xref: /linux/drivers/gpu/drm/xe/xe_pt.c (revision df9b455633aee0bad3e5c3dc9fc1c860b13c96d2)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include <linux/dma-fence-array.h>
7 
8 #include "xe_pt.h"
9 
10 #include "regs/xe_gtt_defs.h"
11 #include "xe_bo.h"
12 #include "xe_device.h"
13 #include "xe_drm_client.h"
14 #include "xe_exec_queue.h"
15 #include "xe_gt.h"
16 #include "xe_gt_tlb_invalidation.h"
17 #include "xe_migrate.h"
18 #include "xe_pt_types.h"
19 #include "xe_pt_walk.h"
20 #include "xe_res_cursor.h"
21 #include "xe_sched_job.h"
22 #include "xe_sync.h"
23 #include "xe_trace.h"
24 #include "xe_ttm_stolen_mgr.h"
25 #include "xe_vm.h"
26 
27 struct xe_pt_dir {
28 	struct xe_pt pt;
29 	/** @children: Array of page-table child nodes */
30 	struct xe_ptw *children[XE_PDES];
31 };
32 
33 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
34 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
35 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
36 #else
37 #define xe_pt_set_addr(__xe_pt, __addr)
38 #define xe_pt_addr(__xe_pt) 0ull
39 #endif
40 
41 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
42 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
43 
44 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
45 
46 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
47 {
48 	return container_of(pt, struct xe_pt_dir, pt);
49 }
50 
51 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
52 {
53 	return container_of(pt_dir->children[index], struct xe_pt, base);
54 }
55 
56 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
57 			     unsigned int level)
58 {
59 	struct xe_device *xe = tile_to_xe(tile);
60 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
61 	u8 id = tile->id;
62 
63 	if (!xe_vm_has_scratch(vm))
64 		return 0;
65 
66 	if (level > MAX_HUGEPTE_LEVEL)
67 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
68 						 0, pat_index);
69 
70 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
71 		XE_PTE_NULL;
72 }
73 
74 static void xe_pt_free(struct xe_pt *pt)
75 {
76 	if (pt->level)
77 		kfree(as_xe_pt_dir(pt));
78 	else
79 		kfree(pt);
80 }
81 
82 /**
83  * xe_pt_create() - Create a page-table.
84  * @vm: The vm to create for.
85  * @tile: The tile to create for.
86  * @level: The page-table level.
87  *
88  * Allocate and initialize a single struct xe_pt metadata structure. Also
89  * create the corresponding page-table bo, but don't initialize it. If the
90  * level is grater than zero, then it's assumed to be a directory page-
91  * table and the directory structure is also allocated and initialized to
92  * NULL pointers.
93  *
94  * Return: A valid struct xe_pt pointer on success, Pointer error code on
95  * error.
96  */
97 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
98 			   unsigned int level)
99 {
100 	struct xe_pt *pt;
101 	struct xe_bo *bo;
102 	int err;
103 
104 	if (level) {
105 		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
106 
107 		pt = (dir) ? &dir->pt : NULL;
108 	} else {
109 		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
110 	}
111 	if (!pt)
112 		return ERR_PTR(-ENOMEM);
113 
114 	pt->level = level;
115 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
116 				  ttm_bo_type_kernel,
117 				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
118 				  XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
119 				  XE_BO_FLAG_PINNED |
120 				  XE_BO_FLAG_NO_RESV_EVICT |
121 				  XE_BO_FLAG_PAGETABLE);
122 	if (IS_ERR(bo)) {
123 		err = PTR_ERR(bo);
124 		goto err_kfree;
125 	}
126 	pt->bo = bo;
127 	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
128 
129 	if (vm->xef)
130 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
131 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
132 
133 	return pt;
134 
135 err_kfree:
136 	xe_pt_free(pt);
137 	return ERR_PTR(err);
138 }
139 
140 /**
141  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
142  * entries.
143  * @tile: The tile the scratch pagetable of which to use.
144  * @vm: The vm we populate for.
145  * @pt: The pagetable the bo of which to initialize.
146  *
147  * Populate the page-table bo of @pt with entries pointing into the tile's
148  * scratch page-table tree if any. Otherwise populate with zeros.
149  */
150 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
151 			  struct xe_pt *pt)
152 {
153 	struct iosys_map *map = &pt->bo->vmap;
154 	u64 empty;
155 	int i;
156 
157 	if (!xe_vm_has_scratch(vm)) {
158 		/*
159 		 * FIXME: Some memory is allocated already allocated to zero?
160 		 * Find out which memory that is and avoid this memset...
161 		 */
162 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
163 	} else {
164 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
165 		for (i = 0; i < XE_PDES; i++)
166 			xe_pt_write(vm->xe, map, i, empty);
167 	}
168 }
169 
170 /**
171  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
172  * a page-table at a certain level.
173  * @level: The level.
174  *
175  * Return: The ilog2 value of the size of the address range of a page-table
176  * at level @level.
177  */
178 unsigned int xe_pt_shift(unsigned int level)
179 {
180 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
181 }
182 
183 /**
184  * xe_pt_destroy() - Destroy a page-table tree.
185  * @pt: The root of the page-table tree to destroy.
186  * @flags: vm flags. Currently unused.
187  * @deferred: List head of lockless list for deferred putting. NULL for
188  *            immediate putting.
189  *
190  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
191  * and finally frees @pt. TODO: Can we remove the @flags argument?
192  */
193 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
194 {
195 	int i;
196 
197 	if (!pt)
198 		return;
199 
200 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
201 	xe_bo_unpin(pt->bo);
202 	xe_bo_put_deferred(pt->bo, deferred);
203 
204 	if (pt->level > 0 && pt->num_live) {
205 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
206 
207 		for (i = 0; i < XE_PDES; i++) {
208 			if (xe_pt_entry(pt_dir, i))
209 				xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
210 					      deferred);
211 		}
212 	}
213 	xe_pt_free(pt);
214 }
215 
216 /**
217  * DOC: Pagetable building
218  *
219  * Below we use the term "page-table" for both page-directories, containing
220  * pointers to lower level page-directories or page-tables, and level 0
221  * page-tables that contain only page-table-entries pointing to memory pages.
222  *
223  * When inserting an address range in an already existing page-table tree
224  * there will typically be a set of page-tables that are shared with other
225  * address ranges, and a set that are private to this address range.
226  * The set of shared page-tables can be at most two per level,
227  * and those can't be updated immediately because the entries of those
228  * page-tables may still be in use by the gpu for other mappings. Therefore
229  * when inserting entries into those, we instead stage those insertions by
230  * adding insertion data into struct xe_vm_pgtable_update structures. This
231  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
232  * added in a separate commit step. CPU-data is committed while still under the
233  * vm lock, the object lock and for userptr, the notifier lock in read mode.
234  * The GPU async data is committed either by the GPU or CPU after fulfilling
235  * relevant dependencies.
236  * For non-shared page-tables (and, in fact, for shared ones that aren't
237  * existing at the time of staging), we add the data in-place without the
238  * special update structures. This private part of the page-table tree will
239  * remain disconnected from the vm page-table tree until data is committed to
240  * the shared page tables of the vm tree in the commit phase.
241  */
242 
243 struct xe_pt_update {
244 	/** @update: The update structure we're building for this parent. */
245 	struct xe_vm_pgtable_update *update;
246 	/** @parent: The parent. Used to detect a parent change. */
247 	struct xe_pt *parent;
248 	/** @preexisting: Whether the parent was pre-existing or allocated */
249 	bool preexisting;
250 };
251 
252 struct xe_pt_stage_bind_walk {
253 	/** base: The base class. */
254 	struct xe_pt_walk base;
255 
256 	/* Input parameters for the walk */
257 	/** @vm: The vm we're building for. */
258 	struct xe_vm *vm;
259 	/** @tile: The tile we're building for. */
260 	struct xe_tile *tile;
261 	/** @default_pte: PTE flag only template. No address is associated */
262 	u64 default_pte;
263 	/** @dma_offset: DMA offset to add to the PTE. */
264 	u64 dma_offset;
265 	/**
266 	 * @needs_64k: This address range enforces 64K alignment and
267 	 * granularity.
268 	 */
269 	bool needs_64K;
270 	/**
271 	 * @vma: VMA being mapped
272 	 */
273 	struct xe_vma *vma;
274 
275 	/* Also input, but is updated during the walk*/
276 	/** @curs: The DMA address cursor. */
277 	struct xe_res_cursor *curs;
278 	/** @va_curs_start: The Virtual address coresponding to @curs->start */
279 	u64 va_curs_start;
280 
281 	/* Output */
282 	struct xe_walk_update {
283 		/** @wupd.entries: Caller provided storage. */
284 		struct xe_vm_pgtable_update *entries;
285 		/** @wupd.num_used_entries: Number of update @entries used. */
286 		unsigned int num_used_entries;
287 		/** @wupd.updates: Tracks the update entry at a given level */
288 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
289 	} wupd;
290 
291 	/* Walk state */
292 	/**
293 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
294 	 * 64K granularity detection.
295 	 */
296 	u64 l0_end_addr;
297 	/** @addr_64K: The start address of the current 64K chunk. */
298 	u64 addr_64K;
299 	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
300 	bool found_64K;
301 };
302 
303 static int
304 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
305 		 pgoff_t offset, bool alloc_entries)
306 {
307 	struct xe_pt_update *upd = &wupd->updates[parent->level];
308 	struct xe_vm_pgtable_update *entry;
309 
310 	/*
311 	 * For *each level*, we could only have one active
312 	 * struct xt_pt_update at any one time. Once we move on to a
313 	 * new parent and page-directory, the old one is complete, and
314 	 * updates are either already stored in the build tree or in
315 	 * @wupd->entries
316 	 */
317 	if (likely(upd->parent == parent))
318 		return 0;
319 
320 	upd->parent = parent;
321 	upd->preexisting = true;
322 
323 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
324 		return -EINVAL;
325 
326 	entry = wupd->entries + wupd->num_used_entries++;
327 	upd->update = entry;
328 	entry->ofs = offset;
329 	entry->pt_bo = parent->bo;
330 	entry->pt = parent;
331 	entry->flags = 0;
332 	entry->qwords = 0;
333 	entry->pt_bo->update_index = -1;
334 
335 	if (alloc_entries) {
336 		entry->pt_entries = kmalloc_array(XE_PDES,
337 						  sizeof(*entry->pt_entries),
338 						  GFP_KERNEL);
339 		if (!entry->pt_entries)
340 			return -ENOMEM;
341 	}
342 
343 	return 0;
344 }
345 
346 /*
347  * NOTE: This is a very frequently called function so we allow ourselves
348  * to annotate (using branch prediction hints) the fastpath of updating a
349  * non-pre-existing pagetable with leaf ptes.
350  */
351 static int
352 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
353 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
354 {
355 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
356 	struct xe_pt_update *child_upd = xe_child ?
357 		&xe_walk->wupd.updates[xe_child->level] : NULL;
358 	int ret;
359 
360 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
361 	if (unlikely(ret))
362 		return ret;
363 
364 	/*
365 	 * Register this new pagetable so that it won't be recognized as
366 	 * a shared pagetable by a subsequent insertion.
367 	 */
368 	if (unlikely(child_upd)) {
369 		child_upd->update = NULL;
370 		child_upd->parent = xe_child;
371 		child_upd->preexisting = false;
372 	}
373 
374 	if (likely(!upd->preexisting)) {
375 		/* Continue building a non-connected subtree. */
376 		struct iosys_map *map = &parent->bo->vmap;
377 
378 		if (unlikely(xe_child))
379 			parent->base.children[offset] = &xe_child->base;
380 
381 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
382 		parent->num_live++;
383 	} else {
384 		/* Shared pt. Stage update. */
385 		unsigned int idx;
386 		struct xe_vm_pgtable_update *entry = upd->update;
387 
388 		idx = offset - entry->ofs;
389 		entry->pt_entries[idx].pt = xe_child;
390 		entry->pt_entries[idx].pte = pte;
391 		entry->qwords++;
392 	}
393 
394 	return 0;
395 }
396 
397 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
398 				   struct xe_pt_stage_bind_walk *xe_walk)
399 {
400 	u64 size, dma;
401 
402 	if (level > MAX_HUGEPTE_LEVEL)
403 		return false;
404 
405 	/* Does the virtual range requested cover a huge pte? */
406 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
407 		return false;
408 
409 	/* Does the DMA segment cover the whole pte? */
410 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
411 		return false;
412 
413 	/* null VMA's do not have dma addresses */
414 	if (xe_vma_is_null(xe_walk->vma))
415 		return true;
416 
417 	/* Is the DMA address huge PTE size aligned? */
418 	size = next - addr;
419 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
420 
421 	return IS_ALIGNED(dma, size);
422 }
423 
424 /*
425  * Scan the requested mapping to check whether it can be done entirely
426  * with 64K PTEs.
427  */
428 static bool
429 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
430 {
431 	struct xe_res_cursor curs = *xe_walk->curs;
432 
433 	if (!IS_ALIGNED(addr, SZ_64K))
434 		return false;
435 
436 	if (next > xe_walk->l0_end_addr)
437 		return false;
438 
439 	/* null VMA's do not have dma addresses */
440 	if (xe_vma_is_null(xe_walk->vma))
441 		return true;
442 
443 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
444 	for (; addr < next; addr += SZ_64K) {
445 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
446 			return false;
447 
448 		xe_res_next(&curs, SZ_64K);
449 	}
450 
451 	return addr == next;
452 }
453 
454 /*
455  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
456  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
457  * device to the PTE.
458  * This function determines whether the address is part of such a
459  * segment. For VRAM in normal pagetables, this is strictly necessary on
460  * some devices.
461  */
462 static bool
463 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
464 {
465 	/* Address is within an already found 64k region */
466 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
467 		return true;
468 
469 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
470 	xe_walk->addr_64K = addr;
471 
472 	return xe_walk->found_64K;
473 }
474 
475 static int
476 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
477 		       unsigned int level, u64 addr, u64 next,
478 		       struct xe_ptw **child,
479 		       enum page_walk_action *action,
480 		       struct xe_pt_walk *walk)
481 {
482 	struct xe_pt_stage_bind_walk *xe_walk =
483 		container_of(walk, typeof(*xe_walk), base);
484 	u16 pat_index = xe_walk->vma->pat_index;
485 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
486 	struct xe_vm *vm = xe_walk->vm;
487 	struct xe_pt *xe_child;
488 	bool covers;
489 	int ret = 0;
490 	u64 pte;
491 
492 	/* Is this a leaf entry ?*/
493 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
494 		struct xe_res_cursor *curs = xe_walk->curs;
495 		bool is_null = xe_vma_is_null(xe_walk->vma);
496 
497 		XE_WARN_ON(xe_walk->va_curs_start != addr);
498 
499 		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
500 						 xe_res_dma(curs) + xe_walk->dma_offset,
501 						 xe_walk->vma, pat_index, level);
502 		pte |= xe_walk->default_pte;
503 
504 		/*
505 		 * Set the XE_PTE_PS64 hint if possible, otherwise if
506 		 * this device *requires* 64K PTE size for VRAM, fail.
507 		 */
508 		if (level == 0 && !xe_parent->is_compact) {
509 			if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
510 				xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K;
511 				pte |= XE_PTE_PS64;
512 			} else if (XE_WARN_ON(xe_walk->needs_64K)) {
513 				return -EINVAL;
514 			}
515 		}
516 
517 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
518 		if (unlikely(ret))
519 			return ret;
520 
521 		if (!is_null)
522 			xe_res_next(curs, next - addr);
523 		xe_walk->va_curs_start = next;
524 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
525 		*action = ACTION_CONTINUE;
526 
527 		return ret;
528 	}
529 
530 	/*
531 	 * Descending to lower level. Determine if we need to allocate a
532 	 * new page table or -directory, which we do if there is no
533 	 * previous one or there is one we can completely replace.
534 	 */
535 	if (level == 1) {
536 		walk->shifts = xe_normal_pt_shifts;
537 		xe_walk->l0_end_addr = next;
538 	}
539 
540 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
541 	if (covers || !*child) {
542 		u64 flags = 0;
543 
544 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
545 		if (IS_ERR(xe_child))
546 			return PTR_ERR(xe_child);
547 
548 		xe_pt_set_addr(xe_child,
549 			       round_down(addr, 1ull << walk->shifts[level]));
550 
551 		if (!covers)
552 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
553 
554 		*child = &xe_child->base;
555 
556 		/*
557 		 * Prefer the compact pagetable layout for L0 if possible. Only
558 		 * possible if VMA covers entire 2MB region as compact 64k and
559 		 * 4k pages cannot be mixed within a 2MB region.
560 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
561 		 * memory.
562 		 */
563 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
564 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
565 			walk->shifts = xe_compact_pt_shifts;
566 			xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
567 			flags |= XE_PDE_64K;
568 			xe_child->is_compact = true;
569 		}
570 
571 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
572 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
573 					 pte);
574 	}
575 
576 	*action = ACTION_SUBTREE;
577 	return ret;
578 }
579 
580 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
581 	.pt_entry = xe_pt_stage_bind_entry,
582 };
583 
584 /**
585  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
586  * range.
587  * @tile: The tile we're building for.
588  * @vma: The vma indicating the address range.
589  * @entries: Storage for the update entries used for connecting the tree to
590  * the main tree at commit time.
591  * @num_entries: On output contains the number of @entries used.
592  *
593  * This function builds a disconnected page-table tree for a given address
594  * range. The tree is connected to the main vm tree for the gpu using
595  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
596  * The function builds xe_vm_pgtable_update structures for already existing
597  * shared page-tables, and non-existing shared and non-shared page-tables
598  * are built and populated directly.
599  *
600  * Return 0 on success, negative error code on error.
601  */
602 static int
603 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
604 		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
605 {
606 	struct xe_device *xe = tile_to_xe(tile);
607 	struct xe_bo *bo = xe_vma_bo(vma);
608 	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
609 		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
610 	struct xe_res_cursor curs;
611 	struct xe_pt_stage_bind_walk xe_walk = {
612 		.base = {
613 			.ops = &xe_pt_stage_bind_ops,
614 			.shifts = xe_normal_pt_shifts,
615 			.max_level = XE_PT_HIGHEST_LEVEL,
616 		},
617 		.vm = xe_vma_vm(vma),
618 		.tile = tile,
619 		.curs = &curs,
620 		.va_curs_start = xe_vma_start(vma),
621 		.vma = vma,
622 		.wupd.entries = entries,
623 		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
624 	};
625 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
626 	int ret;
627 
628 	/**
629 	 * Default atomic expectations for different allocation scenarios are as follows:
630 	 *
631 	 * 1. Traditional API: When the VM is not in LR mode:
632 	 *    - Device atomics are expected to function with all allocations.
633 	 *
634 	 * 2. Compute/SVM API: When the VM is in LR mode:
635 	 *    - Device atomics are the default behavior when the bo is placed in a single region.
636 	 *    - In all other cases device atomics will be disabled with AE=0 until an application
637 	 *      request differently using a ioctl like madvise.
638 	 */
639 	if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
640 		if (xe_vm_in_lr_mode(xe_vma_vm(vma))) {
641 			if (bo && xe_bo_has_single_placement(bo))
642 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
643 			/**
644 			 * If a SMEM+LMEM allocation is backed by SMEM, a device
645 			 * atomics will cause a gpu page fault and which then
646 			 * gets migrated to LMEM, bind such allocations with
647 			 * device atomics enabled.
648 			 */
649 			else if (is_devmem && !xe_bo_has_single_placement(bo))
650 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
651 		} else {
652 			xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
653 		}
654 
655 		/**
656 		 * Unset AE if the platform(PVC) doesn't support it on an
657 		 * allocation
658 		 */
659 		if (!xe->info.has_device_atomics_on_smem && !is_devmem)
660 			xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE;
661 	}
662 
663 	if (is_devmem) {
664 		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
665 		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
666 	}
667 
668 	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
669 		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
670 
671 	xe_bo_assert_held(bo);
672 
673 	if (!xe_vma_is_null(vma)) {
674 		if (xe_vma_is_userptr(vma))
675 			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
676 					xe_vma_size(vma), &curs);
677 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
678 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
679 				     xe_vma_size(vma), &curs);
680 		else
681 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
682 					xe_vma_size(vma), &curs);
683 	} else {
684 		curs.size = xe_vma_size(vma);
685 	}
686 
687 	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
688 			       xe_vma_end(vma), &xe_walk.base);
689 
690 	*num_entries = xe_walk.wupd.num_used_entries;
691 	return ret;
692 }
693 
694 /**
695  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
696  * shared pagetable.
697  * @addr: The start address within the non-shared pagetable.
698  * @end: The end address within the non-shared pagetable.
699  * @level: The level of the non-shared pagetable.
700  * @walk: Walk info. The function adjusts the walk action.
701  * @action: next action to perform (see enum page_walk_action)
702  * @offset: Ignored on input, First non-shared entry on output.
703  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
704  *
705  * A non-shared page-table has some entries that belong to the address range
706  * and others that don't. This function determines the entries that belong
707  * fully to the address range. Depending on level, some entries may
708  * partially belong to the address range (that can't happen at level 0).
709  * The function detects that and adjust those offsets to not include those
710  * partial entries. Iff it does detect partial entries, we know that there must
711  * be shared page tables also at lower levels, so it adjusts the walk action
712  * accordingly.
713  *
714  * Return: true if there were non-shared entries, false otherwise.
715  */
716 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
717 				    struct xe_pt_walk *walk,
718 				    enum page_walk_action *action,
719 				    pgoff_t *offset, pgoff_t *end_offset)
720 {
721 	u64 size = 1ull << walk->shifts[level];
722 
723 	*offset = xe_pt_offset(addr, level, walk);
724 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
725 
726 	if (!level)
727 		return true;
728 
729 	/*
730 	 * If addr or next are not size aligned, there are shared pts at lower
731 	 * level, so in that case traverse down the subtree
732 	 */
733 	*action = ACTION_CONTINUE;
734 	if (!IS_ALIGNED(addr, size)) {
735 		*action = ACTION_SUBTREE;
736 		(*offset)++;
737 	}
738 
739 	if (!IS_ALIGNED(end, size)) {
740 		*action = ACTION_SUBTREE;
741 		(*end_offset)--;
742 	}
743 
744 	return *end_offset > *offset;
745 }
746 
747 struct xe_pt_zap_ptes_walk {
748 	/** @base: The walk base-class */
749 	struct xe_pt_walk base;
750 
751 	/* Input parameters for the walk */
752 	/** @tile: The tile we're building for */
753 	struct xe_tile *tile;
754 
755 	/* Output */
756 	/** @needs_invalidate: Whether we need to invalidate TLB*/
757 	bool needs_invalidate;
758 };
759 
760 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
761 				unsigned int level, u64 addr, u64 next,
762 				struct xe_ptw **child,
763 				enum page_walk_action *action,
764 				struct xe_pt_walk *walk)
765 {
766 	struct xe_pt_zap_ptes_walk *xe_walk =
767 		container_of(walk, typeof(*xe_walk), base);
768 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
769 	pgoff_t end_offset;
770 
771 	XE_WARN_ON(!*child);
772 	XE_WARN_ON(!level);
773 
774 	/*
775 	 * Note that we're called from an entry callback, and we're dealing
776 	 * with the child of that entry rather than the parent, so need to
777 	 * adjust level down.
778 	 */
779 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
780 				    &end_offset)) {
781 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
782 			      offset * sizeof(u64), 0,
783 			      (end_offset - offset) * sizeof(u64));
784 		xe_walk->needs_invalidate = true;
785 	}
786 
787 	return 0;
788 }
789 
790 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
791 	.pt_entry = xe_pt_zap_ptes_entry,
792 };
793 
794 /**
795  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
796  * @tile: The tile we're zapping for.
797  * @vma: GPU VMA detailing address range.
798  *
799  * Eviction and Userptr invalidation needs to be able to zap the
800  * gpu ptes of a given address range in pagefaulting mode.
801  * In order to be able to do that, that function needs access to the shared
802  * page-table entrieaso it can either clear the leaf PTEs or
803  * clear the pointers to lower-level page-tables. The caller is required
804  * to hold the necessary locks to ensure neither the page-table connectivity
805  * nor the page-table entries of the range is updated from under us.
806  *
807  * Return: Whether ptes were actually updated and a TLB invalidation is
808  * required.
809  */
810 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
811 {
812 	struct xe_pt_zap_ptes_walk xe_walk = {
813 		.base = {
814 			.ops = &xe_pt_zap_ptes_ops,
815 			.shifts = xe_normal_pt_shifts,
816 			.max_level = XE_PT_HIGHEST_LEVEL,
817 		},
818 		.tile = tile,
819 	};
820 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
821 	u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
822 
823 	if (!(pt_mask & BIT(tile->id)))
824 		return false;
825 
826 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
827 				xe_vma_end(vma), &xe_walk.base);
828 
829 	return xe_walk.needs_invalidate;
830 }
831 
832 static void
833 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
834 		       struct iosys_map *map, void *data,
835 		       u32 qword_ofs, u32 num_qwords,
836 		       const struct xe_vm_pgtable_update *update)
837 {
838 	struct xe_pt_entry *ptes = update->pt_entries;
839 	u64 *ptr = data;
840 	u32 i;
841 
842 	for (i = 0; i < num_qwords; i++) {
843 		if (map)
844 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
845 				  sizeof(u64), u64, ptes[i].pte);
846 		else
847 			ptr[i] = ptes[i].pte;
848 	}
849 }
850 
851 static void xe_pt_cancel_bind(struct xe_vma *vma,
852 			      struct xe_vm_pgtable_update *entries,
853 			      u32 num_entries)
854 {
855 	u32 i, j;
856 
857 	for (i = 0; i < num_entries; i++) {
858 		struct xe_pt *pt = entries[i].pt;
859 
860 		if (!pt)
861 			continue;
862 
863 		if (pt->level) {
864 			for (j = 0; j < entries[i].qwords; j++)
865 				xe_pt_destroy(entries[i].pt_entries[j].pt,
866 					      xe_vma_vm(vma)->flags, NULL);
867 		}
868 
869 		kfree(entries[i].pt_entries);
870 		entries[i].pt_entries = NULL;
871 		entries[i].qwords = 0;
872 	}
873 }
874 
875 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
876 {
877 	struct xe_vm *vm = xe_vma_vm(vma);
878 
879 	lockdep_assert_held(&vm->lock);
880 
881 	if (!xe_vma_is_userptr(vma) && !xe_vma_is_null(vma))
882 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
883 
884 	xe_vm_assert_held(vm);
885 }
886 
887 static void xe_pt_commit(struct xe_vma *vma,
888 			 struct xe_vm_pgtable_update *entries,
889 			 u32 num_entries, struct llist_head *deferred)
890 {
891 	u32 i, j;
892 
893 	xe_pt_commit_locks_assert(vma);
894 
895 	for (i = 0; i < num_entries; i++) {
896 		struct xe_pt *pt = entries[i].pt;
897 
898 		if (!pt->level)
899 			continue;
900 
901 		for (j = 0; j < entries[i].qwords; j++) {
902 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
903 
904 			xe_pt_destroy(oldpte, xe_vma_vm(vma)->flags, deferred);
905 		}
906 	}
907 }
908 
909 static void xe_pt_abort_bind(struct xe_vma *vma,
910 			     struct xe_vm_pgtable_update *entries,
911 			     u32 num_entries, bool rebind)
912 {
913 	int i, j;
914 
915 	xe_pt_commit_locks_assert(vma);
916 
917 	for (i = num_entries - 1; i >= 0; --i) {
918 		struct xe_pt *pt = entries[i].pt;
919 		struct xe_pt_dir *pt_dir;
920 
921 		if (!rebind)
922 			pt->num_live -= entries[i].qwords;
923 
924 		if (!pt->level)
925 			continue;
926 
927 		pt_dir = as_xe_pt_dir(pt);
928 		for (j = 0; j < entries[i].qwords; j++) {
929 			u32 j_ = j + entries[i].ofs;
930 			struct xe_pt *newpte = xe_pt_entry(pt_dir, j_);
931 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
932 
933 			pt_dir->children[j_] = oldpte ? &oldpte->base : 0;
934 			xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
935 		}
936 	}
937 }
938 
939 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
940 				      struct xe_vm_pgtable_update *entries,
941 				      u32 num_entries, bool rebind)
942 {
943 	u32 i, j;
944 
945 	xe_pt_commit_locks_assert(vma);
946 
947 	for (i = 0; i < num_entries; i++) {
948 		struct xe_pt *pt = entries[i].pt;
949 		struct xe_pt_dir *pt_dir;
950 
951 		if (!rebind)
952 			pt->num_live += entries[i].qwords;
953 
954 		if (!pt->level)
955 			continue;
956 
957 		pt_dir = as_xe_pt_dir(pt);
958 		for (j = 0; j < entries[i].qwords; j++) {
959 			u32 j_ = j + entries[i].ofs;
960 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
961 			struct xe_pt *oldpte = NULL;
962 
963 			if (xe_pt_entry(pt_dir, j_))
964 				oldpte = xe_pt_entry(pt_dir, j_);
965 
966 			pt_dir->children[j_] = &newpte->base;
967 			entries[i].pt_entries[j].pt = oldpte;
968 		}
969 	}
970 }
971 
972 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
973 			    u32 num_entries)
974 {
975 	u32 i;
976 
977 	for (i = 0; i < num_entries; i++)
978 		kfree(entries[i].pt_entries);
979 }
980 
981 static int
982 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
983 		   struct xe_vm_pgtable_update *entries, u32 *num_entries)
984 {
985 	int err;
986 
987 	*num_entries = 0;
988 	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
989 	if (!err)
990 		xe_tile_assert(tile, *num_entries);
991 
992 	return err;
993 }
994 
995 static void xe_vm_dbg_print_entries(struct xe_device *xe,
996 				    const struct xe_vm_pgtable_update *entries,
997 				    unsigned int num_entries, bool bind)
998 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
999 {
1000 	unsigned int i;
1001 
1002 	vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1003 	       num_entries);
1004 	for (i = 0; i < num_entries; i++) {
1005 		const struct xe_vm_pgtable_update *entry = &entries[i];
1006 		struct xe_pt *xe_pt = entry->pt;
1007 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1008 		u64 end;
1009 		u64 start;
1010 
1011 		xe_assert(xe, !entry->pt->is_compact);
1012 		start = entry->ofs * page_size;
1013 		end = start + page_size * entry->qwords;
1014 		vm_dbg(&xe->drm,
1015 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1016 		       i, xe_pt->level, entry->ofs, entry->qwords,
1017 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1018 	}
1019 }
1020 #else
1021 {}
1022 #endif
1023 
1024 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1025 {
1026 	int i;
1027 
1028 	for (i = 0; i < num_syncs; i++) {
1029 		struct dma_fence *fence = syncs[i].fence;
1030 
1031 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1032 				       &fence->flags))
1033 			return false;
1034 	}
1035 
1036 	return true;
1037 }
1038 
1039 static int job_test_add_deps(struct xe_sched_job *job,
1040 			     struct dma_resv *resv,
1041 			     enum dma_resv_usage usage)
1042 {
1043 	if (!job) {
1044 		if (!dma_resv_test_signaled(resv, usage))
1045 			return -ETIME;
1046 
1047 		return 0;
1048 	}
1049 
1050 	return xe_sched_job_add_deps(job, resv, usage);
1051 }
1052 
1053 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1054 {
1055 	struct xe_bo *bo = xe_vma_bo(vma);
1056 
1057 	xe_bo_assert_held(bo);
1058 
1059 	if (bo && !bo->vm)
1060 		return job_test_add_deps(job, bo->ttm.base.resv,
1061 					 DMA_RESV_USAGE_KERNEL);
1062 
1063 	return 0;
1064 }
1065 
1066 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1067 		       struct xe_sched_job *job)
1068 {
1069 	int err = 0;
1070 
1071 	switch (op->base.op) {
1072 	case DRM_GPUVA_OP_MAP:
1073 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1074 			break;
1075 
1076 		err = vma_add_deps(op->map.vma, job);
1077 		break;
1078 	case DRM_GPUVA_OP_REMAP:
1079 		if (op->remap.prev)
1080 			err = vma_add_deps(op->remap.prev, job);
1081 		if (!err && op->remap.next)
1082 			err = vma_add_deps(op->remap.next, job);
1083 		break;
1084 	case DRM_GPUVA_OP_UNMAP:
1085 		break;
1086 	case DRM_GPUVA_OP_PREFETCH:
1087 		err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1088 		break;
1089 	default:
1090 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1091 	}
1092 
1093 	return err;
1094 }
1095 
1096 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1097 				 struct xe_vm *vm,
1098 				 struct xe_vma_ops *vops,
1099 				 struct xe_vm_pgtable_update_ops *pt_update_ops,
1100 				 struct xe_range_fence_tree *rftree)
1101 {
1102 	struct xe_range_fence *rtfence;
1103 	struct dma_fence *fence;
1104 	struct xe_vma_op *op;
1105 	int err = 0, i;
1106 
1107 	xe_vm_assert_held(vm);
1108 
1109 	if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1110 		return -ETIME;
1111 
1112 	if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1113 		return -ETIME;
1114 
1115 	if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1116 		err = job_test_add_deps(job, xe_vm_resv(vm),
1117 					pt_update_ops->wait_vm_bookkeep ?
1118 					DMA_RESV_USAGE_BOOKKEEP :
1119 					DMA_RESV_USAGE_KERNEL);
1120 		if (err)
1121 			return err;
1122 	}
1123 
1124 	rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1125 					    pt_update_ops->last);
1126 	while (rtfence) {
1127 		fence = rtfence->fence;
1128 
1129 		if (!dma_fence_is_signaled(fence)) {
1130 			/*
1131 			 * Is this a CPU update? GPU is busy updating, so return
1132 			 * an error
1133 			 */
1134 			if (!job)
1135 				return -ETIME;
1136 
1137 			dma_fence_get(fence);
1138 			err = drm_sched_job_add_dependency(&job->drm, fence);
1139 			if (err)
1140 				return err;
1141 		}
1142 
1143 		rtfence = xe_range_fence_tree_next(rtfence,
1144 						   pt_update_ops->start,
1145 						   pt_update_ops->last);
1146 	}
1147 
1148 	list_for_each_entry(op, &vops->list, link) {
1149 		err = op_add_deps(vm, op, job);
1150 		if (err)
1151 			return err;
1152 	}
1153 
1154 	if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) {
1155 		if (job)
1156 			err = xe_sched_job_last_fence_add_dep(job, vm);
1157 		else
1158 			err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm);
1159 	}
1160 
1161 	for (i = 0; job && !err && i < vops->num_syncs; i++)
1162 		err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1163 
1164 	return err;
1165 }
1166 
1167 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1168 {
1169 	struct xe_vma_ops *vops = pt_update->vops;
1170 	struct xe_vm *vm = vops->vm;
1171 	struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1172 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1173 		&vops->pt_update_ops[pt_update->tile_id];
1174 
1175 	return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops,
1176 				     pt_update_ops, rftree);
1177 }
1178 
1179 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1180 
1181 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1182 {
1183 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1184 	static u32 count;
1185 
1186 	if (count++ % divisor == divisor - 1) {
1187 		uvma->userptr.divisor = divisor << 1;
1188 		return true;
1189 	}
1190 
1191 	return false;
1192 }
1193 
1194 #else
1195 
1196 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1197 {
1198 	return false;
1199 }
1200 
1201 #endif
1202 
1203 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1204 			     struct xe_vm_pgtable_update_ops *pt_update)
1205 {
1206 	struct xe_userptr_vma *uvma;
1207 	unsigned long notifier_seq;
1208 
1209 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1210 
1211 	if (!xe_vma_is_userptr(vma))
1212 		return 0;
1213 
1214 	uvma = to_userptr_vma(vma);
1215 	notifier_seq = uvma->userptr.notifier_seq;
1216 
1217 	if (uvma->userptr.initial_bind && !xe_vm_in_fault_mode(vm))
1218 		return 0;
1219 
1220 	if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1221 				     notifier_seq) &&
1222 	    !xe_pt_userptr_inject_eagain(uvma))
1223 		return 0;
1224 
1225 	if (xe_vm_in_fault_mode(vm)) {
1226 		return -EAGAIN;
1227 	} else {
1228 		spin_lock(&vm->userptr.invalidated_lock);
1229 		list_move_tail(&uvma->userptr.invalidate_link,
1230 			       &vm->userptr.invalidated);
1231 		spin_unlock(&vm->userptr.invalidated_lock);
1232 
1233 		if (xe_vm_in_preempt_fence_mode(vm)) {
1234 			struct dma_resv_iter cursor;
1235 			struct dma_fence *fence;
1236 			long err;
1237 
1238 			dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
1239 					    DMA_RESV_USAGE_BOOKKEEP);
1240 			dma_resv_for_each_fence_unlocked(&cursor, fence)
1241 				dma_fence_enable_sw_signaling(fence);
1242 			dma_resv_iter_end(&cursor);
1243 
1244 			err = dma_resv_wait_timeout(xe_vm_resv(vm),
1245 						    DMA_RESV_USAGE_BOOKKEEP,
1246 						    false, MAX_SCHEDULE_TIMEOUT);
1247 			XE_WARN_ON(err <= 0);
1248 		}
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1255 			    struct xe_vm_pgtable_update_ops *pt_update)
1256 {
1257 	int err = 0;
1258 
1259 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1260 
1261 	switch (op->base.op) {
1262 	case DRM_GPUVA_OP_MAP:
1263 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1264 			break;
1265 
1266 		err = vma_check_userptr(vm, op->map.vma, pt_update);
1267 		break;
1268 	case DRM_GPUVA_OP_REMAP:
1269 		if (op->remap.prev)
1270 			err = vma_check_userptr(vm, op->remap.prev, pt_update);
1271 		if (!err && op->remap.next)
1272 			err = vma_check_userptr(vm, op->remap.next, pt_update);
1273 		break;
1274 	case DRM_GPUVA_OP_UNMAP:
1275 		break;
1276 	case DRM_GPUVA_OP_PREFETCH:
1277 		err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va),
1278 					pt_update);
1279 		break;
1280 	default:
1281 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1282 	}
1283 
1284 	return err;
1285 }
1286 
1287 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1288 {
1289 	struct xe_vm *vm = pt_update->vops->vm;
1290 	struct xe_vma_ops *vops = pt_update->vops;
1291 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1292 		&vops->pt_update_ops[pt_update->tile_id];
1293 	struct xe_vma_op *op;
1294 	int err;
1295 
1296 	err = xe_pt_pre_commit(pt_update);
1297 	if (err)
1298 		return err;
1299 
1300 	down_read(&vm->userptr.notifier_lock);
1301 
1302 	list_for_each_entry(op, &vops->list, link) {
1303 		err = op_check_userptr(vm, op, pt_update_ops);
1304 		if (err) {
1305 			up_read(&vm->userptr.notifier_lock);
1306 			break;
1307 		}
1308 	}
1309 
1310 	return err;
1311 }
1312 
1313 struct invalidation_fence {
1314 	struct xe_gt_tlb_invalidation_fence base;
1315 	struct xe_gt *gt;
1316 	struct dma_fence *fence;
1317 	struct dma_fence_cb cb;
1318 	struct work_struct work;
1319 	u64 start;
1320 	u64 end;
1321 	u32 asid;
1322 };
1323 
1324 static void invalidation_fence_cb(struct dma_fence *fence,
1325 				  struct dma_fence_cb *cb)
1326 {
1327 	struct invalidation_fence *ifence =
1328 		container_of(cb, struct invalidation_fence, cb);
1329 	struct xe_device *xe = gt_to_xe(ifence->gt);
1330 
1331 	trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base);
1332 	if (!ifence->fence->error) {
1333 		queue_work(system_wq, &ifence->work);
1334 	} else {
1335 		ifence->base.base.error = ifence->fence->error;
1336 		dma_fence_signal(&ifence->base.base);
1337 		dma_fence_put(&ifence->base.base);
1338 	}
1339 	dma_fence_put(ifence->fence);
1340 }
1341 
1342 static void invalidation_fence_work_func(struct work_struct *w)
1343 {
1344 	struct invalidation_fence *ifence =
1345 		container_of(w, struct invalidation_fence, work);
1346 	struct xe_device *xe = gt_to_xe(ifence->gt);
1347 
1348 	trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base);
1349 	xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start,
1350 				     ifence->end, ifence->asid);
1351 }
1352 
1353 static void invalidation_fence_init(struct xe_gt *gt,
1354 				    struct invalidation_fence *ifence,
1355 				    struct dma_fence *fence,
1356 				    u64 start, u64 end, u32 asid)
1357 {
1358 	int ret;
1359 
1360 	trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base);
1361 
1362 	xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false);
1363 
1364 	ifence->fence = fence;
1365 	ifence->gt = gt;
1366 	ifence->start = start;
1367 	ifence->end = end;
1368 	ifence->asid = asid;
1369 
1370 	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1371 	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1372 	if (ret == -ENOENT) {
1373 		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1374 		invalidation_fence_work_func(&ifence->work);
1375 	} else if (ret) {
1376 		dma_fence_put(&ifence->base.base);	/* Caller ref */
1377 		dma_fence_put(&ifence->base.base);	/* Creation ref */
1378 	}
1379 
1380 	xe_gt_assert(gt, !ret || ret == -ENOENT);
1381 }
1382 
1383 struct xe_pt_stage_unbind_walk {
1384 	/** @base: The pagewalk base-class. */
1385 	struct xe_pt_walk base;
1386 
1387 	/* Input parameters for the walk */
1388 	/** @tile: The tile we're unbinding from. */
1389 	struct xe_tile *tile;
1390 
1391 	/**
1392 	 * @modified_start: Walk range start, modified to include any
1393 	 * shared pagetables that we're the only user of and can thus
1394 	 * treat as private.
1395 	 */
1396 	u64 modified_start;
1397 	/** @modified_end: Walk range start, modified like @modified_start. */
1398 	u64 modified_end;
1399 
1400 	/* Output */
1401 	/* @wupd: Structure to track the page-table updates we're building */
1402 	struct xe_walk_update wupd;
1403 };
1404 
1405 /*
1406  * Check whether this range is the only one populating this pagetable,
1407  * and in that case, update the walk range checks so that higher levels don't
1408  * view us as a shared pagetable.
1409  */
1410 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1411 			     const struct xe_pt *child,
1412 			     enum page_walk_action *action,
1413 			     struct xe_pt_walk *walk)
1414 {
1415 	struct xe_pt_stage_unbind_walk *xe_walk =
1416 		container_of(walk, typeof(*xe_walk), base);
1417 	unsigned int shift = walk->shifts[level];
1418 	u64 size = 1ull << shift;
1419 
1420 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1421 	    ((next - addr) >> shift) == child->num_live) {
1422 		u64 size = 1ull << walk->shifts[level + 1];
1423 
1424 		*action = ACTION_CONTINUE;
1425 
1426 		if (xe_walk->modified_start >= addr)
1427 			xe_walk->modified_start = round_down(addr, size);
1428 		if (xe_walk->modified_end <= next)
1429 			xe_walk->modified_end = round_up(next, size);
1430 
1431 		return true;
1432 	}
1433 
1434 	return false;
1435 }
1436 
1437 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1438 				    unsigned int level, u64 addr, u64 next,
1439 				    struct xe_ptw **child,
1440 				    enum page_walk_action *action,
1441 				    struct xe_pt_walk *walk)
1442 {
1443 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1444 
1445 	XE_WARN_ON(!*child);
1446 	XE_WARN_ON(!level);
1447 
1448 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1449 
1450 	return 0;
1451 }
1452 
1453 static int
1454 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1455 				unsigned int level, u64 addr, u64 next,
1456 				struct xe_ptw **child,
1457 				enum page_walk_action *action,
1458 				struct xe_pt_walk *walk)
1459 {
1460 	struct xe_pt_stage_unbind_walk *xe_walk =
1461 		container_of(walk, typeof(*xe_walk), base);
1462 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1463 	pgoff_t end_offset;
1464 	u64 size = 1ull << walk->shifts[--level];
1465 	int err;
1466 
1467 	if (!IS_ALIGNED(addr, size))
1468 		addr = xe_walk->modified_start;
1469 	if (!IS_ALIGNED(next, size))
1470 		next = xe_walk->modified_end;
1471 
1472 	/* Parent == *child is the root pt. Don't kill it. */
1473 	if (parent != *child &&
1474 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1475 		return 0;
1476 
1477 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1478 				     &end_offset))
1479 		return 0;
1480 
1481 	err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1482 	if (err)
1483 		return err;
1484 
1485 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1486 
1487 	return 0;
1488 }
1489 
1490 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1491 	.pt_entry = xe_pt_stage_unbind_entry,
1492 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1493 };
1494 
1495 /**
1496  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1497  * operation
1498  * @tile: The tile we're unbinding for.
1499  * @vma: The vma we're unbinding.
1500  * @entries: Caller-provided storage for the update structures.
1501  *
1502  * Builds page-table update structures for an unbind operation. The function
1503  * will attempt to remove all page-tables that we're the only user
1504  * of, and for that to work, the unbind operation must be committed in the
1505  * same critical section that blocks racing binds to the same page-table tree.
1506  *
1507  * Return: The number of entries used.
1508  */
1509 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1510 				       struct xe_vm_pgtable_update *entries)
1511 {
1512 	struct xe_pt_stage_unbind_walk xe_walk = {
1513 		.base = {
1514 			.ops = &xe_pt_stage_unbind_ops,
1515 			.shifts = xe_normal_pt_shifts,
1516 			.max_level = XE_PT_HIGHEST_LEVEL,
1517 		},
1518 		.tile = tile,
1519 		.modified_start = xe_vma_start(vma),
1520 		.modified_end = xe_vma_end(vma),
1521 		.wupd.entries = entries,
1522 	};
1523 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1524 
1525 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1526 				xe_vma_end(vma), &xe_walk.base);
1527 
1528 	return xe_walk.wupd.num_used_entries;
1529 }
1530 
1531 static void
1532 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1533 				  struct xe_tile *tile, struct iosys_map *map,
1534 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1535 				  const struct xe_vm_pgtable_update *update)
1536 {
1537 	struct xe_vm *vm = pt_update->vops->vm;
1538 	u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1539 	int i;
1540 
1541 	if (map && map->is_iomem)
1542 		for (i = 0; i < num_qwords; ++i)
1543 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1544 				  sizeof(u64), u64, empty);
1545 	else if (map)
1546 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1547 			 num_qwords);
1548 	else
1549 		memset64(ptr, empty, num_qwords);
1550 }
1551 
1552 static void xe_pt_abort_unbind(struct xe_vma *vma,
1553 			       struct xe_vm_pgtable_update *entries,
1554 			       u32 num_entries)
1555 {
1556 	int i, j;
1557 
1558 	xe_pt_commit_locks_assert(vma);
1559 
1560 	for (i = num_entries - 1; i >= 0; --i) {
1561 		struct xe_vm_pgtable_update *entry = &entries[i];
1562 		struct xe_pt *pt = entry->pt;
1563 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1564 
1565 		pt->num_live += entry->qwords;
1566 
1567 		if (!pt->level)
1568 			continue;
1569 
1570 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1571 			pt_dir->children[j] =
1572 				entries[i].pt_entries[j - entry->ofs].pt ?
1573 				&entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1574 	}
1575 }
1576 
1577 static void
1578 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1579 			    struct xe_vm_pgtable_update *entries,
1580 			    u32 num_entries)
1581 {
1582 	int i, j;
1583 
1584 	xe_pt_commit_locks_assert(vma);
1585 
1586 	for (i = 0; i < num_entries; ++i) {
1587 		struct xe_vm_pgtable_update *entry = &entries[i];
1588 		struct xe_pt *pt = entry->pt;
1589 		struct xe_pt_dir *pt_dir;
1590 
1591 		pt->num_live -= entry->qwords;
1592 		if (!pt->level)
1593 			continue;
1594 
1595 		pt_dir = as_xe_pt_dir(pt);
1596 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1597 			entry->pt_entries[j - entry->ofs].pt =
1598 				xe_pt_entry(pt_dir, j);
1599 			pt_dir->children[j] = NULL;
1600 		}
1601 	}
1602 }
1603 
1604 static void
1605 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1606 				 struct xe_vma *vma)
1607 {
1608 	u32 current_op = pt_update_ops->current_op;
1609 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1610 	int i, level = 0;
1611 	u64 start, last;
1612 
1613 	for (i = 0; i < pt_op->num_entries; i++) {
1614 		const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1615 
1616 		if (entry->pt->level > level)
1617 			level = entry->pt->level;
1618 	}
1619 
1620 	/* Greedy (non-optimal) calculation but simple */
1621 	start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level));
1622 	last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1;
1623 
1624 	if (start < pt_update_ops->start)
1625 		pt_update_ops->start = start;
1626 	if (last > pt_update_ops->last)
1627 		pt_update_ops->last = last;
1628 }
1629 
1630 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1631 {
1632 	int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0;
1633 
1634 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1635 		return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1636 					       xe->info.tile_count << shift);
1637 
1638 	return 0;
1639 }
1640 
1641 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1642 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1643 			   struct xe_vma *vma)
1644 {
1645 	u32 current_op = pt_update_ops->current_op;
1646 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1647 	int err;
1648 
1649 	xe_bo_assert_held(xe_vma_bo(vma));
1650 
1651 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1652 	       "Preparing bind, with range [%llx...%llx)\n",
1653 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1654 
1655 	pt_op->vma = NULL;
1656 	pt_op->bind = true;
1657 	pt_op->rebind = BIT(tile->id) & vma->tile_present;
1658 
1659 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1660 	if (err)
1661 		return err;
1662 
1663 	err = xe_pt_prepare_bind(tile, vma, pt_op->entries,
1664 				 &pt_op->num_entries);
1665 	if (!err) {
1666 		xe_tile_assert(tile, pt_op->num_entries <=
1667 			       ARRAY_SIZE(pt_op->entries));
1668 		xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1669 					pt_op->num_entries, true);
1670 
1671 		xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1672 		++pt_update_ops->current_op;
1673 		pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1674 
1675 		/*
1676 		 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1677 		 * cached PTEs point to freed memory. On LR vms this is done
1678 		 * automatically when the context is re-enabled by the rebind worker,
1679 		 * or in fault mode it was invalidated on PTE zapping.
1680 		 *
1681 		 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1682 		 * PTE is already cached in the TLB so it needs to be invalidated.
1683 		 * On !LR VMs this is done in the ring ops preceding a batch, but on
1684 		 * non-faulting LR, in particular on user-space batch buffer chaining,
1685 		 * it needs to be done here.
1686 		 */
1687 		if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1688 		     xe_vm_in_preempt_fence_mode(vm)))
1689 			pt_update_ops->needs_invalidation = true;
1690 		else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1691 			/* We bump also if batch_invalidate_tlb is true */
1692 			vm->tlb_flush_seqno++;
1693 
1694 		vma->tile_staged |= BIT(tile->id);
1695 		pt_op->vma = vma;
1696 		xe_pt_commit_prepare_bind(vma, pt_op->entries,
1697 					  pt_op->num_entries, pt_op->rebind);
1698 	} else {
1699 		xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1700 	}
1701 
1702 	return err;
1703 }
1704 
1705 static int unbind_op_prepare(struct xe_tile *tile,
1706 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1707 			     struct xe_vma *vma)
1708 {
1709 	u32 current_op = pt_update_ops->current_op;
1710 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1711 	int err;
1712 
1713 	if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1714 		return 0;
1715 
1716 	xe_bo_assert_held(xe_vma_bo(vma));
1717 
1718 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1719 	       "Preparing unbind, with range [%llx...%llx)\n",
1720 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1721 
1722 	/*
1723 	 * Wait for invalidation to complete. Can corrupt internal page table
1724 	 * state if an invalidation is running while preparing an unbind.
1725 	 */
1726 	if (xe_vma_is_userptr(vma) && xe_vm_in_fault_mode(xe_vma_vm(vma)))
1727 		mmu_interval_read_begin(&to_userptr_vma(vma)->userptr.notifier);
1728 
1729 	pt_op->vma = vma;
1730 	pt_op->bind = false;
1731 	pt_op->rebind = false;
1732 
1733 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1734 	if (err)
1735 		return err;
1736 
1737 	pt_op->num_entries = xe_pt_stage_unbind(tile, vma, pt_op->entries);
1738 
1739 	xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1740 				pt_op->num_entries, false);
1741 	xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1742 	++pt_update_ops->current_op;
1743 	pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1744 	pt_update_ops->needs_invalidation = true;
1745 
1746 	xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1747 
1748 	return 0;
1749 }
1750 
1751 static int op_prepare(struct xe_vm *vm,
1752 		      struct xe_tile *tile,
1753 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1754 		      struct xe_vma_op *op)
1755 {
1756 	int err = 0;
1757 
1758 	xe_vm_assert_held(vm);
1759 
1760 	switch (op->base.op) {
1761 	case DRM_GPUVA_OP_MAP:
1762 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1763 			break;
1764 
1765 		err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma);
1766 		pt_update_ops->wait_vm_kernel = true;
1767 		break;
1768 	case DRM_GPUVA_OP_REMAP:
1769 		err = unbind_op_prepare(tile, pt_update_ops,
1770 					gpuva_to_vma(op->base.remap.unmap->va));
1771 
1772 		if (!err && op->remap.prev) {
1773 			err = bind_op_prepare(vm, tile, pt_update_ops,
1774 					      op->remap.prev);
1775 			pt_update_ops->wait_vm_bookkeep = true;
1776 		}
1777 		if (!err && op->remap.next) {
1778 			err = bind_op_prepare(vm, tile, pt_update_ops,
1779 					      op->remap.next);
1780 			pt_update_ops->wait_vm_bookkeep = true;
1781 		}
1782 		break;
1783 	case DRM_GPUVA_OP_UNMAP:
1784 		err = unbind_op_prepare(tile, pt_update_ops,
1785 					gpuva_to_vma(op->base.unmap.va));
1786 		break;
1787 	case DRM_GPUVA_OP_PREFETCH:
1788 		err = bind_op_prepare(vm, tile, pt_update_ops,
1789 				      gpuva_to_vma(op->base.prefetch.va));
1790 		pt_update_ops->wait_vm_kernel = true;
1791 		break;
1792 	default:
1793 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1794 	}
1795 
1796 	return err;
1797 }
1798 
1799 static void
1800 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
1801 {
1802 	init_llist_head(&pt_update_ops->deferred);
1803 	pt_update_ops->start = ~0x0ull;
1804 	pt_update_ops->last = 0x0ull;
1805 }
1806 
1807 /**
1808  * xe_pt_update_ops_prepare() - Prepare PT update operations
1809  * @tile: Tile of PT update operations
1810  * @vops: VMA operationa
1811  *
1812  * Prepare PT update operations which includes updating internal PT state,
1813  * allocate memory for page tables, populate page table being pruned in, and
1814  * create PT update operations for leaf insertion / removal.
1815  *
1816  * Return: 0 on success, negative error code on error.
1817  */
1818 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
1819 {
1820 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1821 		&vops->pt_update_ops[tile->id];
1822 	struct xe_vma_op *op;
1823 	int shift = tile->media_gt ? 1 : 0;
1824 	int err;
1825 
1826 	lockdep_assert_held(&vops->vm->lock);
1827 	xe_vm_assert_held(vops->vm);
1828 
1829 	xe_pt_update_ops_init(pt_update_ops);
1830 
1831 	err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
1832 				      tile_to_xe(tile)->info.tile_count << shift);
1833 	if (err)
1834 		return err;
1835 
1836 	list_for_each_entry(op, &vops->list, link) {
1837 		err = op_prepare(vops->vm, tile, pt_update_ops, op);
1838 
1839 		if (err)
1840 			return err;
1841 	}
1842 
1843 	xe_tile_assert(tile, pt_update_ops->current_op <=
1844 		       pt_update_ops->num_ops);
1845 
1846 #ifdef TEST_VM_OPS_ERROR
1847 	if (vops->inject_error &&
1848 	    vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
1849 		return -ENOSPC;
1850 #endif
1851 
1852 	return 0;
1853 }
1854 
1855 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1856 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1857 			   struct xe_vma *vma, struct dma_fence *fence,
1858 			   struct dma_fence *fence2)
1859 {
1860 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1861 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1862 				   pt_update_ops->wait_vm_bookkeep ?
1863 				   DMA_RESV_USAGE_KERNEL :
1864 				   DMA_RESV_USAGE_BOOKKEEP);
1865 		if (fence2)
1866 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1867 					   pt_update_ops->wait_vm_bookkeep ?
1868 					   DMA_RESV_USAGE_KERNEL :
1869 					   DMA_RESV_USAGE_BOOKKEEP);
1870 	}
1871 	vma->tile_present |= BIT(tile->id);
1872 	vma->tile_staged &= ~BIT(tile->id);
1873 	if (xe_vma_is_userptr(vma)) {
1874 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
1875 		to_userptr_vma(vma)->userptr.initial_bind = true;
1876 	}
1877 
1878 	/*
1879 	 * Kick rebind worker if this bind triggers preempt fences and not in
1880 	 * the rebind worker
1881 	 */
1882 	if (pt_update_ops->wait_vm_bookkeep &&
1883 	    xe_vm_in_preempt_fence_mode(vm) &&
1884 	    !current->mm)
1885 		xe_vm_queue_rebind_worker(vm);
1886 }
1887 
1888 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1889 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1890 			     struct xe_vma *vma, struct dma_fence *fence,
1891 			     struct dma_fence *fence2)
1892 {
1893 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1894 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1895 				   pt_update_ops->wait_vm_bookkeep ?
1896 				   DMA_RESV_USAGE_KERNEL :
1897 				   DMA_RESV_USAGE_BOOKKEEP);
1898 		if (fence2)
1899 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1900 					   pt_update_ops->wait_vm_bookkeep ?
1901 					   DMA_RESV_USAGE_KERNEL :
1902 					   DMA_RESV_USAGE_BOOKKEEP);
1903 	}
1904 	vma->tile_present &= ~BIT(tile->id);
1905 	if (!vma->tile_present) {
1906 		list_del_init(&vma->combined_links.rebind);
1907 		if (xe_vma_is_userptr(vma)) {
1908 			lockdep_assert_held_read(&vm->userptr.notifier_lock);
1909 
1910 			spin_lock(&vm->userptr.invalidated_lock);
1911 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1912 			spin_unlock(&vm->userptr.invalidated_lock);
1913 		}
1914 	}
1915 }
1916 
1917 static void op_commit(struct xe_vm *vm,
1918 		      struct xe_tile *tile,
1919 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1920 		      struct xe_vma_op *op, struct dma_fence *fence,
1921 		      struct dma_fence *fence2)
1922 {
1923 	xe_vm_assert_held(vm);
1924 
1925 	switch (op->base.op) {
1926 	case DRM_GPUVA_OP_MAP:
1927 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1928 			break;
1929 
1930 		bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence,
1931 			       fence2);
1932 		break;
1933 	case DRM_GPUVA_OP_REMAP:
1934 		unbind_op_commit(vm, tile, pt_update_ops,
1935 				 gpuva_to_vma(op->base.remap.unmap->va), fence,
1936 				 fence2);
1937 
1938 		if (op->remap.prev)
1939 			bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
1940 				       fence, fence2);
1941 		if (op->remap.next)
1942 			bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
1943 				       fence, fence2);
1944 		break;
1945 	case DRM_GPUVA_OP_UNMAP:
1946 		unbind_op_commit(vm, tile, pt_update_ops,
1947 				 gpuva_to_vma(op->base.unmap.va), fence, fence2);
1948 		break;
1949 	case DRM_GPUVA_OP_PREFETCH:
1950 		bind_op_commit(vm, tile, pt_update_ops,
1951 			       gpuva_to_vma(op->base.prefetch.va), fence, fence2);
1952 		break;
1953 	default:
1954 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1955 	}
1956 }
1957 
1958 static const struct xe_migrate_pt_update_ops migrate_ops = {
1959 	.populate = xe_vm_populate_pgtable,
1960 	.clear = xe_migrate_clear_pgtable_callback,
1961 	.pre_commit = xe_pt_pre_commit,
1962 };
1963 
1964 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = {
1965 	.populate = xe_vm_populate_pgtable,
1966 	.clear = xe_migrate_clear_pgtable_callback,
1967 	.pre_commit = xe_pt_userptr_pre_commit,
1968 };
1969 
1970 /**
1971  * xe_pt_update_ops_run() - Run PT update operations
1972  * @tile: Tile of PT update operations
1973  * @vops: VMA operationa
1974  *
1975  * Run PT update operations which includes committing internal PT state changes,
1976  * creating job for PT update operations for leaf insertion / removal, and
1977  * installing job fence in various places.
1978  *
1979  * Return: fence on success, negative ERR_PTR on error.
1980  */
1981 struct dma_fence *
1982 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
1983 {
1984 	struct xe_vm *vm = vops->vm;
1985 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1986 		&vops->pt_update_ops[tile->id];
1987 	struct dma_fence *fence;
1988 	struct invalidation_fence *ifence = NULL, *mfence = NULL;
1989 	struct dma_fence **fences = NULL;
1990 	struct dma_fence_array *cf = NULL;
1991 	struct xe_range_fence *rfence;
1992 	struct xe_vma_op *op;
1993 	int err = 0, i;
1994 	struct xe_migrate_pt_update update = {
1995 		.ops = pt_update_ops->needs_userptr_lock ?
1996 			&userptr_migrate_ops :
1997 			&migrate_ops,
1998 		.vops = vops,
1999 		.tile_id = tile->id,
2000 	};
2001 
2002 	lockdep_assert_held(&vm->lock);
2003 	xe_vm_assert_held(vm);
2004 
2005 	if (!pt_update_ops->current_op) {
2006 		xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
2007 
2008 		return dma_fence_get_stub();
2009 	}
2010 
2011 #ifdef TEST_VM_OPS_ERROR
2012 	if (vops->inject_error &&
2013 	    vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
2014 		return ERR_PTR(-ENOSPC);
2015 #endif
2016 
2017 	if (pt_update_ops->needs_invalidation) {
2018 		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2019 		if (!ifence) {
2020 			err = -ENOMEM;
2021 			goto kill_vm_tile1;
2022 		}
2023 		if (tile->media_gt) {
2024 			mfence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2025 			if (!mfence) {
2026 				err = -ENOMEM;
2027 				goto free_ifence;
2028 			}
2029 			fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL);
2030 			if (!fences) {
2031 				err = -ENOMEM;
2032 				goto free_ifence;
2033 			}
2034 			cf = dma_fence_array_alloc(2);
2035 			if (!cf) {
2036 				err = -ENOMEM;
2037 				goto free_ifence;
2038 			}
2039 		}
2040 	}
2041 
2042 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2043 	if (!rfence) {
2044 		err = -ENOMEM;
2045 		goto free_ifence;
2046 	}
2047 
2048 	fence = xe_migrate_update_pgtables(tile->migrate, &update);
2049 	if (IS_ERR(fence)) {
2050 		err = PTR_ERR(fence);
2051 		goto free_rfence;
2052 	}
2053 
2054 	/* Point of no return - VM killed if failure after this */
2055 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2056 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2057 
2058 		xe_pt_commit(pt_op->vma, pt_op->entries,
2059 			     pt_op->num_entries, &pt_update_ops->deferred);
2060 		pt_op->vma = NULL;	/* skip in xe_pt_update_ops_abort */
2061 	}
2062 
2063 	if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2064 				  &xe_range_fence_kfree_ops,
2065 				  pt_update_ops->start,
2066 				  pt_update_ops->last, fence))
2067 		dma_fence_wait(fence, false);
2068 
2069 	/* tlb invalidation must be done before signaling rebind */
2070 	if (ifence) {
2071 		if (mfence)
2072 			dma_fence_get(fence);
2073 		invalidation_fence_init(tile->primary_gt, ifence, fence,
2074 					pt_update_ops->start,
2075 					pt_update_ops->last, vm->usm.asid);
2076 		if (mfence) {
2077 			invalidation_fence_init(tile->media_gt, mfence, fence,
2078 						pt_update_ops->start,
2079 						pt_update_ops->last, vm->usm.asid);
2080 			fences[0] = &ifence->base.base;
2081 			fences[1] = &mfence->base.base;
2082 			dma_fence_array_init(cf, 2, fences,
2083 					     vm->composite_fence_ctx,
2084 					     vm->composite_fence_seqno++,
2085 					     false);
2086 			fence = &cf->base;
2087 		} else {
2088 			fence = &ifence->base.base;
2089 		}
2090 	}
2091 
2092 	if (!mfence) {
2093 		dma_resv_add_fence(xe_vm_resv(vm), fence,
2094 				   pt_update_ops->wait_vm_bookkeep ?
2095 				   DMA_RESV_USAGE_KERNEL :
2096 				   DMA_RESV_USAGE_BOOKKEEP);
2097 
2098 		list_for_each_entry(op, &vops->list, link)
2099 			op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL);
2100 	} else {
2101 		dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base,
2102 				   pt_update_ops->wait_vm_bookkeep ?
2103 				   DMA_RESV_USAGE_KERNEL :
2104 				   DMA_RESV_USAGE_BOOKKEEP);
2105 
2106 		dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base,
2107 				   pt_update_ops->wait_vm_bookkeep ?
2108 				   DMA_RESV_USAGE_KERNEL :
2109 				   DMA_RESV_USAGE_BOOKKEEP);
2110 
2111 		list_for_each_entry(op, &vops->list, link)
2112 			op_commit(vops->vm, tile, pt_update_ops, op,
2113 				  &ifence->base.base, &mfence->base.base);
2114 	}
2115 
2116 	if (pt_update_ops->needs_userptr_lock)
2117 		up_read(&vm->userptr.notifier_lock);
2118 
2119 	return fence;
2120 
2121 free_rfence:
2122 	kfree(rfence);
2123 free_ifence:
2124 	kfree(cf);
2125 	kfree(fences);
2126 	kfree(mfence);
2127 	kfree(ifence);
2128 kill_vm_tile1:
2129 	if (err != -EAGAIN && tile->id)
2130 		xe_vm_kill(vops->vm, false);
2131 
2132 	return ERR_PTR(err);
2133 }
2134 
2135 /**
2136  * xe_pt_update_ops_fini() - Finish PT update operations
2137  * @tile: Tile of PT update operations
2138  * @vops: VMA operations
2139  *
2140  * Finish PT update operations by committing to destroy page table memory
2141  */
2142 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2143 {
2144 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2145 		&vops->pt_update_ops[tile->id];
2146 	int i;
2147 
2148 	lockdep_assert_held(&vops->vm->lock);
2149 	xe_vm_assert_held(vops->vm);
2150 
2151 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2152 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2153 
2154 		xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2155 	}
2156 	xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2157 }
2158 
2159 /**
2160  * xe_pt_update_ops_abort() - Abort PT update operations
2161  * @tile: Tile of PT update operations
2162  * @vops: VMA operationa
2163  *
2164  *  Abort PT update operations by unwinding internal PT state
2165  */
2166 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2167 {
2168 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2169 		&vops->pt_update_ops[tile->id];
2170 	int i;
2171 
2172 	lockdep_assert_held(&vops->vm->lock);
2173 	xe_vm_assert_held(vops->vm);
2174 
2175 	for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2176 		struct xe_vm_pgtable_update_op *pt_op =
2177 			&pt_update_ops->ops[i];
2178 
2179 		if (!pt_op->vma || i >= pt_update_ops->current_op)
2180 			continue;
2181 
2182 		if (pt_op->bind)
2183 			xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2184 					 pt_op->num_entries,
2185 					 pt_op->rebind);
2186 		else
2187 			xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2188 					   pt_op->num_entries);
2189 	}
2190 
2191 	xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2192 }
2193