1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 #include "xe_device.h" 8 #include "xe_gt.h" 9 #include "xe_migrate.h" 10 #include "xe_pt.h" 11 #include "xe_pt_types.h" 12 #include "xe_pt_walk.h" 13 #include "xe_vm.h" 14 #include "xe_res_cursor.h" 15 16 struct xe_pt_dir { 17 struct xe_pt pt; 18 /** @dir: Directory structure for the xe_pt_walk functionality */ 19 struct xe_ptw_dir dir; 20 }; 21 22 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 23 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 24 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 25 #else 26 #define xe_pt_set_addr(__xe_pt, __addr) 27 #define xe_pt_addr(__xe_pt) 0ull 28 #endif 29 30 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 31 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 32 33 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 34 35 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 36 { 37 return container_of(pt, struct xe_pt_dir, pt); 38 } 39 40 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) 41 { 42 return container_of(pt_dir->dir.entries[index], struct xe_pt, base); 43 } 44 45 /** 46 * gen8_pde_encode() - Encode a page-table directory entry pointing to 47 * another page-table. 48 * @bo: The page-table bo of the page-table to point to. 49 * @bo_offset: Offset in the page-table bo to point to. 50 * @level: The cache level indicating the caching of @bo. 51 * 52 * TODO: Rename. 53 * 54 * Return: An encoded page directory entry. No errors. 55 */ 56 u64 gen8_pde_encode(struct xe_bo *bo, u64 bo_offset, 57 const enum xe_cache_level level) 58 { 59 u64 pde; 60 bool is_lmem; 61 62 pde = xe_bo_addr(bo, bo_offset, GEN8_PAGE_SIZE, &is_lmem); 63 pde |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW; 64 65 XE_WARN_ON(IS_DGFX(xe_bo_device(bo)) && !is_lmem); 66 67 /* FIXME: I don't think the PPAT handling is correct for MTL */ 68 69 if (level != XE_CACHE_NONE) 70 pde |= PPAT_CACHED_PDE; 71 else 72 pde |= PPAT_UNCACHED; 73 74 return pde; 75 } 76 77 static dma_addr_t vma_addr(struct xe_vma *vma, u64 offset, 78 size_t page_size, bool *is_lmem) 79 { 80 if (xe_vma_is_userptr(vma)) { 81 struct xe_res_cursor cur; 82 u64 page; 83 84 *is_lmem = false; 85 page = offset >> PAGE_SHIFT; 86 offset &= (PAGE_SIZE - 1); 87 88 xe_res_first_sg(vma->userptr.sg, page << PAGE_SHIFT, page_size, 89 &cur); 90 return xe_res_dma(&cur) + offset; 91 } else { 92 return xe_bo_addr(vma->bo, offset, page_size, is_lmem); 93 } 94 } 95 96 static u64 __gen8_pte_encode(u64 pte, enum xe_cache_level cache, u32 flags, 97 u32 pt_level) 98 { 99 pte |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW; 100 101 if (unlikely(flags & PTE_READ_ONLY)) 102 pte &= ~GEN8_PAGE_RW; 103 104 /* FIXME: I don't think the PPAT handling is correct for MTL */ 105 106 switch (cache) { 107 case XE_CACHE_NONE: 108 pte |= PPAT_UNCACHED; 109 break; 110 case XE_CACHE_WT: 111 pte |= PPAT_DISPLAY_ELLC; 112 break; 113 default: 114 pte |= PPAT_CACHED; 115 break; 116 } 117 118 if (pt_level == 1) 119 pte |= GEN8_PDE_PS_2M; 120 else if (pt_level == 2) 121 pte |= GEN8_PDPE_PS_1G; 122 123 /* XXX: Does hw support 1 GiB pages? */ 124 XE_BUG_ON(pt_level > 2); 125 126 return pte; 127 } 128 129 /** 130 * gen8_pte_encode() - Encode a page-table entry pointing to memory. 131 * @vma: The vma representing the memory to point to. 132 * @bo: If @vma is NULL, representing the memory to point to. 133 * @offset: The offset into @vma or @bo. 134 * @cache: The cache level indicating 135 * @flags: Currently only supports PTE_READ_ONLY for read-only access. 136 * @pt_level: The page-table level of the page-table into which the entry 137 * is to be inserted. 138 * 139 * TODO: Rename. 140 * 141 * Return: An encoded page-table entry. No errors. 142 */ 143 u64 gen8_pte_encode(struct xe_vma *vma, struct xe_bo *bo, 144 u64 offset, enum xe_cache_level cache, 145 u32 flags, u32 pt_level) 146 { 147 u64 pte; 148 bool is_vram; 149 150 if (vma) 151 pte = vma_addr(vma, offset, GEN8_PAGE_SIZE, &is_vram); 152 else 153 pte = xe_bo_addr(bo, offset, GEN8_PAGE_SIZE, &is_vram); 154 155 if (is_vram) { 156 pte |= GEN12_PPGTT_PTE_LM; 157 if (vma && vma->use_atomic_access_pte_bit) 158 pte |= GEN12_USM_PPGTT_PTE_AE; 159 } 160 161 return __gen8_pte_encode(pte, cache, flags, pt_level); 162 } 163 164 static u64 __xe_pt_empty_pte(struct xe_gt *gt, struct xe_vm *vm, 165 unsigned int level) 166 { 167 u8 id = gt->info.id; 168 169 XE_BUG_ON(xe_gt_is_media_type(gt)); 170 171 if (!vm->scratch_bo[id]) 172 return 0; 173 174 if (level == 0) { 175 u64 empty = gen8_pte_encode(NULL, vm->scratch_bo[id], 0, 176 XE_CACHE_WB, 0, 0); 177 if (vm->flags & XE_VM_FLAGS_64K) 178 empty |= GEN12_PTE_PS64; 179 180 return empty; 181 } else { 182 return gen8_pde_encode(vm->scratch_pt[id][level - 1]->bo, 0, 183 XE_CACHE_WB); 184 } 185 } 186 187 /** 188 * xe_pt_create() - Create a page-table. 189 * @vm: The vm to create for. 190 * @gt: The gt to create for. 191 * @level: The page-table level. 192 * 193 * Allocate and initialize a single struct xe_pt metadata structure. Also 194 * create the corresponding page-table bo, but don't initialize it. If the 195 * level is grater than zero, then it's assumed to be a directory page- 196 * table and the directory structure is also allocated and initialized to 197 * NULL pointers. 198 * 199 * Return: A valid struct xe_pt pointer on success, Pointer error code on 200 * error. 201 */ 202 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_gt *gt, 203 unsigned int level) 204 { 205 struct xe_pt *pt; 206 struct xe_bo *bo; 207 size_t size; 208 int err; 209 210 size = !level ? sizeof(struct xe_pt) : sizeof(struct xe_pt_dir) + 211 GEN8_PDES * sizeof(struct xe_ptw *); 212 pt = kzalloc(size, GFP_KERNEL); 213 if (!pt) 214 return ERR_PTR(-ENOMEM); 215 216 bo = xe_bo_create_pin_map(vm->xe, gt, vm, SZ_4K, 217 ttm_bo_type_kernel, 218 XE_BO_CREATE_VRAM_IF_DGFX(gt) | 219 XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT | 220 XE_BO_CREATE_PINNED_BIT); 221 if (IS_ERR(bo)) { 222 err = PTR_ERR(bo); 223 goto err_kfree; 224 } 225 pt->bo = bo; 226 pt->level = level; 227 pt->base.dir = level ? &as_xe_pt_dir(pt)->dir : NULL; 228 229 XE_BUG_ON(level > XE_VM_MAX_LEVEL); 230 231 return pt; 232 233 err_kfree: 234 kfree(pt); 235 return ERR_PTR(err); 236 } 237 238 /** 239 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 240 * entries. 241 * @gt: The gt the scratch pagetable of which to use. 242 * @vm: The vm we populate for. 243 * @pt: The pagetable the bo of which to initialize. 244 * 245 * Populate the page-table bo of @pt with entries pointing into the gt's 246 * scratch page-table tree if any. Otherwise populate with zeros. 247 */ 248 void xe_pt_populate_empty(struct xe_gt *gt, struct xe_vm *vm, 249 struct xe_pt *pt) 250 { 251 struct iosys_map *map = &pt->bo->vmap; 252 u64 empty; 253 int i; 254 255 XE_BUG_ON(xe_gt_is_media_type(gt)); 256 257 if (!vm->scratch_bo[gt->info.id]) { 258 /* 259 * FIXME: Some memory is allocated already allocated to zero? 260 * Find out which memory that is and avoid this memset... 261 */ 262 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 263 } else { 264 empty = __xe_pt_empty_pte(gt, vm, pt->level); 265 for (i = 0; i < GEN8_PDES; i++) 266 xe_pt_write(vm->xe, map, i, empty); 267 } 268 } 269 270 /** 271 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 272 * a page-table at a certain level. 273 * @level: The level. 274 * 275 * Return: The ilog2 value of the size of the address range of a page-table 276 * at level @level. 277 */ 278 unsigned int xe_pt_shift(unsigned int level) 279 { 280 return GEN8_PTE_SHIFT + GEN8_PDE_SHIFT * level; 281 } 282 283 /** 284 * xe_pt_destroy() - Destroy a page-table tree. 285 * @pt: The root of the page-table tree to destroy. 286 * @flags: vm flags. Currently unused. 287 * @deferred: List head of lockless list for deferred putting. NULL for 288 * immediate putting. 289 * 290 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 291 * and finally frees @pt. TODO: Can we remove the @flags argument? 292 */ 293 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 294 { 295 int i; 296 297 if (!pt) 298 return; 299 300 XE_BUG_ON(!list_empty(&pt->bo->vmas)); 301 xe_bo_unpin(pt->bo); 302 xe_bo_put_deferred(pt->bo, deferred); 303 304 if (pt->level > 0 && pt->num_live) { 305 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 306 307 for (i = 0; i < GEN8_PDES; i++) { 308 if (xe_pt_entry(pt_dir, i)) 309 xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, 310 deferred); 311 } 312 } 313 kfree(pt); 314 } 315 316 /** 317 * xe_pt_create_scratch() - Setup a scratch memory pagetable tree for the 318 * given gt and vm. 319 * @xe: xe device. 320 * @gt: gt to set up for. 321 * @vm: vm to set up for. 322 * 323 * Sets up a pagetable tree with one page-table per level and a single 324 * leaf bo. All pagetable entries point to the single page-table or, 325 * for L0, the single bo one level below. 326 * 327 * Return: 0 on success, negative error code on error. 328 */ 329 int xe_pt_create_scratch(struct xe_device *xe, struct xe_gt *gt, 330 struct xe_vm *vm) 331 { 332 u8 id = gt->info.id; 333 int i; 334 335 vm->scratch_bo[id] = xe_bo_create(xe, gt, vm, SZ_4K, 336 ttm_bo_type_kernel, 337 XE_BO_CREATE_VRAM_IF_DGFX(gt) | 338 XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT | 339 XE_BO_CREATE_PINNED_BIT); 340 if (IS_ERR(vm->scratch_bo[id])) 341 return PTR_ERR(vm->scratch_bo[id]); 342 xe_bo_pin(vm->scratch_bo[id]); 343 344 for (i = 0; i < vm->pt_root[id]->level; i++) { 345 vm->scratch_pt[id][i] = xe_pt_create(vm, gt, i); 346 if (IS_ERR(vm->scratch_pt[id][i])) 347 return PTR_ERR(vm->scratch_pt[id][i]); 348 349 xe_pt_populate_empty(gt, vm, vm->scratch_pt[id][i]); 350 } 351 352 return 0; 353 } 354 355 /** 356 * DOC: Pagetable building 357 * 358 * Below we use the term "page-table" for both page-directories, containing 359 * pointers to lower level page-directories or page-tables, and level 0 360 * page-tables that contain only page-table-entries pointing to memory pages. 361 * 362 * When inserting an address range in an already existing page-table tree 363 * there will typically be a set of page-tables that are shared with other 364 * address ranges, and a set that are private to this address range. 365 * The set of shared page-tables can be at most two per level, 366 * and those can't be updated immediately because the entries of those 367 * page-tables may still be in use by the gpu for other mappings. Therefore 368 * when inserting entries into those, we instead stage those insertions by 369 * adding insertion data into struct xe_vm_pgtable_update structures. This 370 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 371 * added in a separate commit step. CPU-data is committed while still under the 372 * vm lock, the object lock and for userptr, the notifier lock in read mode. 373 * The GPU async data is committed either by the GPU or CPU after fulfilling 374 * relevant dependencies. 375 * For non-shared page-tables (and, in fact, for shared ones that aren't 376 * existing at the time of staging), we add the data in-place without the 377 * special update structures. This private part of the page-table tree will 378 * remain disconnected from the vm page-table tree until data is committed to 379 * the shared page tables of the vm tree in the commit phase. 380 */ 381 382 struct xe_pt_update { 383 /** @update: The update structure we're building for this parent. */ 384 struct xe_vm_pgtable_update *update; 385 /** @parent: The parent. Used to detect a parent change. */ 386 struct xe_pt *parent; 387 /** @preexisting: Whether the parent was pre-existing or allocated */ 388 bool preexisting; 389 }; 390 391 struct xe_pt_stage_bind_walk { 392 /** base: The base class. */ 393 struct xe_pt_walk base; 394 395 /* Input parameters for the walk */ 396 /** @vm: The vm we're building for. */ 397 struct xe_vm *vm; 398 /** @gt: The gt we're building for. */ 399 struct xe_gt *gt; 400 /** @cache: Desired cache level for the ptes */ 401 enum xe_cache_level cache; 402 /** @default_pte: PTE flag only template. No address is associated */ 403 u64 default_pte; 404 /** @dma_offset: DMA offset to add to the PTE. */ 405 u64 dma_offset; 406 /** 407 * @needs_64k: This address range enforces 64K alignment and 408 * granularity. 409 */ 410 bool needs_64K; 411 /** 412 * @pte_flags: Flags determining PTE setup. These are not flags 413 * encoded directly in the PTE. See @default_pte for those. 414 */ 415 u32 pte_flags; 416 417 /* Also input, but is updated during the walk*/ 418 /** @curs: The DMA address cursor. */ 419 struct xe_res_cursor *curs; 420 /** @va_curs_start: The Virtual address coresponding to @curs->start */ 421 u64 va_curs_start; 422 423 /* Output */ 424 struct xe_walk_update { 425 /** @wupd.entries: Caller provided storage. */ 426 struct xe_vm_pgtable_update *entries; 427 /** @wupd.num_used_entries: Number of update @entries used. */ 428 unsigned int num_used_entries; 429 /** @wupd.updates: Tracks the update entry at a given level */ 430 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 431 } wupd; 432 433 /* Walk state */ 434 /** 435 * @l0_end_addr: The end address of the current l0 leaf. Used for 436 * 64K granularity detection. 437 */ 438 u64 l0_end_addr; 439 /** @addr_64K: The start address of the current 64K chunk. */ 440 u64 addr_64K; 441 /** @found_64: Whether @add_64K actually points to a 64K chunk. */ 442 bool found_64K; 443 }; 444 445 static int 446 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 447 pgoff_t offset, bool alloc_entries) 448 { 449 struct xe_pt_update *upd = &wupd->updates[parent->level]; 450 struct xe_vm_pgtable_update *entry; 451 452 /* 453 * For *each level*, we could only have one active 454 * struct xt_pt_update at any one time. Once we move on to a 455 * new parent and page-directory, the old one is complete, and 456 * updates are either already stored in the build tree or in 457 * @wupd->entries 458 */ 459 if (likely(upd->parent == parent)) 460 return 0; 461 462 upd->parent = parent; 463 upd->preexisting = true; 464 465 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 466 return -EINVAL; 467 468 entry = wupd->entries + wupd->num_used_entries++; 469 upd->update = entry; 470 entry->ofs = offset; 471 entry->pt_bo = parent->bo; 472 entry->pt = parent; 473 entry->flags = 0; 474 entry->qwords = 0; 475 476 if (alloc_entries) { 477 entry->pt_entries = kmalloc_array(GEN8_PDES, 478 sizeof(*entry->pt_entries), 479 GFP_KERNEL); 480 if (!entry->pt_entries) 481 return -ENOMEM; 482 } 483 484 return 0; 485 } 486 487 /* 488 * NOTE: This is a very frequently called function so we allow ourselves 489 * to annotate (using branch prediction hints) the fastpath of updating a 490 * non-pre-existing pagetable with leaf ptes. 491 */ 492 static int 493 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 494 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 495 { 496 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 497 struct xe_pt_update *child_upd = xe_child ? 498 &xe_walk->wupd.updates[xe_child->level] : NULL; 499 int ret; 500 501 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 502 if (unlikely(ret)) 503 return ret; 504 505 /* 506 * Register this new pagetable so that it won't be recognized as 507 * a shared pagetable by a subsequent insertion. 508 */ 509 if (unlikely(child_upd)) { 510 child_upd->update = NULL; 511 child_upd->parent = xe_child; 512 child_upd->preexisting = false; 513 } 514 515 if (likely(!upd->preexisting)) { 516 /* Continue building a non-connected subtree. */ 517 struct iosys_map *map = &parent->bo->vmap; 518 519 if (unlikely(xe_child)) 520 parent->base.dir->entries[offset] = &xe_child->base; 521 522 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 523 parent->num_live++; 524 } else { 525 /* Shared pt. Stage update. */ 526 unsigned int idx; 527 struct xe_vm_pgtable_update *entry = upd->update; 528 529 idx = offset - entry->ofs; 530 entry->pt_entries[idx].pt = xe_child; 531 entry->pt_entries[idx].pte = pte; 532 entry->qwords++; 533 } 534 535 return 0; 536 } 537 538 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 539 struct xe_pt_stage_bind_walk *xe_walk) 540 { 541 u64 size, dma; 542 543 /* Does the virtual range requested cover a huge pte? */ 544 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 545 return false; 546 547 /* Does the DMA segment cover the whole pte? */ 548 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 549 return false; 550 551 /* Is the DMA address huge PTE size aligned? */ 552 size = next - addr; 553 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 554 555 return IS_ALIGNED(dma, size); 556 } 557 558 /* 559 * Scan the requested mapping to check whether it can be done entirely 560 * with 64K PTEs. 561 */ 562 static bool 563 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 564 { 565 struct xe_res_cursor curs = *xe_walk->curs; 566 567 if (!IS_ALIGNED(addr, SZ_64K)) 568 return false; 569 570 if (next > xe_walk->l0_end_addr) 571 return false; 572 573 xe_res_next(&curs, addr - xe_walk->va_curs_start); 574 for (; addr < next; addr += SZ_64K) { 575 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 576 return false; 577 578 xe_res_next(&curs, SZ_64K); 579 } 580 581 return addr == next; 582 } 583 584 /* 585 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 586 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 587 * device to the PTE. 588 * This function determines whether the address is part of such a 589 * segment. For VRAM in normal pagetables, this is strictly necessary on 590 * some devices. 591 */ 592 static bool 593 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 594 { 595 /* Address is within an already found 64k region */ 596 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 597 return true; 598 599 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 600 xe_walk->addr_64K = addr; 601 602 return xe_walk->found_64K; 603 } 604 605 static int 606 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 607 unsigned int level, u64 addr, u64 next, 608 struct xe_ptw **child, 609 enum page_walk_action *action, 610 struct xe_pt_walk *walk) 611 { 612 struct xe_pt_stage_bind_walk *xe_walk = 613 container_of(walk, typeof(*xe_walk), base); 614 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 615 struct xe_pt *xe_child; 616 bool covers; 617 int ret = 0; 618 u64 pte; 619 620 /* Is this a leaf entry ?*/ 621 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 622 struct xe_res_cursor *curs = xe_walk->curs; 623 624 XE_WARN_ON(xe_walk->va_curs_start != addr); 625 626 pte = __gen8_pte_encode(xe_res_dma(curs) + xe_walk->dma_offset, 627 xe_walk->cache, xe_walk->pte_flags, 628 level); 629 pte |= xe_walk->default_pte; 630 631 /* 632 * Set the GEN12_PTE_PS64 hint if possible, otherwise if 633 * this device *requires* 64K PTE size for VRAM, fail. 634 */ 635 if (level == 0 && !xe_parent->is_compact) { 636 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) 637 pte |= GEN12_PTE_PS64; 638 else if (XE_WARN_ON(xe_walk->needs_64K)) 639 return -EINVAL; 640 } 641 642 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 643 if (unlikely(ret)) 644 return ret; 645 646 xe_res_next(curs, next - addr); 647 xe_walk->va_curs_start = next; 648 *action = ACTION_CONTINUE; 649 650 return ret; 651 } 652 653 /* 654 * Descending to lower level. Determine if we need to allocate a 655 * new page table or -directory, which we do if there is no 656 * previous one or there is one we can completely replace. 657 */ 658 if (level == 1) { 659 walk->shifts = xe_normal_pt_shifts; 660 xe_walk->l0_end_addr = next; 661 } 662 663 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 664 if (covers || !*child) { 665 u64 flags = 0; 666 667 xe_child = xe_pt_create(xe_walk->vm, xe_walk->gt, level - 1); 668 if (IS_ERR(xe_child)) 669 return PTR_ERR(xe_child); 670 671 xe_pt_set_addr(xe_child, 672 round_down(addr, 1ull << walk->shifts[level])); 673 674 if (!covers) 675 xe_pt_populate_empty(xe_walk->gt, xe_walk->vm, xe_child); 676 677 *child = &xe_child->base; 678 679 /* 680 * Prefer the compact pagetable layout for L0 if possible. 681 * TODO: Suballocate the pt bo to avoid wasting a lot of 682 * memory. 683 */ 684 if (GRAPHICS_VERx100(xe_walk->gt->xe) >= 1250 && level == 1 && 685 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 686 walk->shifts = xe_compact_pt_shifts; 687 flags |= GEN12_PDE_64K; 688 xe_child->is_compact = true; 689 } 690 691 pte = gen8_pde_encode(xe_child->bo, 0, xe_walk->cache) | flags; 692 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 693 pte); 694 } 695 696 *action = ACTION_SUBTREE; 697 return ret; 698 } 699 700 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 701 .pt_entry = xe_pt_stage_bind_entry, 702 }; 703 704 /** 705 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 706 * range. 707 * @gt: The gt we're building for. 708 * @vma: The vma indicating the address range. 709 * @entries: Storage for the update entries used for connecting the tree to 710 * the main tree at commit time. 711 * @num_entries: On output contains the number of @entries used. 712 * 713 * This function builds a disconnected page-table tree for a given address 714 * range. The tree is connected to the main vm tree for the gpu using 715 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 716 * The function builds xe_vm_pgtable_update structures for already existing 717 * shared page-tables, and non-existing shared and non-shared page-tables 718 * are built and populated directly. 719 * 720 * Return 0 on success, negative error code on error. 721 */ 722 static int 723 xe_pt_stage_bind(struct xe_gt *gt, struct xe_vma *vma, 724 struct xe_vm_pgtable_update *entries, u32 *num_entries) 725 { 726 struct xe_bo *bo = vma->bo; 727 bool is_vram = !xe_vma_is_userptr(vma) && bo && xe_bo_is_vram(bo); 728 struct xe_res_cursor curs; 729 struct xe_pt_stage_bind_walk xe_walk = { 730 .base = { 731 .ops = &xe_pt_stage_bind_ops, 732 .shifts = xe_normal_pt_shifts, 733 .max_level = XE_PT_HIGHEST_LEVEL, 734 }, 735 .vm = vma->vm, 736 .gt = gt, 737 .curs = &curs, 738 .va_curs_start = vma->start, 739 .pte_flags = vma->pte_flags, 740 .wupd.entries = entries, 741 .needs_64K = (vma->vm->flags & XE_VM_FLAGS_64K) && is_vram, 742 }; 743 struct xe_pt *pt = vma->vm->pt_root[gt->info.id]; 744 int ret; 745 746 if (is_vram) { 747 xe_walk.default_pte = GEN12_PPGTT_PTE_LM; 748 if (vma && vma->use_atomic_access_pte_bit) 749 xe_walk.default_pte |= GEN12_USM_PPGTT_PTE_AE; 750 xe_walk.dma_offset = gt->mem.vram.io_start - 751 gt_to_xe(gt)->mem.vram.io_start; 752 xe_walk.cache = XE_CACHE_WB; 753 } else { 754 if (!xe_vma_is_userptr(vma) && bo->flags & XE_BO_SCANOUT_BIT) 755 xe_walk.cache = XE_CACHE_WT; 756 else 757 xe_walk.cache = XE_CACHE_WB; 758 } 759 760 xe_bo_assert_held(bo); 761 if (xe_vma_is_userptr(vma)) 762 xe_res_first_sg(vma->userptr.sg, 0, vma->end - vma->start + 1, 763 &curs); 764 else if (xe_bo_is_vram(bo)) 765 xe_res_first(bo->ttm.resource, vma->bo_offset, 766 vma->end - vma->start + 1, &curs); 767 else 768 xe_res_first_sg(xe_bo_get_sg(bo), vma->bo_offset, 769 vma->end - vma->start + 1, &curs); 770 771 ret = xe_pt_walk_range(&pt->base, pt->level, vma->start, vma->end + 1, 772 &xe_walk.base); 773 774 *num_entries = xe_walk.wupd.num_used_entries; 775 return ret; 776 } 777 778 /** 779 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 780 * shared pagetable. 781 * @addr: The start address within the non-shared pagetable. 782 * @end: The end address within the non-shared pagetable. 783 * @level: The level of the non-shared pagetable. 784 * @walk: Walk info. The function adjusts the walk action. 785 * @action: next action to perform (see enum page_walk_action) 786 * @offset: Ignored on input, First non-shared entry on output. 787 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 788 * 789 * A non-shared page-table has some entries that belong to the address range 790 * and others that don't. This function determines the entries that belong 791 * fully to the address range. Depending on level, some entries may 792 * partially belong to the address range (that can't happen at level 0). 793 * The function detects that and adjust those offsets to not include those 794 * partial entries. Iff it does detect partial entries, we know that there must 795 * be shared page tables also at lower levels, so it adjusts the walk action 796 * accordingly. 797 * 798 * Return: true if there were non-shared entries, false otherwise. 799 */ 800 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 801 struct xe_pt_walk *walk, 802 enum page_walk_action *action, 803 pgoff_t *offset, pgoff_t *end_offset) 804 { 805 u64 size = 1ull << walk->shifts[level]; 806 807 *offset = xe_pt_offset(addr, level, walk); 808 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 809 810 if (!level) 811 return true; 812 813 /* 814 * If addr or next are not size aligned, there are shared pts at lower 815 * level, so in that case traverse down the subtree 816 */ 817 *action = ACTION_CONTINUE; 818 if (!IS_ALIGNED(addr, size)) { 819 *action = ACTION_SUBTREE; 820 (*offset)++; 821 } 822 823 if (!IS_ALIGNED(end, size)) { 824 *action = ACTION_SUBTREE; 825 (*end_offset)--; 826 } 827 828 return *end_offset > *offset; 829 } 830 831 struct xe_pt_zap_ptes_walk { 832 /** @base: The walk base-class */ 833 struct xe_pt_walk base; 834 835 /* Input parameters for the walk */ 836 /** @gt: The gt we're building for */ 837 struct xe_gt *gt; 838 839 /* Output */ 840 /** @needs_invalidate: Whether we need to invalidate TLB*/ 841 bool needs_invalidate; 842 }; 843 844 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 845 unsigned int level, u64 addr, u64 next, 846 struct xe_ptw **child, 847 enum page_walk_action *action, 848 struct xe_pt_walk *walk) 849 { 850 struct xe_pt_zap_ptes_walk *xe_walk = 851 container_of(walk, typeof(*xe_walk), base); 852 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 853 pgoff_t end_offset; 854 855 XE_BUG_ON(!*child); 856 XE_BUG_ON(!level && xe_child->is_compact); 857 858 /* 859 * Note that we're called from an entry callback, and we're dealing 860 * with the child of that entry rather than the parent, so need to 861 * adjust level down. 862 */ 863 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 864 &end_offset)) { 865 xe_map_memset(gt_to_xe(xe_walk->gt), &xe_child->bo->vmap, 866 offset * sizeof(u64), 0, 867 (end_offset - offset) * sizeof(u64)); 868 xe_walk->needs_invalidate = true; 869 } 870 871 return 0; 872 } 873 874 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 875 .pt_entry = xe_pt_zap_ptes_entry, 876 }; 877 878 /** 879 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 880 * @gt: The gt we're zapping for. 881 * @vma: GPU VMA detailing address range. 882 * 883 * Eviction and Userptr invalidation needs to be able to zap the 884 * gpu ptes of a given address range in pagefaulting mode. 885 * In order to be able to do that, that function needs access to the shared 886 * page-table entrieaso it can either clear the leaf PTEs or 887 * clear the pointers to lower-level page-tables. The caller is required 888 * to hold the necessary locks to ensure neither the page-table connectivity 889 * nor the page-table entries of the range is updated from under us. 890 * 891 * Return: Whether ptes were actually updated and a TLB invalidation is 892 * required. 893 */ 894 bool xe_pt_zap_ptes(struct xe_gt *gt, struct xe_vma *vma) 895 { 896 struct xe_pt_zap_ptes_walk xe_walk = { 897 .base = { 898 .ops = &xe_pt_zap_ptes_ops, 899 .shifts = xe_normal_pt_shifts, 900 .max_level = XE_PT_HIGHEST_LEVEL, 901 }, 902 .gt = gt, 903 }; 904 struct xe_pt *pt = vma->vm->pt_root[gt->info.id]; 905 906 if (!(vma->gt_present & BIT(gt->info.id))) 907 return false; 908 909 (void)xe_pt_walk_shared(&pt->base, pt->level, vma->start, vma->end + 1, 910 &xe_walk.base); 911 912 return xe_walk.needs_invalidate; 913 } 914 915 static void 916 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_gt *gt, 917 struct iosys_map *map, void *data, 918 u32 qword_ofs, u32 num_qwords, 919 const struct xe_vm_pgtable_update *update) 920 { 921 struct xe_pt_entry *ptes = update->pt_entries; 922 u64 *ptr = data; 923 u32 i; 924 925 XE_BUG_ON(xe_gt_is_media_type(gt)); 926 927 for (i = 0; i < num_qwords; i++) { 928 if (map) 929 xe_map_wr(gt_to_xe(gt), map, (qword_ofs + i) * 930 sizeof(u64), u64, ptes[i].pte); 931 else 932 ptr[i] = ptes[i].pte; 933 } 934 } 935 936 static void xe_pt_abort_bind(struct xe_vma *vma, 937 struct xe_vm_pgtable_update *entries, 938 u32 num_entries) 939 { 940 u32 i, j; 941 942 for (i = 0; i < num_entries; i++) { 943 if (!entries[i].pt_entries) 944 continue; 945 946 for (j = 0; j < entries[i].qwords; j++) 947 xe_pt_destroy(entries[i].pt_entries[j].pt, vma->vm->flags, NULL); 948 kfree(entries[i].pt_entries); 949 } 950 } 951 952 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 953 { 954 struct xe_vm *vm = vma->vm; 955 956 lockdep_assert_held(&vm->lock); 957 958 if (xe_vma_is_userptr(vma)) 959 lockdep_assert_held_read(&vm->userptr.notifier_lock); 960 else 961 dma_resv_assert_held(vma->bo->ttm.base.resv); 962 963 dma_resv_assert_held(&vm->resv); 964 } 965 966 static void xe_pt_commit_bind(struct xe_vma *vma, 967 struct xe_vm_pgtable_update *entries, 968 u32 num_entries, bool rebind, 969 struct llist_head *deferred) 970 { 971 u32 i, j; 972 973 xe_pt_commit_locks_assert(vma); 974 975 for (i = 0; i < num_entries; i++) { 976 struct xe_pt *pt = entries[i].pt; 977 struct xe_pt_dir *pt_dir; 978 979 if (!rebind) 980 pt->num_live += entries[i].qwords; 981 982 if (!pt->level) { 983 kfree(entries[i].pt_entries); 984 continue; 985 } 986 987 pt_dir = as_xe_pt_dir(pt); 988 for (j = 0; j < entries[i].qwords; j++) { 989 u32 j_ = j + entries[i].ofs; 990 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 991 992 if (xe_pt_entry(pt_dir, j_)) 993 xe_pt_destroy(xe_pt_entry(pt_dir, j_), 994 vma->vm->flags, deferred); 995 996 pt_dir->dir.entries[j_] = &newpte->base; 997 } 998 kfree(entries[i].pt_entries); 999 } 1000 } 1001 1002 static int 1003 xe_pt_prepare_bind(struct xe_gt *gt, struct xe_vma *vma, 1004 struct xe_vm_pgtable_update *entries, u32 *num_entries, 1005 bool rebind) 1006 { 1007 int err; 1008 1009 *num_entries = 0; 1010 err = xe_pt_stage_bind(gt, vma, entries, num_entries); 1011 if (!err) 1012 BUG_ON(!*num_entries); 1013 else /* abort! */ 1014 xe_pt_abort_bind(vma, entries, *num_entries); 1015 1016 return err; 1017 } 1018 1019 static void xe_vm_dbg_print_entries(struct xe_device *xe, 1020 const struct xe_vm_pgtable_update *entries, 1021 unsigned int num_entries) 1022 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1023 { 1024 unsigned int i; 1025 1026 vm_dbg(&xe->drm, "%u entries to update\n", num_entries); 1027 for (i = 0; i < num_entries; i++) { 1028 const struct xe_vm_pgtable_update *entry = &entries[i]; 1029 struct xe_pt *xe_pt = entry->pt; 1030 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1031 u64 end; 1032 u64 start; 1033 1034 XE_BUG_ON(entry->pt->is_compact); 1035 start = entry->ofs * page_size; 1036 end = start + page_size * entry->qwords; 1037 vm_dbg(&xe->drm, 1038 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1039 i, xe_pt->level, entry->ofs, entry->qwords, 1040 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1041 } 1042 } 1043 #else 1044 {} 1045 #endif 1046 1047 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1048 1049 static int xe_pt_userptr_inject_eagain(struct xe_vma *vma) 1050 { 1051 u32 divisor = vma->userptr.divisor ? vma->userptr.divisor : 2; 1052 static u32 count; 1053 1054 if (count++ % divisor == divisor - 1) { 1055 struct xe_vm *vm = vma->vm; 1056 1057 vma->userptr.divisor = divisor << 1; 1058 spin_lock(&vm->userptr.invalidated_lock); 1059 list_move_tail(&vma->userptr.invalidate_link, 1060 &vm->userptr.invalidated); 1061 spin_unlock(&vm->userptr.invalidated_lock); 1062 return true; 1063 } 1064 1065 return false; 1066 } 1067 1068 #else 1069 1070 static bool xe_pt_userptr_inject_eagain(struct xe_vma *vma) 1071 { 1072 return false; 1073 } 1074 1075 #endif 1076 1077 /** 1078 * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks 1079 * @base: Base we derive from. 1080 * @bind: Whether this is a bind or an unbind operation. A bind operation 1081 * makes the pre-commit callback error with -EAGAIN if it detects a 1082 * pending invalidation. 1083 * @locked: Whether the pre-commit callback locked the userptr notifier lock 1084 * and it needs unlocking. 1085 */ 1086 struct xe_pt_migrate_pt_update { 1087 struct xe_migrate_pt_update base; 1088 bool bind; 1089 bool locked; 1090 }; 1091 1092 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1093 { 1094 struct xe_pt_migrate_pt_update *userptr_update = 1095 container_of(pt_update, typeof(*userptr_update), base); 1096 struct xe_vma *vma = pt_update->vma; 1097 unsigned long notifier_seq = vma->userptr.notifier_seq; 1098 struct xe_vm *vm = vma->vm; 1099 1100 userptr_update->locked = false; 1101 1102 /* 1103 * Wait until nobody is running the invalidation notifier, and 1104 * since we're exiting the loop holding the notifier lock, 1105 * nobody can proceed invalidating either. 1106 * 1107 * Note that we don't update the vma->userptr.notifier_seq since 1108 * we don't update the userptr pages. 1109 */ 1110 do { 1111 down_read(&vm->userptr.notifier_lock); 1112 if (!mmu_interval_read_retry(&vma->userptr.notifier, 1113 notifier_seq)) 1114 break; 1115 1116 up_read(&vm->userptr.notifier_lock); 1117 1118 if (userptr_update->bind) 1119 return -EAGAIN; 1120 1121 notifier_seq = mmu_interval_read_begin(&vma->userptr.notifier); 1122 } while (true); 1123 1124 /* Inject errors to test_whether they are handled correctly */ 1125 if (userptr_update->bind && xe_pt_userptr_inject_eagain(vma)) { 1126 up_read(&vm->userptr.notifier_lock); 1127 return -EAGAIN; 1128 } 1129 1130 userptr_update->locked = true; 1131 1132 return 0; 1133 } 1134 1135 static const struct xe_migrate_pt_update_ops bind_ops = { 1136 .populate = xe_vm_populate_pgtable, 1137 }; 1138 1139 static const struct xe_migrate_pt_update_ops userptr_bind_ops = { 1140 .populate = xe_vm_populate_pgtable, 1141 .pre_commit = xe_pt_userptr_pre_commit, 1142 }; 1143 1144 /** 1145 * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma 1146 * address range. 1147 * @gt: The gt to bind for. 1148 * @vma: The vma to bind. 1149 * @e: The engine with which to do pipelined page-table updates. 1150 * @syncs: Entries to sync on before binding the built tree to the live vm tree. 1151 * @num_syncs: Number of @sync entries. 1152 * @rebind: Whether we're rebinding this vma to the same address range without 1153 * an unbind in-between. 1154 * 1155 * This function builds a page-table tree (see xe_pt_stage_bind() for more 1156 * information on page-table building), and the xe_vm_pgtable_update entries 1157 * abstracting the operations needed to attach it to the main vm tree. It 1158 * then takes the relevant locks and updates the metadata side of the main 1159 * vm tree and submits the operations for pipelined attachment of the 1160 * gpu page-table to the vm main tree, (which can be done either by the 1161 * cpu and the GPU). 1162 * 1163 * Return: A valid dma-fence representing the pipelined attachment operation 1164 * on success, an error pointer on error. 1165 */ 1166 struct dma_fence * 1167 __xe_pt_bind_vma(struct xe_gt *gt, struct xe_vma *vma, struct xe_engine *e, 1168 struct xe_sync_entry *syncs, u32 num_syncs, 1169 bool rebind) 1170 { 1171 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1172 struct xe_pt_migrate_pt_update bind_pt_update = { 1173 .base = { 1174 .ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops, 1175 .vma = vma, 1176 }, 1177 .bind = true, 1178 }; 1179 struct xe_vm *vm = vma->vm; 1180 u32 num_entries; 1181 struct dma_fence *fence; 1182 int err; 1183 1184 bind_pt_update.locked = false; 1185 xe_bo_assert_held(vma->bo); 1186 xe_vm_assert_held(vm); 1187 XE_BUG_ON(xe_gt_is_media_type(gt)); 1188 1189 vm_dbg(&vma->vm->xe->drm, 1190 "Preparing bind, with range [%llx...%llx) engine %p.\n", 1191 vma->start, vma->end, e); 1192 1193 err = xe_pt_prepare_bind(gt, vma, entries, &num_entries, rebind); 1194 if (err) 1195 goto err; 1196 XE_BUG_ON(num_entries > ARRAY_SIZE(entries)); 1197 1198 xe_vm_dbg_print_entries(gt_to_xe(gt), entries, num_entries); 1199 1200 fence = xe_migrate_update_pgtables(gt->migrate, 1201 vm, vma->bo, 1202 e ? e : vm->eng[gt->info.id], 1203 entries, num_entries, 1204 syncs, num_syncs, 1205 &bind_pt_update.base); 1206 if (!IS_ERR(fence)) { 1207 LLIST_HEAD(deferred); 1208 1209 /* add shared fence now for pagetable delayed destroy */ 1210 dma_resv_add_fence(&vm->resv, fence, !rebind && 1211 vma->last_munmap_rebind ? 1212 DMA_RESV_USAGE_KERNEL : 1213 DMA_RESV_USAGE_BOOKKEEP); 1214 1215 if (!xe_vma_is_userptr(vma) && !vma->bo->vm) 1216 dma_resv_add_fence(vma->bo->ttm.base.resv, fence, 1217 DMA_RESV_USAGE_BOOKKEEP); 1218 xe_pt_commit_bind(vma, entries, num_entries, rebind, 1219 bind_pt_update.locked ? &deferred : NULL); 1220 1221 /* This vma is live (again?) now */ 1222 vma->gt_present |= BIT(gt->info.id); 1223 1224 if (bind_pt_update.locked) { 1225 vma->userptr.initial_bind = true; 1226 up_read(&vm->userptr.notifier_lock); 1227 xe_bo_put_commit(&deferred); 1228 } 1229 if (!rebind && vma->last_munmap_rebind && 1230 xe_vm_in_compute_mode(vm)) 1231 queue_work(vm->xe->ordered_wq, 1232 &vm->preempt.rebind_work); 1233 } else { 1234 if (bind_pt_update.locked) 1235 up_read(&vm->userptr.notifier_lock); 1236 xe_pt_abort_bind(vma, entries, num_entries); 1237 } 1238 1239 return fence; 1240 1241 err: 1242 return ERR_PTR(err); 1243 } 1244 1245 struct xe_pt_stage_unbind_walk { 1246 /** @base: The pagewalk base-class. */ 1247 struct xe_pt_walk base; 1248 1249 /* Input parameters for the walk */ 1250 /** @gt: The gt we're unbinding from. */ 1251 struct xe_gt *gt; 1252 1253 /** 1254 * @modified_start: Walk range start, modified to include any 1255 * shared pagetables that we're the only user of and can thus 1256 * treat as private. 1257 */ 1258 u64 modified_start; 1259 /** @modified_end: Walk range start, modified like @modified_start. */ 1260 u64 modified_end; 1261 1262 /* Output */ 1263 /* @wupd: Structure to track the page-table updates we're building */ 1264 struct xe_walk_update wupd; 1265 }; 1266 1267 /* 1268 * Check whether this range is the only one populating this pagetable, 1269 * and in that case, update the walk range checks so that higher levels don't 1270 * view us as a shared pagetable. 1271 */ 1272 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1273 const struct xe_pt *child, 1274 enum page_walk_action *action, 1275 struct xe_pt_walk *walk) 1276 { 1277 struct xe_pt_stage_unbind_walk *xe_walk = 1278 container_of(walk, typeof(*xe_walk), base); 1279 unsigned int shift = walk->shifts[level]; 1280 u64 size = 1ull << shift; 1281 1282 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1283 ((next - addr) >> shift) == child->num_live) { 1284 u64 size = 1ull << walk->shifts[level + 1]; 1285 1286 *action = ACTION_CONTINUE; 1287 1288 if (xe_walk->modified_start >= addr) 1289 xe_walk->modified_start = round_down(addr, size); 1290 if (xe_walk->modified_end <= next) 1291 xe_walk->modified_end = round_up(next, size); 1292 1293 return true; 1294 } 1295 1296 return false; 1297 } 1298 1299 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1300 unsigned int level, u64 addr, u64 next, 1301 struct xe_ptw **child, 1302 enum page_walk_action *action, 1303 struct xe_pt_walk *walk) 1304 { 1305 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1306 1307 XE_BUG_ON(!*child); 1308 XE_BUG_ON(!level && xe_child->is_compact); 1309 1310 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1311 1312 return 0; 1313 } 1314 1315 static int 1316 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1317 unsigned int level, u64 addr, u64 next, 1318 struct xe_ptw **child, 1319 enum page_walk_action *action, 1320 struct xe_pt_walk *walk) 1321 { 1322 struct xe_pt_stage_unbind_walk *xe_walk = 1323 container_of(walk, typeof(*xe_walk), base); 1324 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1325 pgoff_t end_offset; 1326 u64 size = 1ull << walk->shifts[--level]; 1327 1328 if (!IS_ALIGNED(addr, size)) 1329 addr = xe_walk->modified_start; 1330 if (!IS_ALIGNED(next, size)) 1331 next = xe_walk->modified_end; 1332 1333 /* Parent == *child is the root pt. Don't kill it. */ 1334 if (parent != *child && 1335 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1336 return 0; 1337 1338 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1339 &end_offset)) 1340 return 0; 1341 1342 (void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false); 1343 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1344 1345 return 0; 1346 } 1347 1348 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1349 .pt_entry = xe_pt_stage_unbind_entry, 1350 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1351 }; 1352 1353 /** 1354 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1355 * operation 1356 * @gt: The gt we're unbinding for. 1357 * @vma: The vma we're unbinding. 1358 * @entries: Caller-provided storage for the update structures. 1359 * 1360 * Builds page-table update structures for an unbind operation. The function 1361 * will attempt to remove all page-tables that we're the only user 1362 * of, and for that to work, the unbind operation must be committed in the 1363 * same critical section that blocks racing binds to the same page-table tree. 1364 * 1365 * Return: The number of entries used. 1366 */ 1367 static unsigned int xe_pt_stage_unbind(struct xe_gt *gt, struct xe_vma *vma, 1368 struct xe_vm_pgtable_update *entries) 1369 { 1370 struct xe_pt_stage_unbind_walk xe_walk = { 1371 .base = { 1372 .ops = &xe_pt_stage_unbind_ops, 1373 .shifts = xe_normal_pt_shifts, 1374 .max_level = XE_PT_HIGHEST_LEVEL, 1375 }, 1376 .gt = gt, 1377 .modified_start = vma->start, 1378 .modified_end = vma->end + 1, 1379 .wupd.entries = entries, 1380 }; 1381 struct xe_pt *pt = vma->vm->pt_root[gt->info.id]; 1382 1383 (void)xe_pt_walk_shared(&pt->base, pt->level, vma->start, vma->end + 1, 1384 &xe_walk.base); 1385 1386 return xe_walk.wupd.num_used_entries; 1387 } 1388 1389 static void 1390 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1391 struct xe_gt *gt, struct iosys_map *map, 1392 void *ptr, u32 qword_ofs, u32 num_qwords, 1393 const struct xe_vm_pgtable_update *update) 1394 { 1395 struct xe_vma *vma = pt_update->vma; 1396 u64 empty = __xe_pt_empty_pte(gt, vma->vm, update->pt->level); 1397 int i; 1398 1399 XE_BUG_ON(xe_gt_is_media_type(gt)); 1400 1401 if (map && map->is_iomem) 1402 for (i = 0; i < num_qwords; ++i) 1403 xe_map_wr(gt_to_xe(gt), map, (qword_ofs + i) * 1404 sizeof(u64), u64, empty); 1405 else if (map) 1406 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1407 num_qwords); 1408 else 1409 memset64(ptr, empty, num_qwords); 1410 } 1411 1412 static void 1413 xe_pt_commit_unbind(struct xe_vma *vma, 1414 struct xe_vm_pgtable_update *entries, u32 num_entries, 1415 struct llist_head *deferred) 1416 { 1417 u32 j; 1418 1419 xe_pt_commit_locks_assert(vma); 1420 1421 for (j = 0; j < num_entries; ++j) { 1422 struct xe_vm_pgtable_update *entry = &entries[j]; 1423 struct xe_pt *pt = entry->pt; 1424 1425 pt->num_live -= entry->qwords; 1426 if (pt->level) { 1427 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1428 u32 i; 1429 1430 for (i = entry->ofs; i < entry->ofs + entry->qwords; 1431 i++) { 1432 if (xe_pt_entry(pt_dir, i)) 1433 xe_pt_destroy(xe_pt_entry(pt_dir, i), 1434 vma->vm->flags, deferred); 1435 1436 pt_dir->dir.entries[i] = NULL; 1437 } 1438 } 1439 } 1440 } 1441 1442 static const struct xe_migrate_pt_update_ops unbind_ops = { 1443 .populate = xe_migrate_clear_pgtable_callback, 1444 }; 1445 1446 static const struct xe_migrate_pt_update_ops userptr_unbind_ops = { 1447 .populate = xe_migrate_clear_pgtable_callback, 1448 .pre_commit = xe_pt_userptr_pre_commit, 1449 }; 1450 1451 /** 1452 * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma 1453 * address range. 1454 * @gt: The gt to unbind for. 1455 * @vma: The vma to unbind. 1456 * @e: The engine with which to do pipelined page-table updates. 1457 * @syncs: Entries to sync on before disconnecting the tree to be destroyed. 1458 * @num_syncs: Number of @sync entries. 1459 * 1460 * This function builds a the xe_vm_pgtable_update entries abstracting the 1461 * operations needed to detach the page-table tree to be destroyed from the 1462 * man vm tree. 1463 * It then takes the relevant locks and submits the operations for 1464 * pipelined detachment of the gpu page-table from the vm main tree, 1465 * (which can be done either by the cpu and the GPU), Finally it frees the 1466 * detached page-table tree. 1467 * 1468 * Return: A valid dma-fence representing the pipelined detachment operation 1469 * on success, an error pointer on error. 1470 */ 1471 struct dma_fence * 1472 __xe_pt_unbind_vma(struct xe_gt *gt, struct xe_vma *vma, struct xe_engine *e, 1473 struct xe_sync_entry *syncs, u32 num_syncs) 1474 { 1475 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1476 struct xe_pt_migrate_pt_update unbind_pt_update = { 1477 .base = { 1478 .ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops : 1479 &unbind_ops, 1480 .vma = vma, 1481 }, 1482 }; 1483 struct xe_vm *vm = vma->vm; 1484 u32 num_entries; 1485 struct dma_fence *fence = NULL; 1486 LLIST_HEAD(deferred); 1487 1488 xe_bo_assert_held(vma->bo); 1489 xe_vm_assert_held(vm); 1490 XE_BUG_ON(xe_gt_is_media_type(gt)); 1491 1492 vm_dbg(&vma->vm->xe->drm, 1493 "Preparing unbind, with range [%llx...%llx) engine %p.\n", 1494 vma->start, vma->end, e); 1495 1496 num_entries = xe_pt_stage_unbind(gt, vma, entries); 1497 XE_BUG_ON(num_entries > ARRAY_SIZE(entries)); 1498 1499 xe_vm_dbg_print_entries(gt_to_xe(gt), entries, num_entries); 1500 1501 /* 1502 * Even if we were already evicted and unbind to destroy, we need to 1503 * clear again here. The eviction may have updated pagetables at a 1504 * lower level, because it needs to be more conservative. 1505 */ 1506 fence = xe_migrate_update_pgtables(gt->migrate, 1507 vm, NULL, e ? e : 1508 vm->eng[gt->info.id], 1509 entries, num_entries, 1510 syncs, num_syncs, 1511 &unbind_pt_update.base); 1512 if (!IS_ERR(fence)) { 1513 /* add shared fence now for pagetable delayed destroy */ 1514 dma_resv_add_fence(&vm->resv, fence, 1515 DMA_RESV_USAGE_BOOKKEEP); 1516 1517 /* This fence will be installed by caller when doing eviction */ 1518 if (!xe_vma_is_userptr(vma) && !vma->bo->vm) 1519 dma_resv_add_fence(vma->bo->ttm.base.resv, fence, 1520 DMA_RESV_USAGE_BOOKKEEP); 1521 xe_pt_commit_unbind(vma, entries, num_entries, 1522 unbind_pt_update.locked ? &deferred : NULL); 1523 vma->gt_present &= ~BIT(gt->info.id); 1524 } 1525 1526 if (!vma->gt_present) 1527 list_del_init(&vma->rebind_link); 1528 1529 if (unbind_pt_update.locked) { 1530 XE_WARN_ON(!xe_vma_is_userptr(vma)); 1531 1532 if (!vma->gt_present) { 1533 spin_lock(&vm->userptr.invalidated_lock); 1534 list_del_init(&vma->userptr.invalidate_link); 1535 spin_unlock(&vm->userptr.invalidated_lock); 1536 } 1537 up_read(&vm->userptr.notifier_lock); 1538 xe_bo_put_commit(&deferred); 1539 } 1540 1541 return fence; 1542 } 1543