update *entries; 286 /** @wupd.num_used_entries: Number of update @entries used. */ 287 unsigned int num_used_entries; 288 /** @wupd.updates: Tracks the update entry at a given level */ 289 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 290 } wupd; 291 292 /* Walk state */ 293 /** 294 * @l0_end_addr: The end address of the current l0 leaf. Used for 295 * 64K granularity detection. 296 */ 297 u64 l0_end_addr; 298 /** @addr_64K: The start address of the current 64K chunk. */ 299 u64 addr_64K; 300 /** @found_64: Whether @add_64K actually points to a 64K chunk. */ 301 bool found_64K; 302 }; 303 304 static int 305 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 306 pgoff_t offset, bool alloc_entries) 307 { 308 struct xe_pt_update *upd = &wupd->updates[parent->level]; 309 struct xe_vm_pgtable_update *entry; 310 311 /* 312 * For *each level*, we could only have one active 313 * struct xt_pt_update at any one time. Once we move on to a 314 * new parent and page-directory, the old one is complete, and 315 * updates are either already stored in the build tree or in 316 * @wupd->entries 317 */ 318 if (likely(upd->parent == parent)) 319 return 0; 320 321 upd->parent = parent; 322 upd->preexisting = true; 323 324 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 325 return -EINVAL; 326 327 entry = wupd->entries + wupd->num_used_entries++; 328 upd->update = entry; 329 entry->ofs = offset; 330 entry->pt_bo = parent->bo; 331 entry->pt = parent; 332 entry->flags = 0; 333 entry->qwords = 0; 334 entry->pt_bo->update_index = -1; 335 336 if (alloc_entries) { 337 entry->pt_entries = kmalloc_array(XE_PDES, 338 sizeof(*entry->pt_entries), 339 GFP_KERNEL); 340 if (!entry->pt_entries) 341 return -ENOMEM; 342 } 343 344 return 0; 345 } 346 347 /* 348 * NOTE: This is a very frequently called function so we allow ourselves 349 * to annotate (using branch prediction hints) the fastpath of updating a 350 * non-pre-existing pagetable with leaf ptes. 351 */ 352 static int 353 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 354 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 355 { 356 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 357 struct xe_pt_update *child_upd = xe_child ? 358 &xe_walk->wupd.updates[xe_child->level] : NULL; 359 int ret; 360 361 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 362 if (unlikely(ret)) 363 return ret; 364 365 /* 366 * Register this new pagetable so that it won't be recognized as 367 * a shared pagetable by a subsequent insertion. 368 */ 369 if (unlikely(child_upd)) { 370 child_upd->update = NULL; 371 child_upd->parent = xe_child; 372 child_upd->preexisting = false; 373 } 374 375 if (likely(!upd->preexisting)) { 376 /* Continue building a non-connected subtree. */ 377 struct iosys_map *map = &parent->bo->vmap; 378 379 if (unlikely(xe_child)) 380 parent->base.children[offset] = &xe_child->base; 381 382 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 383 parent->num_live++; 384 } else { 385 /* Shared pt. Stage update. */ 386 unsigned int idx; 387 struct xe_vm_pgtable_update *entry = upd->update; 388 389 idx = offset - entry->ofs; 390 entry->pt_entries[idx].pt = xe_child; 391 entry->pt_entries[idx].pte = pte; 392 entry->qwords++; 393 } 394 395 return 0; 396 } 397 398 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 399 struct xe_pt_stage_bind_walk *xe_walk) 400 { 401 u64 size, dma; 402 403 if (level > MAX_HUGEPTE_LEVEL) 404 return false; 405 406 /* Does the virtual range requested cover a huge pte? */ 407 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 408 return false; 409 410 /* Does the DMA segment cover the whole pte? */ 411 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 412 return false; 413 414 /* null VMA's do not have dma addresses */ 415 if (xe_vma_is_null(xe_walk->vma)) 416 return true; 417 418 /* Is the DMA address huge PTE size aligned? */ 419 size = next - addr; 420 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 421 422 return IS_ALIGNED(dma, size); 423 } 424 425 /* 426 * Scan the requested mapping to check whether it can be done entirely 427 * with 64K PTEs. 428 */ 429 static bool 430 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 431 { 432 struct xe_res_cursor curs = *xe_walk->curs; 433 434 if (!IS_ALIGNED(addr, SZ_64K)) 435 return false; 436 437 if (next > xe_walk->l0_end_addr) 438 return false; 439 440 /* null VMA's do not have dma addresses */ 441 if (xe_vma_is_null(xe_walk->vma)) 442 return true; 443 444 xe_res_next(&curs, addr - xe_walk->va_curs_start); 445 for (; addr < next; addr += SZ_64K) { 446 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 447 return false; 448 449 xe_res_next(&curs, SZ_64K); 450 } 451 452 return addr == next; 453 } 454 455 /* 456 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 457 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 458 * device to the PTE. 459 * This function determines whether the address is part of such a 460 * segment. For VRAM in normal pagetables, this is strictly necessary on 461 * some devices. 462 */ 463 static bool 464 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 465 { 466 /* Address is within an already found 64k region */ 467 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 468 return true; 469 470 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 471 xe_walk->addr_64K = addr; 472 473 return xe_walk->found_64K; 474 } 475 476 static int 477 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 478 unsigned int level, u64 addr, u64 next, 479 struct xe_ptw **child, 480 enum page_walk_action *action, 481 struct xe_pt_walk *walk) 482 { 483 struct xe_pt_stage_bind_walk *xe_walk = 484 container_of(walk, typeof(*xe_walk), base); 485 u16 pat_index = xe_walk->vma->pat_index; 486 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 487 struct xe_vm *vm = xe_walk->vm; 488 struct xe_pt *xe_child; 489 bool covers; 490 int ret = 0; 491 u64 pte; 492 493 /* Is this a leaf entry ?*/ 494 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 495 struct xe_res_cursor *curs = xe_walk->curs; 496 bool is_null = xe_vma_is_null(xe_walk->vma); 497 498 XE_WARN_ON(xe_walk->va_curs_start != addr); 499 500 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 501 xe_res_dma(curs) + xe_walk->dma_offset, 502 xe_walk->vma, pat_index, level); 503 pte |= xe_walk->default_pte; 504 505 /* 506 * Set the XE_PTE_PS64 hint if possible, otherwise if 507 * this device *requires* 64K PTE size for VRAM, fail. 508 */ 509 if (level == 0 && !xe_parent->is_compact) { 510 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 511 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K; 512 pte |= XE_PTE_PS64; 513 } else if (XE_WARN_ON(xe_walk->needs_64K)) { 514 return -EINVAL; 515 } 516 } 517 518 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 519 if (unlikely(ret)) 520 return ret; 521 522 if (!is_null) 523 xe_res_next(curs, next - addr); 524 xe_walk->va_curs_start = next; 525 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 526 *action = ACTION_CONTINUE; 527 528 return ret; 529 } 530 531 /* 532 * Descending to lower level. Determine if we need to allocate a 533 * new page table or -directory, which we do if there is no 534 * previous one or there is one we can completely replace. 535 */ 536 if (level == 1) { 537 walk->shifts = xe_normal_pt_shifts; 538 xe_walk->l0_end_addr = next; 539 } 540 541 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 542 if (covers || !*child) { 543 u64 flags = 0; 544 545 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 546 if (IS_ERR(xe_child)) 547 return PTR_ERR(xe_child); 548 549 xe_pt_set_addr(xe_child, 550 round_down(addr, 1ull << walk->shifts[level])); 551 552 if (!covers) 553 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 554 555 *child = &xe_child->base; 556 557 /* 558 * Prefer the compact pagetable layout for L0 if possible. Only 559 * possible if VMA covers entire 2MB region as compact 64k and 560 * 4k pages cannot be mixed within a 2MB region. 561 * TODO: Suballocate the pt bo to avoid wasting a lot of 562 * memory. 563 */ 564 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 565 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 566 walk->shifts = xe_compact_pt_shifts; 567 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 568 flags |= XE_PDE_64K; 569 xe_child->is_compact = true; 570 } 571 572 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; 573 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 574 pte); 575 } 576 577 *action = ACTION_SUBTREE; 578 return ret; 579 } 580 581 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 582 .pt_entry = xe_pt_stage_bind_entry, 583 }; 584 585 /** 586 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 587 * range. 588 * @tile: The tile we're building for. 589 * @vma: The vma indicating the address range. 590 * @entries: Storage for the update entries used for connecting the tree to 591 * the main tree at commit time. 592 * @num_entries: On output contains the number of @entries used. 593 * 594 * This function builds a disconnected page-table tree for a given address 595 * range. The tree is connected to the main vm tree for the gpu using 596 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 597 * The function builds xe_vm_pgtable_update structures for already existing 598 * shared page-tables, and non-existing shared and non-shared page-tables 599 * are built and populated directly. 600 * 601 * Return 0 on success, negative error code on error. 602 */ 603 static int 604 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 605 struct xe_vm_pgtable_update *entries, u32 *num_entries) 606 { 607 struct xe_device *xe = tile_to_xe(tile); 608 struct xe_bo *bo = xe_vma_bo(vma); 609 bool is_devmem = !xe_vma_is_userptr(vma) && bo && 610 (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)); 611 struct xe_res_cursor curs; 612 struct xe_pt_stage_bind_walk xe_walk = { 613 .base = { 614 .ops = &xe_pt_stage_bind_ops, 615 .shifts = xe_normal_pt_shifts, 616 .max_level = XE_PT_HIGHEST_LEVEL, 617 }, 618 .vm = xe_vma_vm(vma), 619 .tile = tile, 620 .curs = &curs, 621 .va_curs_start = xe_vma_start(vma), 622 .vma = vma, 623 .wupd.entries = entries, 624 .needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem, 625 }; 626 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 627 int ret; 628 629 /** 630 * Default atomic expectations for different allocation scenarios are as follows: 631 * 632 * 1. Traditional API: When the VM is not in LR mode: 633 * - Device atomics are expected to function with all allocations. 634 * 635 * 2. Compute/SVM API: When the VM is in LR mode: 636 * - Device atomics are the default behavior when the bo is placed in a single region. 637 * - In all other cases device atomics will be disabled with AE=0 until an application 638 * request differently using a ioctl like madvise. 639 */ 640 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { 641 if (xe_vm_in_lr_mode(xe_vma_vm(vma))) { 642 if (bo && xe_bo_has_single_placement(bo)) 643 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 644 /** 645 * If a SMEM+LMEM allocation is backed by SMEM, a device 646 * atomics will cause a gpu page fault and which then 647 * gets migrated to LMEM, bind such allocations with 648 * device atomics enabled. 649 */ 650 else if (is_devmem && !xe_bo_has_single_placement(bo)) 651 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 652 } else { 653 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 654 } 655 656 /** 657 * Unset AE if the platform(PVC) doesn't support it on an 658 * allocation 659 */ 660 if (!xe->info.has_device_atomics_on_smem && !is_devmem) 661 xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE; 662 } 663 664 if (is_devmem) { 665 xe_walk.default_pte |= XE_PPGTT_PTE_DM; 666 xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource); 667 } 668 669 if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo)) 670 xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); 671 672 xe_bo_assert_held(bo); 673 674 if (!xe_vma_is_null(vma)) { 675 if (xe_vma_is_userptr(vma)) 676 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, 677 xe_vma_size(vma), &curs); 678 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 679 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 680 xe_vma_size(vma), &curs); 681 else 682 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 683 xe_vma_size(vma), &curs); 684 } else { 685 curs.size = xe_vma_size(vma); 686 } 687 688 ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma), 689 xe_vma_end(vma), &xe_walk.base); 690 691 *num_entries = xe_walk.wupd.num_used_entries; 692 return ret; 693 } 694 695 /** 696 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 697 * shared pagetable. 698 * @addr: The start address within the non-shared pagetable. 699 * @end: The end address within the non-shared pagetable. 700 * @level: The level of the non-shared pagetable. 701 * @walk: Walk info. The function adjusts the walk action. 702 * @action: next action to perform (see enum page_walk_action) 703 * @offset: Ignored on input, First non-shared entry on output. 704 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 705 * 706 * A non-shared page-table has some entries that belong to the address range 707 * and others that don't. This function determines the entries that belong 708 * fully to the address range. Depending on level, some entries may 709 * partially belong to the address range (that can't happen at level 0). 710 * The function detects that and adjust those offsets to not include those 711 * partial entries. Iff it does detect partial entries, we know that there must 712 * be shared page tables also at lower levels, so it adjusts the walk action 713 * accordingly. 714 * 715 * Return: true if there were non-shared entries, false otherwise. 716 */ 717 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 718 struct xe_pt_walk *walk, 719 enum page_walk_action *action, 720 pgoff_t *offset, pgoff_t *end_offset) 721 { 722 u64 size = 1ull << walk->shifts[level]; 723 724 *offset = xe_pt_offset(addr, level, walk); 725 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 726 727 if (!level) 728 return true; 729 730 /* 731 * If addr or next are not size aligned, there are shared pts at lower 732 * level, so in that case traverse down the subtree 733 */ 734 *action = ACTION_CONTINUE; 735 if (!IS_ALIGNED(addr, size)) { 736 *action = ACTION_SUBTREE; 737 (*offset)++; 738 } 739 740 if (!IS_ALIGNED(end, size)) { 741 *action = ACTION_SUBTREE; 742 (*end_offset)--; 743 } 744 745 return *end_offset > *offset; 746 } 747 748 struct xe_pt_zap_ptes_walk { 749 /** @base: The walk base-class */ 750 struct xe_pt_walk base; 751 752 /* Input parameters for the walk */ 753 /** @tile: The tile we're building for */ 754 struct xe_tile *tile; 755 756 /* Output */ 757 /** @needs_invalidate: Whether we need to invalidate TLB*/ 758 bool needs_invalidate; 759 }; 760 761 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 762 unsigned int level, u64 addr, u64 next, 763 struct xe_ptw **child, 764 enum page_walk_action *action, 765 struct xe_pt_walk *walk) 766 { 767 struct xe_pt_zap_ptes_walk *xe_walk = 768 container_of(walk, typeof(*xe_walk), base); 769 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 770 pgoff_t end_offset; 771 772 XE_WARN_ON(!*child); 773 XE_WARN_ON(!level); 774 775 /* 776 * Note that we're called from an entry callback, and we're dealing 777 * with the child of that entry rather than the parent, so need to 778 * adjust level down. 779 */ 780 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 781 &end_offset)) { 782 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 783 offset * sizeof(u64), 0, 784 (end_offset - offset) * sizeof(u64)); 785 xe_walk->needs_invalidate = true; 786 } 787 788 return 0; 789 } 790 791 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 792 .pt_entry = xe_pt_zap_ptes_entry, 793 }; 794 795 /** 796 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 797 * @tile: The tile we're zapping for. 798 * @vma: GPU VMA detailing address range. 799 * 800 * Eviction and Userptr invalidation needs to be able to zap the 801 * gpu ptes of a given address range in pagefaulting mode. 802 * In order to be able to do that, that function needs access to the shared 803 * page-table entrieaso it can either clear the leaf PTEs or 804 * clear the pointers to lower-level page-tables. The caller is required 805 * to hold the necessary locks to ensure neither the page-table connectivity 806 * nor the page-table entries of the range is updated from under us. 807 * 808 * Return: Whether ptes were actually updated and a TLB invalidation is 809 * required. 810 */ 811 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 812 { 813 struct xe_pt_zap_ptes_walk xe_walk = { 814 .base = { 815 .ops = &xe_pt_zap_ptes_ops, 816 .shifts = xe_normal_pt_shifts, 817 .max_level = XE_PT_HIGHEST_LEVEL, 818 }, 819 .tile = tile, 820 }; 821 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 822 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); 823 824 if (!(pt_mask & BIT(tile->id))) 825 return false; 826 827 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 828 xe_vma_end(vma), &xe_walk.base); 829 830 return xe_walk.needs_invalidate; 831 } 832 833 static void 834 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 835 struct iosys_map *map, void *data, 836 u32 qword_ofs, u32 num_qwords, 837 const struct xe_vm_pgtable_update *update) 838 { 839 struct xe_pt_entry *ptes = update->pt_entries; 840 u64 *ptr = data; 841 u32 i; 842 843 for (i = 0; i < num_qwords; i++) { 844 if (map) 845 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 846 sizeof(u64), u64, ptes[i].pte); 847 else 848 ptr[i] = ptes[i].pte; 849 } 850 } 851 852 static void xe_pt_cancel_bind(struct xe_vma *vma, 853 struct xe_vm_pgtable_update *entries, 854 u32 num_entries) 855 { 856 u32 i, j; 857 858 for (i = 0; i < num_entries; i++) { 859 struct xe_pt *pt = entries[i].pt; 860 861 if (!pt) 862 continue; 863 864 if (pt->level) { 865 for (j = 0; j < entries[i].qwords; j++) 866 xe_pt_destroy(entries[i].pt_entries[j].pt, 867 xe_vma_vm(vma)->flags, NULL); 868 } 869 870 kfree(entries[i].pt_entries); 871 entries[i].pt_entries = NULL; 872 entries[i].qwords = 0; 873 } 874 } 875 876 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 877 { 878 struct xe_vm *vm = xe_vma_vm(vma); 879 880 lockdep_assert_held(&vm->lock); 881 882 if (!xe_vma_is_userptr(vma) && !xe_vma_is_null(vma)) 883 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 884 885 xe_vm_assert_held(vm); 886 } 887 888 static void xe_pt_commit(struct xe_vma *vma, 889 struct xe_vm_pgtable_update *entries, 890 u32 num_entries, struct llist_head *deferred) 891 { 892 u32 i, j; 893 894 xe_pt_commit_locks_assert(vma); 895 896 for (i = 0; i < num_entries; i++) { 897 struct xe_pt *pt = entries[i].pt; 898 899 if (!pt->level) 900 continue; 901 902 for (j = 0; j < entries[i].qwords; j++) { 903 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 904 905 xe_pt_destroy(oldpte, xe_vma_vm(vma)->flags, deferred); 906 } 907 } 908 } 909 910 static void xe_pt_abort_bind(struct xe_vma *vma, 911 struct xe_vm_pgtable_update *entries, 912 u32 num_entries, bool rebind) 913 { 914 int i, j; 915 916 xe_pt_commit_locks_assert(vma); 917 918 for (i = num_entries - 1; i >= 0; --i) { 919 struct xe_pt *pt = entries[i].pt; 920 struct xe_pt_dir *pt_dir; 921 922 if (!rebind) 923 pt->num_live -= entries[i].qwords; 924 925 if (!pt->level) 926 continue; 927 928 pt_dir = as_xe_pt_dir(pt); 929 for (j = 0; j < entries[i].qwords; j++) { 930 u32 j_ = j + entries[i].ofs; 931 struct xe_pt *newpte = xe_pt_entry(pt_dir, j_); 932 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 933 934 pt_dir->children[j_] = oldpte ? &oldpte->base : 0; 935 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL); 936 } 937 } 938 } 939 940 static void xe_pt_commit_prepare_bind(struct xe_vma *vma, 941 struct xe_vm_pgtable_update *entries, 942 u32 num_entries, bool rebind) 943 { 944 u32 i, j; 945 946 xe_pt_commit_locks_assert(vma); 947 948 for (i = 0; i < num_entries; i++) { 949 struct xe_pt *pt = entries[i].pt; 950 struct xe_pt_dir *pt_dir; 951 952 if (!rebind) 953 pt->num_live += entries[i].qwords; 954 955 if (!pt->level) 956 continue; 957 958 pt_dir = as_xe_pt_dir(pt); 959 for (j = 0; j < entries[i].qwords; j++) { 960 u32 j_ = j + entries[i].ofs; 961 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 962 struct xe_pt *oldpte = NULL; 963 964 if (xe_pt_entry(pt_dir, j_)) 965 oldpte = xe_pt_entry(pt_dir, j_); 966 967 pt_dir->children[j_] = &newpte->base; 968 entries[i].pt_entries[j].pt = oldpte; 969 } 970 } 971 } 972 973 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries, 974 u32 num_entries) 975 { 976 u32 i; 977 978 for (i = 0; i < num_entries; i++) 979 kfree(entries[i].pt_entries); 980 } 981 982 static int 983 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 984 struct xe_vm_pgtable_update *entries, u32 *num_entries) 985 { 986 int err; 987 988 *num_entries = 0; 989 err = xe_pt_stage_bind(tile, vma, entries, num_entries); 990 if (!err) 991 xe_tile_assert(tile, *num_entries); 992 993 return err; 994 } 995 996 static void xe_vm_dbg_print_entries(struct xe_device *xe, 997 const struct xe_vm_pgtable_update *entries, 998 unsigned int num_entries, bool bind) 999 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1000 { 1001 unsigned int i; 1002 1003 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind", 1004 num_entries); 1005 for (i = 0; i < num_entries; i++) { 1006 const struct xe_vm_pgtable_update *entry = &entries[i]; 1007 struct xe_pt *xe_pt = entry->pt; 1008 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1009 u64 end; 1010 u64 start; 1011 1012 xe_assert(xe, !entry->pt->is_compact); 1013 start = entry->ofs * page_size; 1014 end = start + page_size * entry->qwords; 1015 vm_dbg(&xe->drm, 1016 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1017 i, xe_pt->level, entry->ofs, entry->qwords, 1018 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1019 } 1020 } 1021 #else 1022 {} 1023 #endif 1024 1025 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs) 1026 { 1027 int i; 1028 1029 for (i = 0; i < num_syncs; i++) { 1030 struct dma_fence *fence = syncs[i].fence; 1031 1032 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1033 &fence->flags)) 1034 return false; 1035 } 1036 1037 return true; 1038 } 1039 1040 static int job_test_add_deps(struct xe_sched_job *job, 1041 struct dma_resv *resv, 1042 enum dma_resv_usage usage) 1043 { 1044 if (!job) { 1045 if (!dma_resv_test_signaled(resv, usage)) 1046 return -ETIME; 1047 1048 return 0; 1049 } 1050 1051 return xe_sched_job_add_deps(job, resv, usage); 1052 } 1053 1054 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job) 1055 { 1056 struct xe_bo *bo = xe_vma_bo(vma); 1057 1058 xe_bo_assert_held(bo); 1059 1060 if (bo && !bo->vm) 1061 return job_test_add_deps(job, bo->ttm.base.resv, 1062 DMA_RESV_USAGE_KERNEL); 1063 1064 return 0; 1065 } 1066 1067 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op, 1068 struct xe_sched_job *job) 1069 { 1070 int err = 0; 1071 1072 switch (op->base.op) { 1073 case DRM_GPUVA_OP_MAP: 1074 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1075 break; 1076 1077 err = vma_add_deps(op->map.vma, job); 1078 break; 1079 case DRM_GPUVA_OP_REMAP: 1080 if (op->remap.prev) 1081 err = vma_add_deps(op->remap.prev, job); 1082 if (!err && op->remap.next) 1083 err = vma_add_deps(op->remap.next, job); 1084 break; 1085 case DRM_GPUVA_OP_UNMAP: 1086 break; 1087 case DRM_GPUVA_OP_PREFETCH: 1088 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job); 1089 break; 1090 default: 1091 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1092 } 1093 1094 return err; 1095 } 1096 1097 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 1098 struct xe_vm *vm, 1099 struct xe_vma_ops *vops, 1100 struct xe_vm_pgtable_update_ops *pt_update_ops, 1101 struct xe_range_fence_tree *rftree) 1102 { 1103 struct xe_range_fence *rtfence; 1104 struct dma_fence *fence; 1105 struct xe_vma_op *op; 1106 int err = 0, i; 1107 1108 xe_vm_assert_held(vm); 1109 1110 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs)) 1111 return -ETIME; 1112 1113 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q)) 1114 return -ETIME; 1115 1116 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) { 1117 err = job_test_add_deps(job, xe_vm_resv(vm), 1118 pt_update_ops->wait_vm_bookkeep ? 1119 DMA_RESV_USAGE_BOOKKEEP : 1120 DMA_RESV_USAGE_KERNEL); 1121 if (err) 1122 return err; 1123 } 1124 1125 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start, 1126 pt_update_ops->last); 1127 while (rtfence) { 1128 fence = rtfence->fence; 1129 1130 if (!dma_fence_is_signaled(fence)) { 1131 /* 1132 * Is this a CPU update? GPU is busy updating, so return 1133 * an error 1134 */ 1135 if (!job) 1136 return -ETIME; 1137 1138 dma_fence_get(fence); 1139 err = drm_sched_job_add_dependency(&job->drm, fence); 1140 if (err) 1141 return err; 1142 } 1143 1144 rtfence = xe_range_fence_tree_next(rtfence, 1145 pt_update_ops->start, 1146 pt_update_ops->last); 1147 } 1148 1149 list_for_each_entry(op, &vops->list, link) { 1150 err = op_add_deps(vm, op, job); 1151 if (err) 1152 return err; 1153 } 1154 1155 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) { 1156 if (job) 1157 err = xe_sched_job_last_fence_add_dep(job, vm); 1158 else 1159 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm); 1160 } 1161 1162 for (i = 0; job && !err && i < vops->num_syncs; i++) 1163 err = xe_sync_entry_add_deps(&vops->syncs[i], job); 1164 1165 return err; 1166 } 1167 1168 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1169 { 1170 struct xe_vma_ops *vops = pt_update->vops; 1171 struct xe_vm *vm = vops->vm; 1172 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id]; 1173 struct xe_vm_pgtable_update_ops *pt_update_ops = 1174 &vops->pt_update_ops[pt_update->tile_id]; 1175 1176 return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops, 1177 pt_update_ops, rftree); 1178 } 1179 1180 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1181 1182 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1183 { 1184 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 1185 static u32 count; 1186 1187 if (count++ % divisor == divisor - 1) { 1188 uvma->userptr.divisor = divisor << 1; 1189 return true; 1190 } 1191 1192 return false; 1193 } 1194 1195 #else 1196 1197 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1198 { 1199 return false; 1200 } 1201 1202 #endif 1203 1204 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma, 1205 struct xe_vm_pgtable_update_ops *pt_update) 1206 { 1207 struct xe_userptr_vma *uvma; 1208 unsigned long notifier_seq; 1209 1210 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1211 1212 if (!xe_vma_is_userptr(vma)) 1213 return 0; 1214 1215 uvma = to_userptr_vma(vma); 1216 notifier_seq = uvma->userptr.notifier_seq; 1217 1218 if (uvma->userptr.initial_bind && !xe_vm_in_fault_mode(vm)) 1219 return 0; 1220 1221 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1222 notifier_seq) && 1223 !xe_pt_userptr_inject_eagain(uvma)) 1224 return 0; 1225 1226 if (xe_vm_in_fault_mode(vm)) { 1227 return -EAGAIN; 1228 } else { 1229 spin_lock(&vm->userptr.invalidated_lock); 1230 list_move_tail(&uvma->userptr.invalidate_link, 1231 &vm->userptr.invalidated); 1232 spin_unlock(&vm->userptr.invalidated_lock); 1233 1234 if (xe_vm_in_preempt_fence_mode(vm)) { 1235 struct dma_resv_iter cursor; 1236 struct dma_fence *fence; 1237 long err; 1238 1239 dma_resv_iter_begin(&cursor, xe_vm_resv(vm), 1240 DMA_RESV_USAGE_BOOKKEEP); 1241 dma_resv_for_each_fence_unlocked(&cursor, fence) 1242 dma_fence_enable_sw_signaling(fence); 1243 dma_resv_iter_end(&cursor); 1244 1245 err = dma_resv_wait_timeout(xe_vm_resv(vm), 1246 DMA_RESV_USAGE_BOOKKEEP, 1247 false, MAX_SCHEDULE_TIMEOUT); 1248 XE_WARN_ON(err <= 0); 1249 } 1250 } 1251 1252 return 0; 1253 } 1254 1255 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op, 1256 struct xe_vm_pgtable_update_ops *pt_update) 1257 { 1258 int err = 0; 1259 1260 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1261 1262 switch (op->base.op) { 1263 case DRM_GPUVA_OP_MAP: 1264 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1265 break; 1266 1267 err = vma_check_userptr(vm, op->map.vma, pt_update); 1268 break; 1269 case DRM_GPUVA_OP_REMAP: 1270 if (op->remap.prev) 1271 err = vma_check_userptr(vm, op->remap.prev, pt_update); 1272 if (!err && op->remap.next) 1273 err = vma_check_userptr(vm, op->remap.next, pt_update); 1274 break; 1275 case DRM_GPUVA_OP_UNMAP: 1276 break; 1277 case DRM_GPUVA_OP_PREFETCH: 1278 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), 1279 pt_update); 1280 break; 1281 default: 1282 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1283 } 1284 1285 return err; 1286 } 1287 1288 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1289 { 1290 struct xe_vm *vm = pt_update->vops->vm; 1291 struct xe_vma_ops *vops = pt_update->vops; 1292 struct xe_vm_pgtable_update_ops *pt_update_ops = 1293 &vops->pt_update_ops[pt_update->tile_id]; 1294 struct xe_vma_op *op; 1295 int err; 1296 1297 err = xe_pt_pre_commit(pt_update); 1298 if (err) 1299 return err; 1300 1301 down_read(&vm->userptr.notifier_lock); 1302 1303 list_for_each_entry(op, &vops->list, link) { 1304 err = op_check_userptr(vm, op, pt_update_ops); 1305 if (err) { 1306 up_read(&vm->userptr.notifier_lock); 1307 break; 1308 } 1309 } 1310 1311 return err; 1312 } 1313 1314 struct invalidation_fence { 1315 struct xe_gt_tlb_invalidation_fence base; 1316 struct xe_gt *gt; 1317 struct dma_fence *fence; 1318 struct dma_fence_cb cb; 1319 struct work_struct work; 1320 u64 start; 1321 u64 end; 1322 u32 asid; 1323 }; 1324 1325 static void invalidation_fence_cb(struct dma_fence *fence, 1326 struct dma_fence_cb *cb) 1327 { 1328 struct invalidation_fence *ifence = 1329 container_of(cb, struct invalidation_fence, cb); 1330 struct xe_device *xe = gt_to_xe(ifence->gt); 1331 1332 trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base); 1333 if (!ifence->fence->error) { 1334 queue_work(system_wq, &ifence->work); 1335 } else { 1336 ifence->base.base.error = ifence->fence->error; 1337 xe_gt_tlb_invalidation_fence_signal(&ifence->base); 1338 } 1339 dma_fence_put(ifence->fence); 1340 } 1341 1342 static void invalidation_fence_work_func(struct work_struct *w) 1343 { 1344 struct invalidation_fence *ifence = 1345 container_of(w, struct invalidation_fence, work); 1346 struct xe_device *xe = gt_to_xe(ifence->gt); 1347 1348 trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base); 1349 xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start, 1350 ifence->end, ifence->asid); 1351 } 1352 1353 static void invalidation_fence_init(struct xe_gt *gt, 1354 struct invalidation_fence *ifence, 1355 struct dma_fence *fence, 1356 u64 start, u64 end, u32 asid) 1357 { 1358 int ret; 1359 1360 trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base); 1361 1362 xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false); 1363 1364 ifence->fence = fence; 1365 ifence->gt = gt; 1366 ifence->start = start; 1367 ifence->end = end; 1368 ifence->asid = asid; 1369 1370 INIT_WORK(&ifence->work, invalidation_fence_work_func); 1371 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); 1372 if (ret == -ENOENT) { 1373 dma_fence_put(ifence->fence); /* Usually dropped in CB */ 1374 invalidation_fence_work_func(&ifence->work); 1375 } else if (ret) { 1376 dma_fence_put(&ifence->base.base); /* Caller ref */ 1377 dma_fence_put(&ifence->base.base); /* Creation ref */ 1378 } 1379 1380 xe_gt_assert(gt, !ret || ret == -ENOENT); 1381 } 1382 1383 struct xe_pt_stage_unbind_walk { 1384 /** @base: The pagewalk base-class. */ 1385 struct xe_pt_walk base; 1386 1387 /* Input parameters for the walk */ 1388 /** @tile: The tile we're unbinding from. */ 1389 struct xe_tile *tile; 1390 1391 /** 1392 * @modified_start: Walk range start, modified to include any 1393 * shared pagetables that we're the only user of and can thus 1394 * treat as private. 1395 */ 1396 u64 modified_start; 1397 /** @modified_end: Walk range start, modified like @modified_start. */ 1398 u64 modified_end; 1399 1400 /* Output */ 1401 /* @wupd: Structure to track the page-table updates we're building */ 1402 struct xe_walk_update wupd; 1403 }; 1404 1405 /* 1406 * Check whether this range is the only one populating this pagetable, 1407 * and in that case, update the walk range checks so that higher levels don't 1408 * view us as a shared pagetable. 1409 */ 1410 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1411 const struct xe_pt *child, 1412 enum page_walk_action *action, 1413 struct xe_pt_walk *walk) 1414 { 1415 struct xe_pt_stage_unbind_walk *xe_walk = 1416 container_of(walk, typeof(*xe_walk), base); 1417 unsigned int shift = walk->shifts[level]; 1418 u64 size = 1ull << shift; 1419 1420 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1421 ((next - addr) >> shift) == child->num_live) { 1422 u64 size = 1ull << walk->shifts[level + 1]; 1423 1424 *action = ACTION_CONTINUE; 1425 1426 if (xe_walk->modified_start >= addr) 1427 xe_walk->modified_start = round_down(addr, size); 1428 if (xe_walk->modified_end <= next) 1429 xe_walk->modified_end = round_up(next, size); 1430 1431 return true; 1432 } 1433 1434 return false; 1435 } 1436 1437 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1438 unsigned int level, u64 addr, u64 next, 1439 struct xe_ptw **child, 1440 enum page_walk_action *action, 1441 struct xe_pt_walk *walk) 1442 { 1443 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1444 1445 XE_WARN_ON(!*child); 1446 XE_WARN_ON(!level); 1447 1448 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1449 1450 return 0; 1451 } 1452 1453 static int 1454 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1455 unsigned int level, u64 addr, u64 next, 1456 struct xe_ptw **child, 1457 enum page_walk_action *action, 1458 struct xe_pt_walk *walk) 1459 { 1460 struct xe_pt_stage_unbind_walk *xe_walk = 1461 container_of(walk, typeof(*xe_walk), base); 1462 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1463 pgoff_t end_offset; 1464 u64 size = 1ull << walk->shifts[--level]; 1465 int err; 1466 1467 if (!IS_ALIGNED(addr, size)) 1468 addr = xe_walk->modified_start; 1469 if (!IS_ALIGNED(next, size)) 1470 next = xe_walk->modified_end; 1471 1472 /* Parent == *child is the root pt. Don't kill it. */ 1473 if (parent != *child && 1474 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1475 return 0; 1476 1477 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1478 &end_offset)) 1479 return 0; 1480 1481 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true); 1482 if (err) 1483 return err; 1484 1485 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1486 1487 return 0; 1488 } 1489 1490 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1491 .pt_entry = xe_pt_stage_unbind_entry, 1492 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1493 }; 1494 1495 /** 1496 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1497 * operation 1498 * @tile: The tile we're unbinding for. 1499 * @vma: The vma we're unbinding. 1500 * @entries: Caller-provided storage for the update structures. 1501 * 1502 * Builds page-table update structures for an unbind operation. The function 1503 * will attempt to remove all page-tables that we're the only user 1504 * of, and for that to work, the unbind operation must be committed in the 1505 * same critical section that blocks racing binds to the same page-table tree. 1506 * 1507 * Return: The number of entries used. 1508 */ 1509 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma, 1510 struct xe_vm_pgtable_update *entries) 1511 { 1512 struct xe_pt_stage_unbind_walk xe_walk = { 1513 .base = { 1514 .ops = &xe_pt_stage_unbind_ops, 1515 .shifts = xe_normal_pt_shifts, 1516 .max_level = XE_PT_HIGHEST_LEVEL, 1517 }, 1518 .tile = tile, 1519 .modified_start = xe_vma_start(vma), 1520 .modified_end = xe_vma_end(vma), 1521 .wupd.entries = entries, 1522 }; 1523 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 1524 1525 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 1526 xe_vma_end(vma), &xe_walk.base); 1527 1528 return xe_walk.wupd.num_used_entries; 1529 } 1530 1531 static void 1532 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1533 struct xe_tile *tile, struct iosys_map *map, 1534 void *ptr, u32 qword_ofs, u32 num_qwords, 1535 const struct xe_vm_pgtable_update *update) 1536 { 1537 struct xe_vm *vm = pt_update->vops->vm; 1538 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level); 1539 int i; 1540 1541 if (map && map->is_iomem) 1542 for (i = 0; i < num_qwords; ++i) 1543 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1544 sizeof(u64), u64, empty); 1545 else if (map) 1546 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1547 num_qwords); 1548 else 1549 memset64(ptr, empty, num_qwords); 1550 } 1551 1552 static void xe_pt_abort_unbind(struct xe_vma *vma, 1553 struct xe_vm_pgtable_update *entries, 1554 u32 num_entries) 1555 { 1556 int i, j; 1557 1558 xe_pt_commit_locks_assert(vma); 1559 1560 for (i = num_entries - 1; i >= 0; --i) { 1561 struct xe_vm_pgtable_update *entry = &entries[i]; 1562 struct xe_pt *pt = entry->pt; 1563 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1564 1565 pt->num_live += entry->qwords; 1566 1567 if (!pt->level) 1568 continue; 1569 1570 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) 1571 pt_dir->children[j] = 1572 entries[i].pt_entries[j - entry->ofs].pt ? 1573 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL; 1574 } 1575 } 1576 1577 static void 1578 xe_pt_commit_prepare_unbind(struct xe_vma *vma, 1579 struct xe_vm_pgtable_update *entries, 1580 u32 num_entries) 1581 { 1582 int i, j; 1583 1584 xe_pt_commit_locks_assert(vma); 1585 1586 for (i = 0; i < num_entries; ++i) { 1587 struct xe_vm_pgtable_update *entry = &entries[i]; 1588 struct xe_pt *pt = entry->pt; 1589 struct xe_pt_dir *pt_dir; 1590 1591 pt->num_live -= entry->qwords; 1592 if (!pt->level) 1593 continue; 1594 1595 pt_dir = as_xe_pt_dir(pt); 1596 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) { 1597 entry->pt_entries[j - entry->ofs].pt = 1598 xe_pt_entry(pt_dir, j); 1599 pt_dir->children[j] = NULL; 1600 } 1601 } 1602 } 1603 1604 static void 1605 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops, 1606 struct xe_vma *vma) 1607 { 1608 u32 current_op = pt_update_ops->current_op; 1609 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1610 int i, level = 0; 1611 u64 start, last; 1612 1613 for (i = 0; i < pt_op->num_entries; i++) { 1614 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i]; 1615 1616 if (entry->pt->level > level) 1617 level = entry->pt->level; 1618 } 1619 1620 /* Greedy (non-optimal) calculation but simple */ 1621 start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level)); 1622 last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1; 1623 1624 if (start < pt_update_ops->start) 1625 pt_update_ops->start = start; 1626 if (last > pt_update_ops->last) 1627 pt_update_ops->last = last; 1628 } 1629 1630 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma) 1631 { 1632 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0; 1633 1634 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1635 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1636 xe->info.tile_count << shift); 1637 1638 return 0; 1639 } 1640 1641 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile, 1642 struct xe_vm_pgtable_update_ops *pt_update_ops, 1643 struct xe_vma *vma) 1644 { 1645 u32 current_op = pt_update_ops->current_op; 1646 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1647 int err; 1648 1649 xe_bo_assert_held(xe_vma_bo(vma)); 1650 1651 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1652 "Preparing bind, with range [%llx...%llx)\n", 1653 xe_vma_start(vma), xe_vma_end(vma) - 1); 1654 1655 pt_op->vma = NULL; 1656 pt_op->bind = true; 1657 pt_op->rebind = BIT(tile->id) & vma->tile_present; 1658 1659 err = vma_reserve_fences(tile_to_xe(tile), vma); 1660 if (err) 1661 return err; 1662 1663 err = xe_pt_prepare_bind(tile, vma, pt_op->entries, 1664 &pt_op->num_entries); 1665 if (!err) { 1666 xe_tile_assert(tile, pt_op->num_entries <= 1667 ARRAY_SIZE(pt_op->entries)); 1668 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1669 pt_op->num_entries, true); 1670 1671 xe_pt_update_ops_rfence_interval(pt_update_ops, vma); 1672 ++pt_update_ops->current_op; 1673 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1674 1675 /* 1676 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1677 * cached PTEs point to freed memory. On LR vms this is done 1678 * automatically when the context is re-enabled by the rebind worker, 1679 * or in fault mode it was invalidated on PTE zapping. 1680 * 1681 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1682 * PTE is already cached in the TLB so it needs to be invalidated. 1683 * On !LR VMs this is done in the ring ops preceding a batch, but on 1684 * non-faulting LR, in particular on user-space batch buffer chaining, 1685 * it needs to be done here. 1686 */ 1687 if ((!pt_op->rebind && xe_vm_has_scratch(vm) && 1688 xe_vm_in_preempt_fence_mode(vm))) 1689 pt_update_ops->needs_invalidation = true; 1690 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm)) 1691 /* We bump also if batch_invalidate_tlb is true */ 1692 vm->tlb_flush_seqno++; 1693 1694 vma->tile_staged |= BIT(tile->id); 1695 pt_op->vma = vma; 1696 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1697 pt_op->num_entries, pt_op->rebind); 1698 } else { 1699 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1700 } 1701 1702 return err; 1703 } 1704 1705 static int unbind_op_prepare(struct xe_tile *tile, 1706 struct xe_vm_pgtable_update_ops *pt_update_ops, 1707 struct xe_vma *vma) 1708 { 1709 u32 current_op = pt_update_ops->current_op; 1710 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1711 int err; 1712 1713 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id))) 1714 return 0; 1715 1716 xe_bo_assert_held(xe_vma_bo(vma)); 1717 1718 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1719 "Preparing unbind, with range [%llx...%llx)\n", 1720 xe_vma_start(vma), xe_vma_end(vma) - 1); 1721 1722 /* 1723 * Wait for invalidation to complete. Can corrupt internal page table 1724 * state if an invalidation is running while preparing an unbind. 1725 */ 1726 if (xe_vma_is_userptr(vma) && xe_vm_in_fault_mode(xe_vma_vm(vma))) 1727 mmu_interval_read_begin(&to_userptr_vma(vma)->userptr.notifier); 1728 1729 pt_op->vma = vma; 1730 pt_op->bind = false; 1731 pt_op->rebind = false; 1732 1733 err = vma_reserve_fences(tile_to_xe(tile), vma); 1734 if (err) 1735 return err; 1736 1737 pt_op->num_entries = xe_pt_stage_unbind(tile, vma, pt_op->entries); 1738 1739 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1740 pt_op->num_entries, false); 1741 xe_pt_update_ops_rfence_interval(pt_update_ops, vma); 1742 ++pt_update_ops->current_op; 1743 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1744 pt_update_ops->needs_invalidation = true; 1745 1746 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries); 1747 1748 return 0; 1749 } 1750 1751 static int op_prepare(struct xe_vm *vm, 1752 struct xe_tile *tile, 1753 struct xe_vm_pgtable_update_ops *pt_update_ops, 1754 struct xe_vma_op *op) 1755 { 1756 int err = 0; 1757 1758 xe_vm_assert_held(vm); 1759 1760 switch (op->base.op) { 1761 case DRM_GPUVA_OP_MAP: 1762 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1763 break; 1764 1765 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma); 1766 pt_update_ops->wait_vm_kernel = true; 1767 break; 1768 case DRM_GPUVA_OP_REMAP: 1769 err = unbind_op_prepare(tile, pt_update_ops, 1770 gpuva_to_vma(op->base.remap.unmap->va)); 1771 1772 if (!err && op->remap.prev) { 1773 err = bind_op_prepare(vm, tile, pt_update_ops, 1774 op->remap.prev); 1775 pt_update_ops->wait_vm_bookkeep = true; 1776 } 1777 if (!err && op->remap.next) { 1778 err = bind_op_prepare(vm, tile, pt_update_ops, 1779 op->remap.next); 1780 pt_update_ops->wait_vm_bookkeep = true; 1781 } 1782 break; 1783 case DRM_GPUVA_OP_UNMAP: 1784 err = unbind_op_prepare(tile, pt_update_ops, 1785 gpuva_to_vma(op->base.unmap.va)); 1786 break; 1787 case DRM_GPUVA_OP_PREFETCH: 1788 err = bind_op_prepare(vm, tile, pt_update_ops, 1789 gpuva_to_vma(op->base.prefetch.va)); 1790 pt_update_ops->wait_vm_kernel = true; 1791 break; 1792 default: 1793 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1794 } 1795 1796 return err; 1797 } 1798 1799 static void 1800 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops) 1801 { 1802 init_llist_head(&pt_update_ops->deferred); 1803 pt_update_ops->start = ~0x0ull; 1804 pt_update_ops->last = 0x0ull; 1805 } 1806 1807 /** 1808 * xe_pt_update_ops_prepare() - Prepare PT update operations 1809 * @tile: Tile of PT update operations 1810 * @vops: VMA operationa 1811 * 1812 * Prepare PT update operations which includes updating internal PT state, 1813 * allocate memory for page tables, populate page table being pruned in, and 1814 * create PT update operations for leaf insertion / removal. 1815 * 1816 * Return: 0 on success, negative error code on error. 1817 */ 1818 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops) 1819 { 1820 struct xe_vm_pgtable_update_ops *pt_update_ops = 1821 &vops->pt_update_ops[tile->id]; 1822 struct xe_vma_op *op; 1823 int shift = tile->media_gt ? 1 : 0; 1824 int err; 1825 1826 lockdep_assert_held(&vops->vm->lock); 1827 xe_vm_assert_held(vops->vm); 1828 1829 xe_pt_update_ops_init(pt_update_ops); 1830 1831 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm), 1832 tile_to_xe(tile)->info.tile_count << shift); 1833 if (err) 1834 return err; 1835 1836 list_for_each_entry(op, &vops->list, link) { 1837 err = op_prepare(vops->vm, tile, pt_update_ops, op); 1838 1839 if (err) 1840 return err; 1841 } 1842 1843 xe_tile_assert(tile, pt_update_ops->current_op <= 1844 pt_update_ops->num_ops); 1845 1846 #ifdef TEST_VM_OPS_ERROR 1847 if (vops->inject_error && 1848 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE) 1849 return -ENOSPC; 1850 #endif 1851 1852 return 0; 1853 } 1854 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO); 1855 1856 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 1857 struct xe_vm_pgtable_update_ops *pt_update_ops, 1858 struct xe_vma *vma, struct dma_fence *fence, 1859 struct dma_fence *fence2) 1860 { 1861 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 1862 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1863 pt_update_ops->wait_vm_bookkeep ? 1864 DMA_RESV_USAGE_KERNEL : 1865 DMA_RESV_USAGE_BOOKKEEP); 1866 if (fence2) 1867 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 1868 pt_update_ops->wait_vm_bookkeep ? 1869 DMA_RESV_USAGE_KERNEL : 1870 DMA_RESV_USAGE_BOOKKEEP); 1871 } 1872 vma->tile_present |= BIT(tile->id); 1873 vma->tile_staged &= ~BIT(tile->id); 1874 if (xe_vma_is_userptr(vma)) { 1875 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1876 to_userptr_vma(vma)->userptr.initial_bind = true; 1877 } 1878 1879 /* 1880 * Kick rebind worker if this bind triggers preempt fences and not in 1881 * the rebind worker 1882 */ 1883 if (pt_update_ops->wait_vm_bookkeep && 1884 xe_vm_in_preempt_fence_mode(vm) && 1885 !current->mm) 1886 xe_vm_queue_rebind_worker(vm); 1887 } 1888 1889 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 1890 struct xe_vm_pgtable_update_ops *pt_update_ops, 1891 struct xe_vma *vma, struct dma_fence *fence, 1892 struct dma_fence *fence2) 1893 { 1894 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 1895 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1896 pt_update_ops->wait_vm_bookkeep ? 1897 DMA_RESV_USAGE_KERNEL : 1898 DMA_RESV_USAGE_BOOKKEEP); 1899 if (fence2) 1900 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 1901 pt_update_ops->wait_vm_bookkeep ? 1902 DMA_RESV_USAGE_KERNEL : 1903 DMA_RESV_USAGE_BOOKKEEP); 1904 } 1905 vma->tile_present &= ~BIT(tile->id); 1906 if (!vma->tile_present) { 1907 list_del_init(&vma->combined_links.rebind); 1908 if (xe_vma_is_userptr(vma)) { 1909 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1910 1911 spin_lock(&vm->userptr.invalidated_lock); 1912 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 1913 spin_unlock(&vm->userptr.invalidated_lock); 1914 } 1915 } 1916 } 1917 1918 static void op_commit(struct xe_vm *vm, 1919 struct xe_tile *tile, 1920 struct xe_vm_pgtable_update_ops *pt_update_ops, 1921 struct xe_vma_op *op, struct dma_fence *fence, 1922 struct dma_fence *fence2) 1923 { 1924 xe_vm_assert_held(vm); 1925 1926 switch (op->base.op) { 1927 case DRM_GPUVA_OP_MAP: 1928 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1929 break; 1930 1931 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence, 1932 fence2); 1933 break; 1934 case DRM_GPUVA_OP_REMAP: 1935 unbind_op_commit(vm, tile, pt_update_ops, 1936 gpuva_to_vma(op->base.remap.unmap->va), fence, 1937 fence2); 1938 1939 if (op->remap.prev) 1940 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev, 1941 fence, fence2); 1942 if (op->remap.next) 1943 bind_op_commit(vm, tile, pt_update_ops, op->remap.next, 1944 fence, fence2); 1945 break; 1946 case DRM_GPUVA_OP_UNMAP: 1947 unbind_op_commit(vm, tile, pt_update_ops, 1948 gpuva_to_vma(op->base.unmap.va), fence, fence2); 1949 break; 1950 case DRM_GPUVA_OP_PREFETCH: 1951 bind_op_commit(vm, tile, pt_update_ops, 1952 gpuva_to_vma(op->base.prefetch.va), fence, fence2); 1953 break; 1954 default: 1955 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1956 } 1957 } 1958 1959 static const struct xe_migrate_pt_update_ops migrate_ops = { 1960 .populate = xe_vm_populate_pgtable, 1961 .clear = xe_migrate_clear_pgtable_callback, 1962 .pre_commit = xe_pt_pre_commit, 1963 }; 1964 1965 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = { 1966 .populate = xe_vm_populate_pgtable, 1967 .clear = xe_migrate_clear_pgtable_callback, 1968 .pre_commit = xe_pt_userptr_pre_commit, 1969 }; 1970 1971 /** 1972 * xe_pt_update_ops_run() - Run PT update operations 1973 * @tile: Tile of PT update operations 1974 * @vops: VMA operationa 1975 * 1976 * Run PT update operations which includes committing internal PT state changes, 1977 * creating job for PT update operations for leaf insertion / removal, and 1978 * installing job fence in various places. 1979 * 1980 * Return: fence on success, negative ERR_PTR on error. 1981 */ 1982 struct dma_fence * 1983 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops) 1984 { 1985 struct xe_vm *vm = vops->vm; 1986 struct xe_vm_pgtable_update_ops *pt_update_ops = 1987 &vops->pt_update_ops[tile->id]; 1988 struct dma_fence *fence; 1989 struct invalidation_fence *ifence = NULL, *mfence = NULL; 1990 struct dma_fence **fences = NULL; 1991 struct dma_fence_array *cf = NULL; 1992 struct xe_range_fence *rfence; 1993 struct xe_vma_op *op; 1994 int err = 0, i; 1995 struct xe_migrate_pt_update update = { 1996 .ops = pt_update_ops->needs_userptr_lock ? 1997 &userptr_migrate_ops : 1998 &migrate_ops, 1999 .vops = vops, 2000 .tile_id = tile->id, 2001 }; 2002 2003 lockdep_assert_held(&vm->lock); 2004 xe_vm_assert_held(vm); 2005 2006 if (!pt_update_ops->current_op) { 2007 xe_tile_assert(tile, xe_vm_in_fault_mode(vm)); 2008 2009 return dma_fence_get_stub(); 2010 } 2011 2012 #ifdef TEST_VM_OPS_ERROR 2013 if (vops->inject_error && 2014 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN) 2015 return ERR_PTR(-ENOSPC); 2016 #endif 2017 2018 if (pt_update_ops->needs_invalidation) { 2019 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2020 if (!ifence) { 2021 err = -ENOMEM; 2022 goto kill_vm_tile1; 2023 } 2024 if (tile->media_gt) { 2025 mfence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2026 if (!mfence) { 2027 err = -ENOMEM; 2028 goto free_ifence; 2029 } 2030 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL); 2031 if (!fences) { 2032 err = -ENOMEM; 2033 goto free_ifence; 2034 } 2035 cf = dma_fence_array_alloc(2); 2036 if (!cf) { 2037 err = -ENOMEM; 2038 goto free_ifence; 2039 } 2040 } 2041 } 2042 2043 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 2044 if (!rfence) { 2045 err = -ENOMEM; 2046 goto free_ifence; 2047 } 2048 2049 fence = xe_migrate_update_pgtables(tile->migrate, &update); 2050 if (IS_ERR(fence)) { 2051 err = PTR_ERR(fence); 2052 goto free_rfence; 2053 } 2054 2055 /* Point of no return - VM killed if failure after this */ 2056 for (i = 0; i < pt_update_ops->current_op; ++i) { 2057 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2058 2059 xe_pt_commit(pt_op->vma, pt_op->entries, 2060 pt_op->num_entries, &pt_update_ops->deferred); 2061 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */ 2062 } 2063 2064 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence, 2065 &xe_range_fence_kfree_ops, 2066 pt_update_ops->start, 2067 pt_update_ops->last, fence)) 2068 dma_fence_wait(fence, false); 2069 2070 /* tlb invalidation must be done before signaling rebind */ 2071 if (ifence) { 2072 if (mfence) 2073 dma_fence_get(fence); 2074 invalidation_fence_init(tile->primary_gt, ifence, fence, 2075 pt_update_ops->start, 2076 pt_update_ops->last, vm->usm.asid); 2077 if (mfence) { 2078 invalidation_fence_init(tile->media_gt, mfence, fence, 2079 pt_update_ops->start, 2080 pt_update_ops->last, vm->usm.asid); 2081 fences[0] = &ifence->base.base; 2082 fences[1] = &mfence->base.base; 2083 dma_fence_array_init(cf, 2, fences, 2084 vm->composite_fence_ctx, 2085 vm->composite_fence_seqno++, 2086 false); 2087 fence = &cf->base; 2088 } else { 2089 fence = &ifence->base.base; 2090 } 2091 } 2092 2093 if (!mfence) { 2094 dma_resv_add_fence(xe_vm_resv(vm), fence, 2095 pt_update_ops->wait_vm_bookkeep ? 2096 DMA_RESV_USAGE_KERNEL : 2097 DMA_RESV_USAGE_BOOKKEEP); 2098 2099 list_for_each_entry(op, &vops->list, link) 2100 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL); 2101 } else { 2102 dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base, 2103 pt_update_ops->wait_vm_bookkeep ? 2104 DMA_RESV_USAGE_KERNEL : 2105 DMA_RESV_USAGE_BOOKKEEP); 2106 2107 dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base, 2108 pt_update_ops->wait_vm_bookkeep ? 2109 DMA_RESV_USAGE_KERNEL : 2110 DMA_RESV_USAGE_BOOKKEEP); 2111 2112 list_for_each_entry(op, &vops->list, link) 2113 op_commit(vops->vm, tile, pt_update_ops, op, 2114 &ifence->base.base, &mfence->base.base); 2115 } 2116 2117 if (pt_update_ops->needs_userptr_lock) 2118 up_read(&vm->userptr.notifier_lock); 2119 2120 return fence; 2121 2122 free_rfence: 2123 kfree(rfence); 2124 free_ifence: 2125 kfree(cf); 2126 kfree(fences); 2127 kfree(mfence); 2128 kfree(ifence); 2129 kill_vm_tile1: 2130 if (err != -EAGAIN && tile->id) 2131 xe_vm_kill(vops->vm, false); 2132 2133 return ERR_PTR(err); 2134 } 2135 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO); 2136 2137 /** 2138 * xe_pt_update_ops_fini() - Finish PT update operations 2139 * @tile: Tile of PT update operations 2140 * @vops: VMA operations 2141 * 2142 * Finish PT update operations by committing to destroy page table memory 2143 */ 2144 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops) 2145 { 2146 struct xe_vm_pgtable_update_ops *pt_update_ops = 2147 &vops->pt_update_ops[tile->id]; 2148 int i; 2149 2150 lockdep_assert_held(&vops->vm->lock); 2151 xe_vm_assert_held(vops->vm); 2152 2153 for (i = 0; i < pt_update_ops->current_op; ++i) { 2154 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2155 2156 xe_pt_free_bind(pt_op->entries, pt_op->num_entries); 2157 } 2158 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred); 2159 } 2160 2161 /** 2162 * xe_pt_update_ops_abort() - Abort PT update operations 2163 * @tile: Tile of PT update operations 2164 * @vops: VMA operationa 2165 * 2166 * Abort PT update operations by unwinding internal PT state 2167 */ 2168 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops) 2169 { 2170 struct xe_vm_pgtable_update_ops *pt_update_ops = 2171 &vops->pt_update_ops[tile->id]; 2172 int i; 2173 2174 lockdep_assert_held(&vops->vm->lock); 2175 xe_vm_assert_held(vops->vm); 2176 2177 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) { 2178 struct xe_vm_pgtable_update_op *pt_op = 2179 &pt_update_ops->ops[i]; 2180 2181 if (!pt_op->vma || i >= pt_update_ops->current_op) 2182 continue; 2183 2184 if (pt_op->bind) 2185 xe_pt_abort_bind(pt_op->vma, pt_op->entries, 2186 pt_op->num_entries, 2187 pt_op->rebind); 2188 else 2189 xe_pt_abort_unbind(pt_op->vma, pt_op->entries, 2190 pt_op->num_entries); 2191 } 2192 2193 xe_pt_update_ops_fini(tile, vops); 2194 } 2195