1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_pt.h" 7 8 #include "xe_bo.h" 9 #include "xe_device.h" 10 #include "xe_drm_client.h" 11 #include "xe_gt.h" 12 #include "xe_gt_tlb_invalidation.h" 13 #include "xe_migrate.h" 14 #include "xe_pt_types.h" 15 #include "xe_pt_walk.h" 16 #include "xe_res_cursor.h" 17 #include "xe_trace.h" 18 #include "xe_ttm_stolen_mgr.h" 19 #include "xe_vm.h" 20 21 struct xe_pt_dir { 22 struct xe_pt pt; 23 /** @children: Array of page-table child nodes */ 24 struct xe_ptw *children[XE_PDES]; 25 }; 26 27 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 28 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 29 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 30 #else 31 #define xe_pt_set_addr(__xe_pt, __addr) 32 #define xe_pt_addr(__xe_pt) 0ull 33 #endif 34 35 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 36 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 37 38 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 39 40 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 41 { 42 return container_of(pt, struct xe_pt_dir, pt); 43 } 44 45 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) 46 { 47 return container_of(pt_dir->children[index], struct xe_pt, base); 48 } 49 50 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 51 unsigned int level) 52 { 53 struct xe_device *xe = tile_to_xe(tile); 54 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 55 u8 id = tile->id; 56 57 if (!xe_vm_has_scratch(vm)) 58 return 0; 59 60 if (level > MAX_HUGEPTE_LEVEL) 61 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 62 0, pat_index); 63 64 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 65 XE_PTE_NULL; 66 } 67 68 static void xe_pt_free(struct xe_pt *pt) 69 { 70 if (pt->level) 71 kfree(as_xe_pt_dir(pt)); 72 else 73 kfree(pt); 74 } 75 76 /** 77 * xe_pt_create() - Create a page-table. 78 * @vm: The vm to create for. 79 * @tile: The tile to create for. 80 * @level: The page-table level. 81 * 82 * Allocate and initialize a single struct xe_pt metadata structure. Also 83 * create the corresponding page-table bo, but don't initialize it. If the 84 * level is grater than zero, then it's assumed to be a directory page- 85 * table and the directory structure is also allocated and initialized to 86 * NULL pointers. 87 * 88 * Return: A valid struct xe_pt pointer on success, Pointer error code on 89 * error. 90 */ 91 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 92 unsigned int level) 93 { 94 struct xe_pt *pt; 95 struct xe_bo *bo; 96 int err; 97 98 if (level) { 99 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 100 101 pt = (dir) ? &dir->pt : NULL; 102 } else { 103 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 104 } 105 if (!pt) 106 return ERR_PTR(-ENOMEM); 107 108 pt->level = level; 109 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 110 ttm_bo_type_kernel, 111 XE_BO_CREATE_VRAM_IF_DGFX(tile) | 112 XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT | 113 XE_BO_CREATE_PINNED_BIT | 114 XE_BO_CREATE_NO_RESV_EVICT | 115 XE_BO_PAGETABLE); 116 if (IS_ERR(bo)) { 117 err = PTR_ERR(bo); 118 goto err_kfree; 119 } 120 pt->bo = bo; 121 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 122 123 if (vm->xef) 124 xe_drm_client_add_bo(vm->xef->client, pt->bo); 125 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 126 127 return pt; 128 129 err_kfree: 130 xe_pt_free(pt); 131 return ERR_PTR(err); 132 } 133 134 /** 135 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 136 * entries. 137 * @tile: The tile the scratch pagetable of which to use. 138 * @vm: The vm we populate for. 139 * @pt: The pagetable the bo of which to initialize. 140 * 141 * Populate the page-table bo of @pt with entries pointing into the tile's 142 * scratch page-table tree if any. Otherwise populate with zeros. 143 */ 144 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 145 struct xe_pt *pt) 146 { 147 struct iosys_map *map = &pt->bo->vmap; 148 u64 empty; 149 int i; 150 151 if (!xe_vm_has_scratch(vm)) { 152 /* 153 * FIXME: Some memory is allocated already allocated to zero? 154 * Find out which memory that is and avoid this memset... 155 */ 156 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 157 } else { 158 empty = __xe_pt_empty_pte(tile, vm, pt->level); 159 for (i = 0; i < XE_PDES; i++) 160 xe_pt_write(vm->xe, map, i, empty); 161 } 162 } 163 164 /** 165 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 166 * a page-table at a certain level. 167 * @level: The level. 168 * 169 * Return: The ilog2 value of the size of the address range of a page-table 170 * at level @level. 171 */ 172 unsigned int xe_pt_shift(unsigned int level) 173 { 174 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 175 } 176 177 /** 178 * xe_pt_destroy() - Destroy a page-table tree. 179 * @pt: The root of the page-table tree to destroy. 180 * @flags: vm flags. Currently unused. 181 * @deferred: List head of lockless list for deferred putting. NULL for 182 * immediate putting. 183 * 184 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 185 * and finally frees @pt. TODO: Can we remove the @flags argument? 186 */ 187 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 188 { 189 int i; 190 191 if (!pt) 192 return; 193 194 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 195 xe_bo_unpin(pt->bo); 196 xe_bo_put_deferred(pt->bo, deferred); 197 198 if (pt->level > 0 && pt->num_live) { 199 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 200 201 for (i = 0; i < XE_PDES; i++) { 202 if (xe_pt_entry(pt_dir, i)) 203 xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, 204 deferred); 205 } 206 } 207 xe_pt_free(pt); 208 } 209 210 /** 211 * DOC: Pagetable building 212 * 213 * Below we use the term "page-table" for both page-directories, containing 214 * pointers to lower level page-directories or page-tables, and level 0 215 * page-tables that contain only page-table-entries pointing to memory pages. 216 * 217 * When inserting an address range in an already existing page-table tree 218 * there will typically be a set of page-tables that are shared with other 219 * address ranges, and a set that are private to this address range. 220 * The set of shared page-tables can be at most two per level, 221 * and those can't be updated immediately because the entries of those 222 * page-tables may still be in use by the gpu for other mappings. Therefore 223 * when inserting entries into those, we instead stage those insertions by 224 * adding insertion data into struct xe_vm_pgtable_update structures. This 225 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 226 * added in a separate commit step. CPU-data is committed while still under the 227 * vm lock, the object lock and for userptr, the notifier lock in read mode. 228 * The GPU async data is committed either by the GPU or CPU after fulfilling 229 * relevant dependencies. 230 * For non-shared page-tables (and, in fact, for shared ones that aren't 231 * existing at the time of staging), we add the data in-place without the 232 * special update structures. This private part of the page-table tree will 233 * remain disconnected from the vm page-table tree until data is committed to 234 * the shared page tables of the vm tree in the commit phase. 235 */ 236 237 struct xe_pt_update { 238 /** @update: The update structure we're building for this parent. */ 239 struct xe_vm_pgtable_update *update; 240 /** @parent: The parent. Used to detect a parent change. */ 241 struct xe_pt *parent; 242 /** @preexisting: Whether the parent was pre-existing or allocated */ 243 bool preexisting; 244 }; 245 246 struct xe_pt_stage_bind_walk { 247 /** base: The base class. */ 248 struct xe_pt_walk base; 249 250 /* Input parameters for the walk */ 251 /** @vm: The vm we're building for. */ 252 struct xe_vm *vm; 253 /** @tile: The tile we're building for. */ 254 struct xe_tile *tile; 255 /** @default_pte: PTE flag only template. No address is associated */ 256 u64 default_pte; 257 /** @dma_offset: DMA offset to add to the PTE. */ 258 u64 dma_offset; 259 /** 260 * @needs_64k: This address range enforces 64K alignment and 261 * granularity. 262 */ 263 bool needs_64K; 264 /** 265 * @vma: VMA being mapped 266 */ 267 struct xe_vma *vma; 268 269 /* Also input, but is updated during the walk*/ 270 /** @curs: The DMA address cursor. */ 271 struct xe_res_cursor *curs; 272 /** @va_curs_start: The Virtual address coresponding to @curs->start */ 273 u64 va_curs_start; 274 275 /* Output */ 276 struct xe_walk_update { 277 /** @wupd.entries: Caller provided storage. */ 278 struct xe_vm_pgtable_update *entries; 279 /** @wupd.num_used_entries: Number of update @entries used. */ 280 unsigned int num_used_entries; 281 /** @wupd.updates: Tracks the update entry at a given level */ 282 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 283 } wupd; 284 285 /* Walk state */ 286 /** 287 * @l0_end_addr: The end address of the current l0 leaf. Used for 288 * 64K granularity detection. 289 */ 290 u64 l0_end_addr; 291 /** @addr_64K: The start address of the current 64K chunk. */ 292 u64 addr_64K; 293 /** @found_64: Whether @add_64K actually points to a 64K chunk. */ 294 bool found_64K; 295 }; 296 297 static int 298 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 299 pgoff_t offset, bool alloc_entries) 300 { 301 struct xe_pt_update *upd = &wupd->updates[parent->level]; 302 struct xe_vm_pgtable_update *entry; 303 304 /* 305 * For *each level*, we could only have one active 306 * struct xt_pt_update at any one time. Once we move on to a 307 * new parent and page-directory, the old one is complete, and 308 * updates are either already stored in the build tree or in 309 * @wupd->entries 310 */ 311 if (likely(upd->parent == parent)) 312 return 0; 313 314 upd->parent = parent; 315 upd->preexisting = true; 316 317 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 318 return -EINVAL; 319 320 entry = wupd->entries + wupd->num_used_entries++; 321 upd->update = entry; 322 entry->ofs = offset; 323 entry->pt_bo = parent->bo; 324 entry->pt = parent; 325 entry->flags = 0; 326 entry->qwords = 0; 327 328 if (alloc_entries) { 329 entry->pt_entries = kmalloc_array(XE_PDES, 330 sizeof(*entry->pt_entries), 331 GFP_KERNEL); 332 if (!entry->pt_entries) 333 return -ENOMEM; 334 } 335 336 return 0; 337 } 338 339 /* 340 * NOTE: This is a very frequently called function so we allow ourselves 341 * to annotate (using branch prediction hints) the fastpath of updating a 342 * non-pre-existing pagetable with leaf ptes. 343 */ 344 static int 345 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 346 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 347 { 348 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 349 struct xe_pt_update *child_upd = xe_child ? 350 &xe_walk->wupd.updates[xe_child->level] : NULL; 351 int ret; 352 353 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 354 if (unlikely(ret)) 355 return ret; 356 357 /* 358 * Register this new pagetable so that it won't be recognized as 359 * a shared pagetable by a subsequent insertion. 360 */ 361 if (unlikely(child_upd)) { 362 child_upd->update = NULL; 363 child_upd->parent = xe_child; 364 child_upd->preexisting = false; 365 } 366 367 if (likely(!upd->preexisting)) { 368 /* Continue building a non-connected subtree. */ 369 struct iosys_map *map = &parent->bo->vmap; 370 371 if (unlikely(xe_child)) 372 parent->base.children[offset] = &xe_child->base; 373 374 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 375 parent->num_live++; 376 } else { 377 /* Shared pt. Stage update. */ 378 unsigned int idx; 379 struct xe_vm_pgtable_update *entry = upd->update; 380 381 idx = offset - entry->ofs; 382 entry->pt_entries[idx].pt = xe_child; 383 entry->pt_entries[idx].pte = pte; 384 entry->qwords++; 385 } 386 387 return 0; 388 } 389 390 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 391 struct xe_pt_stage_bind_walk *xe_walk) 392 { 393 u64 size, dma; 394 395 if (level > MAX_HUGEPTE_LEVEL) 396 return false; 397 398 /* Does the virtual range requested cover a huge pte? */ 399 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 400 return false; 401 402 /* Does the DMA segment cover the whole pte? */ 403 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 404 return false; 405 406 /* null VMA's do not have dma addresses */ 407 if (xe_vma_is_null(xe_walk->vma)) 408 return true; 409 410 /* Is the DMA address huge PTE size aligned? */ 411 size = next - addr; 412 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 413 414 return IS_ALIGNED(dma, size); 415 } 416 417 /* 418 * Scan the requested mapping to check whether it can be done entirely 419 * with 64K PTEs. 420 */ 421 static bool 422 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 423 { 424 struct xe_res_cursor curs = *xe_walk->curs; 425 426 if (!IS_ALIGNED(addr, SZ_64K)) 427 return false; 428 429 if (next > xe_walk->l0_end_addr) 430 return false; 431 432 /* null VMA's do not have dma addresses */ 433 if (xe_vma_is_null(xe_walk->vma)) 434 return true; 435 436 xe_res_next(&curs, addr - xe_walk->va_curs_start); 437 for (; addr < next; addr += SZ_64K) { 438 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 439 return false; 440 441 xe_res_next(&curs, SZ_64K); 442 } 443 444 return addr == next; 445 } 446 447 /* 448 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 449 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 450 * device to the PTE. 451 * This function determines whether the address is part of such a 452 * segment. For VRAM in normal pagetables, this is strictly necessary on 453 * some devices. 454 */ 455 static bool 456 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 457 { 458 /* Address is within an already found 64k region */ 459 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 460 return true; 461 462 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 463 xe_walk->addr_64K = addr; 464 465 return xe_walk->found_64K; 466 } 467 468 static int 469 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 470 unsigned int level, u64 addr, u64 next, 471 struct xe_ptw **child, 472 enum page_walk_action *action, 473 struct xe_pt_walk *walk) 474 { 475 struct xe_pt_stage_bind_walk *xe_walk = 476 container_of(walk, typeof(*xe_walk), base); 477 u16 pat_index = xe_walk->vma->pat_index; 478 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 479 struct xe_vm *vm = xe_walk->vm; 480 struct xe_pt *xe_child; 481 bool covers; 482 int ret = 0; 483 u64 pte; 484 485 /* Is this a leaf entry ?*/ 486 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 487 struct xe_res_cursor *curs = xe_walk->curs; 488 bool is_null = xe_vma_is_null(xe_walk->vma); 489 490 XE_WARN_ON(xe_walk->va_curs_start != addr); 491 492 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 493 xe_res_dma(curs) + xe_walk->dma_offset, 494 xe_walk->vma, pat_index, level); 495 pte |= xe_walk->default_pte; 496 497 /* 498 * Set the XE_PTE_PS64 hint if possible, otherwise if 499 * this device *requires* 64K PTE size for VRAM, fail. 500 */ 501 if (level == 0 && !xe_parent->is_compact) { 502 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) 503 pte |= XE_PTE_PS64; 504 else if (XE_WARN_ON(xe_walk->needs_64K)) 505 return -EINVAL; 506 } 507 508 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 509 if (unlikely(ret)) 510 return ret; 511 512 if (!is_null) 513 xe_res_next(curs, next - addr); 514 xe_walk->va_curs_start = next; 515 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 516 *action = ACTION_CONTINUE; 517 518 return ret; 519 } 520 521 /* 522 * Descending to lower level. Determine if we need to allocate a 523 * new page table or -directory, which we do if there is no 524 * previous one or there is one we can completely replace. 525 */ 526 if (level == 1) { 527 walk->shifts = xe_normal_pt_shifts; 528 xe_walk->l0_end_addr = next; 529 } 530 531 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 532 if (covers || !*child) { 533 u64 flags = 0; 534 535 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 536 if (IS_ERR(xe_child)) 537 return PTR_ERR(xe_child); 538 539 xe_pt_set_addr(xe_child, 540 round_down(addr, 1ull << walk->shifts[level])); 541 542 if (!covers) 543 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 544 545 *child = &xe_child->base; 546 547 /* 548 * Prefer the compact pagetable layout for L0 if possible. 549 * TODO: Suballocate the pt bo to avoid wasting a lot of 550 * memory. 551 */ 552 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 553 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 554 walk->shifts = xe_compact_pt_shifts; 555 flags |= XE_PDE_64K; 556 xe_child->is_compact = true; 557 } 558 559 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; 560 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 561 pte); 562 } 563 564 *action = ACTION_SUBTREE; 565 return ret; 566 } 567 568 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 569 .pt_entry = xe_pt_stage_bind_entry, 570 }; 571 572 /** 573 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 574 * range. 575 * @tile: The tile we're building for. 576 * @vma: The vma indicating the address range. 577 * @entries: Storage for the update entries used for connecting the tree to 578 * the main tree at commit time. 579 * @num_entries: On output contains the number of @entries used. 580 * 581 * This function builds a disconnected page-table tree for a given address 582 * range. The tree is connected to the main vm tree for the gpu using 583 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 584 * The function builds xe_vm_pgtable_update structures for already existing 585 * shared page-tables, and non-existing shared and non-shared page-tables 586 * are built and populated directly. 587 * 588 * Return 0 on success, negative error code on error. 589 */ 590 static int 591 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 592 struct xe_vm_pgtable_update *entries, u32 *num_entries) 593 { 594 struct xe_device *xe = tile_to_xe(tile); 595 struct xe_bo *bo = xe_vma_bo(vma); 596 bool is_devmem = !xe_vma_is_userptr(vma) && bo && 597 (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)); 598 struct xe_res_cursor curs; 599 struct xe_pt_stage_bind_walk xe_walk = { 600 .base = { 601 .ops = &xe_pt_stage_bind_ops, 602 .shifts = xe_normal_pt_shifts, 603 .max_level = XE_PT_HIGHEST_LEVEL, 604 }, 605 .vm = xe_vma_vm(vma), 606 .tile = tile, 607 .curs = &curs, 608 .va_curs_start = xe_vma_start(vma), 609 .vma = vma, 610 .wupd.entries = entries, 611 .needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem, 612 }; 613 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 614 int ret; 615 616 if (vma && (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) && 617 (is_devmem || !IS_DGFX(xe))) 618 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 619 620 if (is_devmem) { 621 xe_walk.default_pte |= XE_PPGTT_PTE_DM; 622 xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource); 623 } 624 625 if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo)) 626 xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); 627 628 xe_bo_assert_held(bo); 629 630 if (!xe_vma_is_null(vma)) { 631 if (xe_vma_is_userptr(vma)) 632 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, 633 xe_vma_size(vma), &curs); 634 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 635 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 636 xe_vma_size(vma), &curs); 637 else 638 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 639 xe_vma_size(vma), &curs); 640 } else { 641 curs.size = xe_vma_size(vma); 642 } 643 644 ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma), 645 xe_vma_end(vma), &xe_walk.base); 646 647 *num_entries = xe_walk.wupd.num_used_entries; 648 return ret; 649 } 650 651 /** 652 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 653 * shared pagetable. 654 * @addr: The start address within the non-shared pagetable. 655 * @end: The end address within the non-shared pagetable. 656 * @level: The level of the non-shared pagetable. 657 * @walk: Walk info. The function adjusts the walk action. 658 * @action: next action to perform (see enum page_walk_action) 659 * @offset: Ignored on input, First non-shared entry on output. 660 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 661 * 662 * A non-shared page-table has some entries that belong to the address range 663 * and others that don't. This function determines the entries that belong 664 * fully to the address range. Depending on level, some entries may 665 * partially belong to the address range (that can't happen at level 0). 666 * The function detects that and adjust those offsets to not include those 667 * partial entries. Iff it does detect partial entries, we know that there must 668 * be shared page tables also at lower levels, so it adjusts the walk action 669 * accordingly. 670 * 671 * Return: true if there were non-shared entries, false otherwise. 672 */ 673 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 674 struct xe_pt_walk *walk, 675 enum page_walk_action *action, 676 pgoff_t *offset, pgoff_t *end_offset) 677 { 678 u64 size = 1ull << walk->shifts[level]; 679 680 *offset = xe_pt_offset(addr, level, walk); 681 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 682 683 if (!level) 684 return true; 685 686 /* 687 * If addr or next are not size aligned, there are shared pts at lower 688 * level, so in that case traverse down the subtree 689 */ 690 *action = ACTION_CONTINUE; 691 if (!IS_ALIGNED(addr, size)) { 692 *action = ACTION_SUBTREE; 693 (*offset)++; 694 } 695 696 if (!IS_ALIGNED(end, size)) { 697 *action = ACTION_SUBTREE; 698 (*end_offset)--; 699 } 700 701 return *end_offset > *offset; 702 } 703 704 struct xe_pt_zap_ptes_walk { 705 /** @base: The walk base-class */ 706 struct xe_pt_walk base; 707 708 /* Input parameters for the walk */ 709 /** @tile: The tile we're building for */ 710 struct xe_tile *tile; 711 712 /* Output */ 713 /** @needs_invalidate: Whether we need to invalidate TLB*/ 714 bool needs_invalidate; 715 }; 716 717 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 718 unsigned int level, u64 addr, u64 next, 719 struct xe_ptw **child, 720 enum page_walk_action *action, 721 struct xe_pt_walk *walk) 722 { 723 struct xe_pt_zap_ptes_walk *xe_walk = 724 container_of(walk, typeof(*xe_walk), base); 725 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 726 pgoff_t end_offset; 727 728 XE_WARN_ON(!*child); 729 XE_WARN_ON(!level && xe_child->is_compact); 730 731 /* 732 * Note that we're called from an entry callback, and we're dealing 733 * with the child of that entry rather than the parent, so need to 734 * adjust level down. 735 */ 736 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 737 &end_offset)) { 738 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 739 offset * sizeof(u64), 0, 740 (end_offset - offset) * sizeof(u64)); 741 xe_walk->needs_invalidate = true; 742 } 743 744 return 0; 745 } 746 747 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 748 .pt_entry = xe_pt_zap_ptes_entry, 749 }; 750 751 /** 752 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 753 * @tile: The tile we're zapping for. 754 * @vma: GPU VMA detailing address range. 755 * 756 * Eviction and Userptr invalidation needs to be able to zap the 757 * gpu ptes of a given address range in pagefaulting mode. 758 * In order to be able to do that, that function needs access to the shared 759 * page-table entrieaso it can either clear the leaf PTEs or 760 * clear the pointers to lower-level page-tables. The caller is required 761 * to hold the necessary locks to ensure neither the page-table connectivity 762 * nor the page-table entries of the range is updated from under us. 763 * 764 * Return: Whether ptes were actually updated and a TLB invalidation is 765 * required. 766 */ 767 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 768 { 769 struct xe_pt_zap_ptes_walk xe_walk = { 770 .base = { 771 .ops = &xe_pt_zap_ptes_ops, 772 .shifts = xe_normal_pt_shifts, 773 .max_level = XE_PT_HIGHEST_LEVEL, 774 }, 775 .tile = tile, 776 }; 777 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 778 779 if (!(vma->tile_present & BIT(tile->id))) 780 return false; 781 782 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 783 xe_vma_end(vma), &xe_walk.base); 784 785 return xe_walk.needs_invalidate; 786 } 787 788 static void 789 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 790 struct iosys_map *map, void *data, 791 u32 qword_ofs, u32 num_qwords, 792 const struct xe_vm_pgtable_update *update) 793 { 794 struct xe_pt_entry *ptes = update->pt_entries; 795 u64 *ptr = data; 796 u32 i; 797 798 for (i = 0; i < num_qwords; i++) { 799 if (map) 800 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 801 sizeof(u64), u64, ptes[i].pte); 802 else 803 ptr[i] = ptes[i].pte; 804 } 805 } 806 807 static void xe_pt_abort_bind(struct xe_vma *vma, 808 struct xe_vm_pgtable_update *entries, 809 u32 num_entries) 810 { 811 u32 i, j; 812 813 for (i = 0; i < num_entries; i++) { 814 if (!entries[i].pt_entries) 815 continue; 816 817 for (j = 0; j < entries[i].qwords; j++) 818 xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL); 819 kfree(entries[i].pt_entries); 820 } 821 } 822 823 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 824 { 825 struct xe_vm *vm = xe_vma_vm(vma); 826 827 lockdep_assert_held(&vm->lock); 828 829 if (xe_vma_is_userptr(vma)) 830 lockdep_assert_held_read(&vm->userptr.notifier_lock); 831 else if (!xe_vma_is_null(vma)) 832 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 833 834 xe_vm_assert_held(vm); 835 } 836 837 static void xe_pt_commit_bind(struct xe_vma *vma, 838 struct xe_vm_pgtable_update *entries, 839 u32 num_entries, bool rebind, 840 struct llist_head *deferred) 841 { 842 u32 i, j; 843 844 xe_pt_commit_locks_assert(vma); 845 846 for (i = 0; i < num_entries; i++) { 847 struct xe_pt *pt = entries[i].pt; 848 struct xe_pt_dir *pt_dir; 849 850 if (!rebind) 851 pt->num_live += entries[i].qwords; 852 853 if (!pt->level) { 854 kfree(entries[i].pt_entries); 855 continue; 856 } 857 858 pt_dir = as_xe_pt_dir(pt); 859 for (j = 0; j < entries[i].qwords; j++) { 860 u32 j_ = j + entries[i].ofs; 861 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 862 863 if (xe_pt_entry(pt_dir, j_)) 864 xe_pt_destroy(xe_pt_entry(pt_dir, j_), 865 xe_vma_vm(vma)->flags, deferred); 866 867 pt_dir->children[j_] = &newpte->base; 868 } 869 kfree(entries[i].pt_entries); 870 } 871 } 872 873 static int 874 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 875 struct xe_vm_pgtable_update *entries, u32 *num_entries, 876 bool rebind) 877 { 878 int err; 879 880 *num_entries = 0; 881 err = xe_pt_stage_bind(tile, vma, entries, num_entries); 882 if (!err) 883 xe_tile_assert(tile, *num_entries); 884 else /* abort! */ 885 xe_pt_abort_bind(vma, entries, *num_entries); 886 887 return err; 888 } 889 890 static void xe_vm_dbg_print_entries(struct xe_device *xe, 891 const struct xe_vm_pgtable_update *entries, 892 unsigned int num_entries) 893 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 894 { 895 unsigned int i; 896 897 vm_dbg(&xe->drm, "%u entries to update\n", num_entries); 898 for (i = 0; i < num_entries; i++) { 899 const struct xe_vm_pgtable_update *entry = &entries[i]; 900 struct xe_pt *xe_pt = entry->pt; 901 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 902 u64 end; 903 u64 start; 904 905 xe_assert(xe, !entry->pt->is_compact); 906 start = entry->ofs * page_size; 907 end = start + page_size * entry->qwords; 908 vm_dbg(&xe->drm, 909 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 910 i, xe_pt->level, entry->ofs, entry->qwords, 911 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 912 } 913 } 914 #else 915 {} 916 #endif 917 918 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 919 920 static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 921 { 922 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 923 static u32 count; 924 925 if (count++ % divisor == divisor - 1) { 926 struct xe_vm *vm = xe_vma_vm(&uvma->vma); 927 928 uvma->userptr.divisor = divisor << 1; 929 spin_lock(&vm->userptr.invalidated_lock); 930 list_move_tail(&uvma->userptr.invalidate_link, 931 &vm->userptr.invalidated); 932 spin_unlock(&vm->userptr.invalidated_lock); 933 return true; 934 } 935 936 return false; 937 } 938 939 #else 940 941 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 942 { 943 return false; 944 } 945 946 #endif 947 948 /** 949 * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks 950 * @base: Base we derive from. 951 * @bind: Whether this is a bind or an unbind operation. A bind operation 952 * makes the pre-commit callback error with -EAGAIN if it detects a 953 * pending invalidation. 954 * @locked: Whether the pre-commit callback locked the userptr notifier lock 955 * and it needs unlocking. 956 */ 957 struct xe_pt_migrate_pt_update { 958 struct xe_migrate_pt_update base; 959 bool bind; 960 bool locked; 961 }; 962 963 /* 964 * This function adds the needed dependencies to a page-table update job 965 * to make sure racing jobs for separate bind engines don't race writing 966 * to the same page-table range, wreaking havoc. Initially use a single 967 * fence for the entire VM. An optimization would use smaller granularity. 968 */ 969 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 970 struct xe_range_fence_tree *rftree, 971 u64 start, u64 last) 972 { 973 struct xe_range_fence *rtfence; 974 struct dma_fence *fence; 975 int err; 976 977 rtfence = xe_range_fence_tree_first(rftree, start, last); 978 while (rtfence) { 979 fence = rtfence->fence; 980 981 if (!dma_fence_is_signaled(fence)) { 982 /* 983 * Is this a CPU update? GPU is busy updating, so return 984 * an error 985 */ 986 if (!job) 987 return -ETIME; 988 989 dma_fence_get(fence); 990 err = drm_sched_job_add_dependency(&job->drm, fence); 991 if (err) 992 return err; 993 } 994 995 rtfence = xe_range_fence_tree_next(rtfence, start, last); 996 } 997 998 return 0; 999 } 1000 1001 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1002 { 1003 struct xe_range_fence_tree *rftree = 1004 &xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id]; 1005 1006 return xe_pt_vm_dependencies(pt_update->job, rftree, 1007 pt_update->start, pt_update->last); 1008 } 1009 1010 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1011 { 1012 struct xe_pt_migrate_pt_update *userptr_update = 1013 container_of(pt_update, typeof(*userptr_update), base); 1014 struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma); 1015 unsigned long notifier_seq = uvma->userptr.notifier_seq; 1016 struct xe_vm *vm = xe_vma_vm(&uvma->vma); 1017 int err = xe_pt_vm_dependencies(pt_update->job, 1018 &vm->rftree[pt_update->tile_id], 1019 pt_update->start, 1020 pt_update->last); 1021 1022 if (err) 1023 return err; 1024 1025 userptr_update->locked = false; 1026 1027 /* 1028 * Wait until nobody is running the invalidation notifier, and 1029 * since we're exiting the loop holding the notifier lock, 1030 * nobody can proceed invalidating either. 1031 * 1032 * Note that we don't update the vma->userptr.notifier_seq since 1033 * we don't update the userptr pages. 1034 */ 1035 do { 1036 down_read(&vm->userptr.notifier_lock); 1037 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1038 notifier_seq)) 1039 break; 1040 1041 up_read(&vm->userptr.notifier_lock); 1042 1043 if (userptr_update->bind) 1044 return -EAGAIN; 1045 1046 notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier); 1047 } while (true); 1048 1049 /* Inject errors to test_whether they are handled correctly */ 1050 if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) { 1051 up_read(&vm->userptr.notifier_lock); 1052 return -EAGAIN; 1053 } 1054 1055 userptr_update->locked = true; 1056 1057 return 0; 1058 } 1059 1060 static const struct xe_migrate_pt_update_ops bind_ops = { 1061 .populate = xe_vm_populate_pgtable, 1062 .pre_commit = xe_pt_pre_commit, 1063 }; 1064 1065 static const struct xe_migrate_pt_update_ops userptr_bind_ops = { 1066 .populate = xe_vm_populate_pgtable, 1067 .pre_commit = xe_pt_userptr_pre_commit, 1068 }; 1069 1070 struct invalidation_fence { 1071 struct xe_gt_tlb_invalidation_fence base; 1072 struct xe_gt *gt; 1073 struct xe_vma *vma; 1074 struct dma_fence *fence; 1075 struct dma_fence_cb cb; 1076 struct work_struct work; 1077 }; 1078 1079 static const char * 1080 invalidation_fence_get_driver_name(struct dma_fence *dma_fence) 1081 { 1082 return "xe"; 1083 } 1084 1085 static const char * 1086 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence) 1087 { 1088 return "invalidation_fence"; 1089 } 1090 1091 static const struct dma_fence_ops invalidation_fence_ops = { 1092 .get_driver_name = invalidation_fence_get_driver_name, 1093 .get_timeline_name = invalidation_fence_get_timeline_name, 1094 }; 1095 1096 static void invalidation_fence_cb(struct dma_fence *fence, 1097 struct dma_fence_cb *cb) 1098 { 1099 struct invalidation_fence *ifence = 1100 container_of(cb, struct invalidation_fence, cb); 1101 1102 trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base); 1103 if (!ifence->fence->error) { 1104 queue_work(system_wq, &ifence->work); 1105 } else { 1106 ifence->base.base.error = ifence->fence->error; 1107 dma_fence_signal(&ifence->base.base); 1108 dma_fence_put(&ifence->base.base); 1109 } 1110 dma_fence_put(ifence->fence); 1111 } 1112 1113 static void invalidation_fence_work_func(struct work_struct *w) 1114 { 1115 struct invalidation_fence *ifence = 1116 container_of(w, struct invalidation_fence, work); 1117 1118 trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base); 1119 xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma); 1120 } 1121 1122 static int invalidation_fence_init(struct xe_gt *gt, 1123 struct invalidation_fence *ifence, 1124 struct dma_fence *fence, 1125 struct xe_vma *vma) 1126 { 1127 int ret; 1128 1129 trace_xe_gt_tlb_invalidation_fence_create(&ifence->base); 1130 1131 spin_lock_irq(>->tlb_invalidation.lock); 1132 dma_fence_init(&ifence->base.base, &invalidation_fence_ops, 1133 >->tlb_invalidation.lock, 1134 gt->tlb_invalidation.fence_context, 1135 ++gt->tlb_invalidation.fence_seqno); 1136 spin_unlock_irq(>->tlb_invalidation.lock); 1137 1138 INIT_LIST_HEAD(&ifence->base.link); 1139 1140 dma_fence_get(&ifence->base.base); /* Ref for caller */ 1141 ifence->fence = fence; 1142 ifence->gt = gt; 1143 ifence->vma = vma; 1144 1145 INIT_WORK(&ifence->work, invalidation_fence_work_func); 1146 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); 1147 if (ret == -ENOENT) { 1148 dma_fence_put(ifence->fence); /* Usually dropped in CB */ 1149 invalidation_fence_work_func(&ifence->work); 1150 } else if (ret) { 1151 dma_fence_put(&ifence->base.base); /* Caller ref */ 1152 dma_fence_put(&ifence->base.base); /* Creation ref */ 1153 } 1154 1155 xe_gt_assert(gt, !ret || ret == -ENOENT); 1156 1157 return ret && ret != -ENOENT ? ret : 0; 1158 } 1159 1160 static void xe_pt_calc_rfence_interval(struct xe_vma *vma, 1161 struct xe_pt_migrate_pt_update *update, 1162 struct xe_vm_pgtable_update *entries, 1163 u32 num_entries) 1164 { 1165 int i, level = 0; 1166 1167 for (i = 0; i < num_entries; i++) { 1168 const struct xe_vm_pgtable_update *entry = &entries[i]; 1169 1170 if (entry->pt->level > level) 1171 level = entry->pt->level; 1172 } 1173 1174 /* Greedy (non-optimal) calculation but simple */ 1175 update->base.start = ALIGN_DOWN(xe_vma_start(vma), 1176 0x1ull << xe_pt_shift(level)); 1177 update->base.last = ALIGN(xe_vma_end(vma), 1178 0x1ull << xe_pt_shift(level)) - 1; 1179 } 1180 1181 /** 1182 * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma 1183 * address range. 1184 * @tile: The tile to bind for. 1185 * @vma: The vma to bind. 1186 * @q: The exec_queue with which to do pipelined page-table updates. 1187 * @syncs: Entries to sync on before binding the built tree to the live vm tree. 1188 * @num_syncs: Number of @sync entries. 1189 * @rebind: Whether we're rebinding this vma to the same address range without 1190 * an unbind in-between. 1191 * 1192 * This function builds a page-table tree (see xe_pt_stage_bind() for more 1193 * information on page-table building), and the xe_vm_pgtable_update entries 1194 * abstracting the operations needed to attach it to the main vm tree. It 1195 * then takes the relevant locks and updates the metadata side of the main 1196 * vm tree and submits the operations for pipelined attachment of the 1197 * gpu page-table to the vm main tree, (which can be done either by the 1198 * cpu and the GPU). 1199 * 1200 * Return: A valid dma-fence representing the pipelined attachment operation 1201 * on success, an error pointer on error. 1202 */ 1203 struct dma_fence * 1204 __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, 1205 struct xe_sync_entry *syncs, u32 num_syncs, 1206 bool rebind) 1207 { 1208 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1209 struct xe_pt_migrate_pt_update bind_pt_update = { 1210 .base = { 1211 .ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops, 1212 .vma = vma, 1213 .tile_id = tile->id, 1214 }, 1215 .bind = true, 1216 }; 1217 struct xe_vm *vm = xe_vma_vm(vma); 1218 u32 num_entries; 1219 struct dma_fence *fence; 1220 struct invalidation_fence *ifence = NULL; 1221 struct xe_range_fence *rfence; 1222 int err; 1223 1224 bind_pt_update.locked = false; 1225 xe_bo_assert_held(xe_vma_bo(vma)); 1226 xe_vm_assert_held(vm); 1227 1228 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1229 "Preparing bind, with range [%llx...%llx) engine %p.\n", 1230 xe_vma_start(vma), xe_vma_end(vma), q); 1231 1232 err = xe_pt_prepare_bind(tile, vma, entries, &num_entries, rebind); 1233 if (err) 1234 goto err; 1235 xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); 1236 1237 xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); 1238 xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries, 1239 num_entries); 1240 1241 /* 1242 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1243 * cached PTEs point to freed memory. on LR vms this is done 1244 * automatically when the context is re-enabled by the rebind worker, 1245 * or in fault mode it was invalidated on PTE zapping. 1246 * 1247 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1248 * PTE is already cached in the TLB so it needs to be invalidated. 1249 * on !LR VMs this is done in the ring ops preceding a batch, but on 1250 * non-faulting LR, in particular on user-space batch buffer chaining, 1251 * it needs to be done here. 1252 */ 1253 if ((rebind && !xe_vm_in_lr_mode(vm) && !vm->batch_invalidate_tlb) || 1254 (!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) { 1255 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 1256 if (!ifence) 1257 return ERR_PTR(-ENOMEM); 1258 } 1259 1260 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 1261 if (!rfence) { 1262 kfree(ifence); 1263 return ERR_PTR(-ENOMEM); 1264 } 1265 1266 fence = xe_migrate_update_pgtables(tile->migrate, 1267 vm, xe_vma_bo(vma), q, 1268 entries, num_entries, 1269 syncs, num_syncs, 1270 &bind_pt_update.base); 1271 if (!IS_ERR(fence)) { 1272 bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND; 1273 LLIST_HEAD(deferred); 1274 int err; 1275 1276 err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, 1277 &xe_range_fence_kfree_ops, 1278 bind_pt_update.base.start, 1279 bind_pt_update.base.last, fence); 1280 if (err) 1281 dma_fence_wait(fence, false); 1282 1283 /* TLB invalidation must be done before signaling rebind */ 1284 if (ifence) { 1285 int err = invalidation_fence_init(tile->primary_gt, ifence, fence, 1286 vma); 1287 if (err) { 1288 dma_fence_put(fence); 1289 kfree(ifence); 1290 return ERR_PTR(err); 1291 } 1292 fence = &ifence->base.base; 1293 } 1294 1295 /* add shared fence now for pagetable delayed destroy */ 1296 dma_resv_add_fence(xe_vm_resv(vm), fence, !rebind && 1297 last_munmap_rebind ? 1298 DMA_RESV_USAGE_KERNEL : 1299 DMA_RESV_USAGE_BOOKKEEP); 1300 1301 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1302 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1303 DMA_RESV_USAGE_BOOKKEEP); 1304 xe_pt_commit_bind(vma, entries, num_entries, rebind, 1305 bind_pt_update.locked ? &deferred : NULL); 1306 1307 /* This vma is live (again?) now */ 1308 vma->tile_present |= BIT(tile->id); 1309 1310 if (bind_pt_update.locked) { 1311 to_userptr_vma(vma)->userptr.initial_bind = true; 1312 up_read(&vm->userptr.notifier_lock); 1313 xe_bo_put_commit(&deferred); 1314 } 1315 if (!rebind && last_munmap_rebind && 1316 xe_vm_in_preempt_fence_mode(vm)) 1317 xe_vm_queue_rebind_worker(vm); 1318 } else { 1319 kfree(rfence); 1320 kfree(ifence); 1321 if (bind_pt_update.locked) 1322 up_read(&vm->userptr.notifier_lock); 1323 xe_pt_abort_bind(vma, entries, num_entries); 1324 } 1325 1326 return fence; 1327 1328 err: 1329 return ERR_PTR(err); 1330 } 1331 1332 struct xe_pt_stage_unbind_walk { 1333 /** @base: The pagewalk base-class. */ 1334 struct xe_pt_walk base; 1335 1336 /* Input parameters for the walk */ 1337 /** @tile: The tile we're unbinding from. */ 1338 struct xe_tile *tile; 1339 1340 /** 1341 * @modified_start: Walk range start, modified to include any 1342 * shared pagetables that we're the only user of and can thus 1343 * treat as private. 1344 */ 1345 u64 modified_start; 1346 /** @modified_end: Walk range start, modified like @modified_start. */ 1347 u64 modified_end; 1348 1349 /* Output */ 1350 /* @wupd: Structure to track the page-table updates we're building */ 1351 struct xe_walk_update wupd; 1352 }; 1353 1354 /* 1355 * Check whether this range is the only one populating this pagetable, 1356 * and in that case, update the walk range checks so that higher levels don't 1357 * view us as a shared pagetable. 1358 */ 1359 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1360 const struct xe_pt *child, 1361 enum page_walk_action *action, 1362 struct xe_pt_walk *walk) 1363 { 1364 struct xe_pt_stage_unbind_walk *xe_walk = 1365 container_of(walk, typeof(*xe_walk), base); 1366 unsigned int shift = walk->shifts[level]; 1367 u64 size = 1ull << shift; 1368 1369 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1370 ((next - addr) >> shift) == child->num_live) { 1371 u64 size = 1ull << walk->shifts[level + 1]; 1372 1373 *action = ACTION_CONTINUE; 1374 1375 if (xe_walk->modified_start >= addr) 1376 xe_walk->modified_start = round_down(addr, size); 1377 if (xe_walk->modified_end <= next) 1378 xe_walk->modified_end = round_up(next, size); 1379 1380 return true; 1381 } 1382 1383 return false; 1384 } 1385 1386 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1387 unsigned int level, u64 addr, u64 next, 1388 struct xe_ptw **child, 1389 enum page_walk_action *action, 1390 struct xe_pt_walk *walk) 1391 { 1392 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1393 1394 XE_WARN_ON(!*child); 1395 XE_WARN_ON(!level && xe_child->is_compact); 1396 1397 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1398 1399 return 0; 1400 } 1401 1402 static int 1403 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1404 unsigned int level, u64 addr, u64 next, 1405 struct xe_ptw **child, 1406 enum page_walk_action *action, 1407 struct xe_pt_walk *walk) 1408 { 1409 struct xe_pt_stage_unbind_walk *xe_walk = 1410 container_of(walk, typeof(*xe_walk), base); 1411 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1412 pgoff_t end_offset; 1413 u64 size = 1ull << walk->shifts[--level]; 1414 1415 if (!IS_ALIGNED(addr, size)) 1416 addr = xe_walk->modified_start; 1417 if (!IS_ALIGNED(next, size)) 1418 next = xe_walk->modified_end; 1419 1420 /* Parent == *child is the root pt. Don't kill it. */ 1421 if (parent != *child && 1422 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1423 return 0; 1424 1425 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1426 &end_offset)) 1427 return 0; 1428 1429 (void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false); 1430 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1431 1432 return 0; 1433 } 1434 1435 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1436 .pt_entry = xe_pt_stage_unbind_entry, 1437 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1438 }; 1439 1440 /** 1441 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1442 * operation 1443 * @tile: The tile we're unbinding for. 1444 * @vma: The vma we're unbinding. 1445 * @entries: Caller-provided storage for the update structures. 1446 * 1447 * Builds page-table update structures for an unbind operation. The function 1448 * will attempt to remove all page-tables that we're the only user 1449 * of, and for that to work, the unbind operation must be committed in the 1450 * same critical section that blocks racing binds to the same page-table tree. 1451 * 1452 * Return: The number of entries used. 1453 */ 1454 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma, 1455 struct xe_vm_pgtable_update *entries) 1456 { 1457 struct xe_pt_stage_unbind_walk xe_walk = { 1458 .base = { 1459 .ops = &xe_pt_stage_unbind_ops, 1460 .shifts = xe_normal_pt_shifts, 1461 .max_level = XE_PT_HIGHEST_LEVEL, 1462 }, 1463 .tile = tile, 1464 .modified_start = xe_vma_start(vma), 1465 .modified_end = xe_vma_end(vma), 1466 .wupd.entries = entries, 1467 }; 1468 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 1469 1470 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 1471 xe_vma_end(vma), &xe_walk.base); 1472 1473 return xe_walk.wupd.num_used_entries; 1474 } 1475 1476 static void 1477 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1478 struct xe_tile *tile, struct iosys_map *map, 1479 void *ptr, u32 qword_ofs, u32 num_qwords, 1480 const struct xe_vm_pgtable_update *update) 1481 { 1482 struct xe_vma *vma = pt_update->vma; 1483 u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level); 1484 int i; 1485 1486 if (map && map->is_iomem) 1487 for (i = 0; i < num_qwords; ++i) 1488 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1489 sizeof(u64), u64, empty); 1490 else if (map) 1491 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1492 num_qwords); 1493 else 1494 memset64(ptr, empty, num_qwords); 1495 } 1496 1497 static void 1498 xe_pt_commit_unbind(struct xe_vma *vma, 1499 struct xe_vm_pgtable_update *entries, u32 num_entries, 1500 struct llist_head *deferred) 1501 { 1502 u32 j; 1503 1504 xe_pt_commit_locks_assert(vma); 1505 1506 for (j = 0; j < num_entries; ++j) { 1507 struct xe_vm_pgtable_update *entry = &entries[j]; 1508 struct xe_pt *pt = entry->pt; 1509 1510 pt->num_live -= entry->qwords; 1511 if (pt->level) { 1512 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1513 u32 i; 1514 1515 for (i = entry->ofs; i < entry->ofs + entry->qwords; 1516 i++) { 1517 if (xe_pt_entry(pt_dir, i)) 1518 xe_pt_destroy(xe_pt_entry(pt_dir, i), 1519 xe_vma_vm(vma)->flags, deferred); 1520 1521 pt_dir->children[i] = NULL; 1522 } 1523 } 1524 } 1525 } 1526 1527 static const struct xe_migrate_pt_update_ops unbind_ops = { 1528 .populate = xe_migrate_clear_pgtable_callback, 1529 .pre_commit = xe_pt_pre_commit, 1530 }; 1531 1532 static const struct xe_migrate_pt_update_ops userptr_unbind_ops = { 1533 .populate = xe_migrate_clear_pgtable_callback, 1534 .pre_commit = xe_pt_userptr_pre_commit, 1535 }; 1536 1537 /** 1538 * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma 1539 * address range. 1540 * @tile: The tile to unbind for. 1541 * @vma: The vma to unbind. 1542 * @q: The exec_queue with which to do pipelined page-table updates. 1543 * @syncs: Entries to sync on before disconnecting the tree to be destroyed. 1544 * @num_syncs: Number of @sync entries. 1545 * 1546 * This function builds a the xe_vm_pgtable_update entries abstracting the 1547 * operations needed to detach the page-table tree to be destroyed from the 1548 * man vm tree. 1549 * It then takes the relevant locks and submits the operations for 1550 * pipelined detachment of the gpu page-table from the vm main tree, 1551 * (which can be done either by the cpu and the GPU), Finally it frees the 1552 * detached page-table tree. 1553 * 1554 * Return: A valid dma-fence representing the pipelined detachment operation 1555 * on success, an error pointer on error. 1556 */ 1557 struct dma_fence * 1558 __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, 1559 struct xe_sync_entry *syncs, u32 num_syncs) 1560 { 1561 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1562 struct xe_pt_migrate_pt_update unbind_pt_update = { 1563 .base = { 1564 .ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops : 1565 &unbind_ops, 1566 .vma = vma, 1567 .tile_id = tile->id, 1568 }, 1569 }; 1570 struct xe_vm *vm = xe_vma_vm(vma); 1571 u32 num_entries; 1572 struct dma_fence *fence = NULL; 1573 struct invalidation_fence *ifence; 1574 struct xe_range_fence *rfence; 1575 1576 LLIST_HEAD(deferred); 1577 1578 xe_bo_assert_held(xe_vma_bo(vma)); 1579 xe_vm_assert_held(vm); 1580 1581 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1582 "Preparing unbind, with range [%llx...%llx) engine %p.\n", 1583 xe_vma_start(vma), xe_vma_end(vma), q); 1584 1585 num_entries = xe_pt_stage_unbind(tile, vma, entries); 1586 xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); 1587 1588 xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); 1589 xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries, 1590 num_entries); 1591 1592 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 1593 if (!ifence) 1594 return ERR_PTR(-ENOMEM); 1595 1596 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 1597 if (!rfence) { 1598 kfree(ifence); 1599 return ERR_PTR(-ENOMEM); 1600 } 1601 1602 /* 1603 * Even if we were already evicted and unbind to destroy, we need to 1604 * clear again here. The eviction may have updated pagetables at a 1605 * lower level, because it needs to be more conservative. 1606 */ 1607 fence = xe_migrate_update_pgtables(tile->migrate, 1608 vm, NULL, q ? q : 1609 vm->q[tile->id], 1610 entries, num_entries, 1611 syncs, num_syncs, 1612 &unbind_pt_update.base); 1613 if (!IS_ERR(fence)) { 1614 int err; 1615 1616 err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, 1617 &xe_range_fence_kfree_ops, 1618 unbind_pt_update.base.start, 1619 unbind_pt_update.base.last, fence); 1620 if (err) 1621 dma_fence_wait(fence, false); 1622 1623 /* TLB invalidation must be done before signaling unbind */ 1624 err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma); 1625 if (err) { 1626 dma_fence_put(fence); 1627 kfree(ifence); 1628 return ERR_PTR(err); 1629 } 1630 fence = &ifence->base.base; 1631 1632 /* add shared fence now for pagetable delayed destroy */ 1633 dma_resv_add_fence(xe_vm_resv(vm), fence, 1634 DMA_RESV_USAGE_BOOKKEEP); 1635 1636 /* This fence will be installed by caller when doing eviction */ 1637 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1638 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1639 DMA_RESV_USAGE_BOOKKEEP); 1640 xe_pt_commit_unbind(vma, entries, num_entries, 1641 unbind_pt_update.locked ? &deferred : NULL); 1642 vma->tile_present &= ~BIT(tile->id); 1643 } else { 1644 kfree(rfence); 1645 kfree(ifence); 1646 } 1647 1648 if (!vma->tile_present) 1649 list_del_init(&vma->combined_links.rebind); 1650 1651 if (unbind_pt_update.locked) { 1652 xe_tile_assert(tile, xe_vma_is_userptr(vma)); 1653 1654 if (!vma->tile_present) { 1655 spin_lock(&vm->userptr.invalidated_lock); 1656 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 1657 spin_unlock(&vm->userptr.invalidated_lock); 1658 } 1659 up_read(&vm->userptr.notifier_lock); 1660 xe_bo_put_commit(&deferred); 1661 } 1662 1663 return fence; 1664 } 1665