xref: /linux/drivers/gpu/drm/xe/xe_pt.c (revision d8310914848223de7ec04d55bd15f013f0dad803)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_pt.h"
7 
8 #include "xe_bo.h"
9 #include "xe_device.h"
10 #include "xe_drm_client.h"
11 #include "xe_gt.h"
12 #include "xe_gt_tlb_invalidation.h"
13 #include "xe_migrate.h"
14 #include "xe_pt_types.h"
15 #include "xe_pt_walk.h"
16 #include "xe_res_cursor.h"
17 #include "xe_trace.h"
18 #include "xe_ttm_stolen_mgr.h"
19 #include "xe_vm.h"
20 
21 struct xe_pt_dir {
22 	struct xe_pt pt;
23 	/** @children: Array of page-table child nodes */
24 	struct xe_ptw *children[XE_PDES];
25 };
26 
27 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
28 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
29 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
30 #else
31 #define xe_pt_set_addr(__xe_pt, __addr)
32 #define xe_pt_addr(__xe_pt) 0ull
33 #endif
34 
35 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
36 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
37 
38 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
39 
40 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
41 {
42 	return container_of(pt, struct xe_pt_dir, pt);
43 }
44 
45 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
46 {
47 	return container_of(pt_dir->children[index], struct xe_pt, base);
48 }
49 
50 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
51 			     unsigned int level)
52 {
53 	struct xe_device *xe = tile_to_xe(tile);
54 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
55 	u8 id = tile->id;
56 
57 	if (!xe_vm_has_scratch(vm))
58 		return 0;
59 
60 	if (level > MAX_HUGEPTE_LEVEL)
61 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
62 						 0, pat_index);
63 
64 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
65 		XE_PTE_NULL;
66 }
67 
68 static void xe_pt_free(struct xe_pt *pt)
69 {
70 	if (pt->level)
71 		kfree(as_xe_pt_dir(pt));
72 	else
73 		kfree(pt);
74 }
75 
76 /**
77  * xe_pt_create() - Create a page-table.
78  * @vm: The vm to create for.
79  * @tile: The tile to create for.
80  * @level: The page-table level.
81  *
82  * Allocate and initialize a single struct xe_pt metadata structure. Also
83  * create the corresponding page-table bo, but don't initialize it. If the
84  * level is grater than zero, then it's assumed to be a directory page-
85  * table and the directory structure is also allocated and initialized to
86  * NULL pointers.
87  *
88  * Return: A valid struct xe_pt pointer on success, Pointer error code on
89  * error.
90  */
91 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
92 			   unsigned int level)
93 {
94 	struct xe_pt *pt;
95 	struct xe_bo *bo;
96 	int err;
97 
98 	if (level) {
99 		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
100 
101 		pt = (dir) ? &dir->pt : NULL;
102 	} else {
103 		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
104 	}
105 	if (!pt)
106 		return ERR_PTR(-ENOMEM);
107 
108 	pt->level = level;
109 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
110 				  ttm_bo_type_kernel,
111 				  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
112 				  XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT |
113 				  XE_BO_CREATE_PINNED_BIT |
114 				  XE_BO_CREATE_NO_RESV_EVICT |
115 				  XE_BO_PAGETABLE);
116 	if (IS_ERR(bo)) {
117 		err = PTR_ERR(bo);
118 		goto err_kfree;
119 	}
120 	pt->bo = bo;
121 	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
122 
123 	if (vm->xef)
124 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
125 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
126 
127 	return pt;
128 
129 err_kfree:
130 	xe_pt_free(pt);
131 	return ERR_PTR(err);
132 }
133 
134 /**
135  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
136  * entries.
137  * @tile: The tile the scratch pagetable of which to use.
138  * @vm: The vm we populate for.
139  * @pt: The pagetable the bo of which to initialize.
140  *
141  * Populate the page-table bo of @pt with entries pointing into the tile's
142  * scratch page-table tree if any. Otherwise populate with zeros.
143  */
144 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
145 			  struct xe_pt *pt)
146 {
147 	struct iosys_map *map = &pt->bo->vmap;
148 	u64 empty;
149 	int i;
150 
151 	if (!xe_vm_has_scratch(vm)) {
152 		/*
153 		 * FIXME: Some memory is allocated already allocated to zero?
154 		 * Find out which memory that is and avoid this memset...
155 		 */
156 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
157 	} else {
158 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
159 		for (i = 0; i < XE_PDES; i++)
160 			xe_pt_write(vm->xe, map, i, empty);
161 	}
162 }
163 
164 /**
165  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
166  * a page-table at a certain level.
167  * @level: The level.
168  *
169  * Return: The ilog2 value of the size of the address range of a page-table
170  * at level @level.
171  */
172 unsigned int xe_pt_shift(unsigned int level)
173 {
174 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
175 }
176 
177 /**
178  * xe_pt_destroy() - Destroy a page-table tree.
179  * @pt: The root of the page-table tree to destroy.
180  * @flags: vm flags. Currently unused.
181  * @deferred: List head of lockless list for deferred putting. NULL for
182  *            immediate putting.
183  *
184  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
185  * and finally frees @pt. TODO: Can we remove the @flags argument?
186  */
187 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
188 {
189 	int i;
190 
191 	if (!pt)
192 		return;
193 
194 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
195 	xe_bo_unpin(pt->bo);
196 	xe_bo_put_deferred(pt->bo, deferred);
197 
198 	if (pt->level > 0 && pt->num_live) {
199 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
200 
201 		for (i = 0; i < XE_PDES; i++) {
202 			if (xe_pt_entry(pt_dir, i))
203 				xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
204 					      deferred);
205 		}
206 	}
207 	xe_pt_free(pt);
208 }
209 
210 /**
211  * DOC: Pagetable building
212  *
213  * Below we use the term "page-table" for both page-directories, containing
214  * pointers to lower level page-directories or page-tables, and level 0
215  * page-tables that contain only page-table-entries pointing to memory pages.
216  *
217  * When inserting an address range in an already existing page-table tree
218  * there will typically be a set of page-tables that are shared with other
219  * address ranges, and a set that are private to this address range.
220  * The set of shared page-tables can be at most two per level,
221  * and those can't be updated immediately because the entries of those
222  * page-tables may still be in use by the gpu for other mappings. Therefore
223  * when inserting entries into those, we instead stage those insertions by
224  * adding insertion data into struct xe_vm_pgtable_update structures. This
225  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
226  * added in a separate commit step. CPU-data is committed while still under the
227  * vm lock, the object lock and for userptr, the notifier lock in read mode.
228  * The GPU async data is committed either by the GPU or CPU after fulfilling
229  * relevant dependencies.
230  * For non-shared page-tables (and, in fact, for shared ones that aren't
231  * existing at the time of staging), we add the data in-place without the
232  * special update structures. This private part of the page-table tree will
233  * remain disconnected from the vm page-table tree until data is committed to
234  * the shared page tables of the vm tree in the commit phase.
235  */
236 
237 struct xe_pt_update {
238 	/** @update: The update structure we're building for this parent. */
239 	struct xe_vm_pgtable_update *update;
240 	/** @parent: The parent. Used to detect a parent change. */
241 	struct xe_pt *parent;
242 	/** @preexisting: Whether the parent was pre-existing or allocated */
243 	bool preexisting;
244 };
245 
246 struct xe_pt_stage_bind_walk {
247 	/** base: The base class. */
248 	struct xe_pt_walk base;
249 
250 	/* Input parameters for the walk */
251 	/** @vm: The vm we're building for. */
252 	struct xe_vm *vm;
253 	/** @tile: The tile we're building for. */
254 	struct xe_tile *tile;
255 	/** @default_pte: PTE flag only template. No address is associated */
256 	u64 default_pte;
257 	/** @dma_offset: DMA offset to add to the PTE. */
258 	u64 dma_offset;
259 	/**
260 	 * @needs_64k: This address range enforces 64K alignment and
261 	 * granularity.
262 	 */
263 	bool needs_64K;
264 	/**
265 	 * @vma: VMA being mapped
266 	 */
267 	struct xe_vma *vma;
268 
269 	/* Also input, but is updated during the walk*/
270 	/** @curs: The DMA address cursor. */
271 	struct xe_res_cursor *curs;
272 	/** @va_curs_start: The Virtual address coresponding to @curs->start */
273 	u64 va_curs_start;
274 
275 	/* Output */
276 	struct xe_walk_update {
277 		/** @wupd.entries: Caller provided storage. */
278 		struct xe_vm_pgtable_update *entries;
279 		/** @wupd.num_used_entries: Number of update @entries used. */
280 		unsigned int num_used_entries;
281 		/** @wupd.updates: Tracks the update entry at a given level */
282 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
283 	} wupd;
284 
285 	/* Walk state */
286 	/**
287 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
288 	 * 64K granularity detection.
289 	 */
290 	u64 l0_end_addr;
291 	/** @addr_64K: The start address of the current 64K chunk. */
292 	u64 addr_64K;
293 	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
294 	bool found_64K;
295 };
296 
297 static int
298 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
299 		 pgoff_t offset, bool alloc_entries)
300 {
301 	struct xe_pt_update *upd = &wupd->updates[parent->level];
302 	struct xe_vm_pgtable_update *entry;
303 
304 	/*
305 	 * For *each level*, we could only have one active
306 	 * struct xt_pt_update at any one time. Once we move on to a
307 	 * new parent and page-directory, the old one is complete, and
308 	 * updates are either already stored in the build tree or in
309 	 * @wupd->entries
310 	 */
311 	if (likely(upd->parent == parent))
312 		return 0;
313 
314 	upd->parent = parent;
315 	upd->preexisting = true;
316 
317 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
318 		return -EINVAL;
319 
320 	entry = wupd->entries + wupd->num_used_entries++;
321 	upd->update = entry;
322 	entry->ofs = offset;
323 	entry->pt_bo = parent->bo;
324 	entry->pt = parent;
325 	entry->flags = 0;
326 	entry->qwords = 0;
327 
328 	if (alloc_entries) {
329 		entry->pt_entries = kmalloc_array(XE_PDES,
330 						  sizeof(*entry->pt_entries),
331 						  GFP_KERNEL);
332 		if (!entry->pt_entries)
333 			return -ENOMEM;
334 	}
335 
336 	return 0;
337 }
338 
339 /*
340  * NOTE: This is a very frequently called function so we allow ourselves
341  * to annotate (using branch prediction hints) the fastpath of updating a
342  * non-pre-existing pagetable with leaf ptes.
343  */
344 static int
345 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
346 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
347 {
348 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
349 	struct xe_pt_update *child_upd = xe_child ?
350 		&xe_walk->wupd.updates[xe_child->level] : NULL;
351 	int ret;
352 
353 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
354 	if (unlikely(ret))
355 		return ret;
356 
357 	/*
358 	 * Register this new pagetable so that it won't be recognized as
359 	 * a shared pagetable by a subsequent insertion.
360 	 */
361 	if (unlikely(child_upd)) {
362 		child_upd->update = NULL;
363 		child_upd->parent = xe_child;
364 		child_upd->preexisting = false;
365 	}
366 
367 	if (likely(!upd->preexisting)) {
368 		/* Continue building a non-connected subtree. */
369 		struct iosys_map *map = &parent->bo->vmap;
370 
371 		if (unlikely(xe_child))
372 			parent->base.children[offset] = &xe_child->base;
373 
374 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
375 		parent->num_live++;
376 	} else {
377 		/* Shared pt. Stage update. */
378 		unsigned int idx;
379 		struct xe_vm_pgtable_update *entry = upd->update;
380 
381 		idx = offset - entry->ofs;
382 		entry->pt_entries[idx].pt = xe_child;
383 		entry->pt_entries[idx].pte = pte;
384 		entry->qwords++;
385 	}
386 
387 	return 0;
388 }
389 
390 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
391 				   struct xe_pt_stage_bind_walk *xe_walk)
392 {
393 	u64 size, dma;
394 
395 	if (level > MAX_HUGEPTE_LEVEL)
396 		return false;
397 
398 	/* Does the virtual range requested cover a huge pte? */
399 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
400 		return false;
401 
402 	/* Does the DMA segment cover the whole pte? */
403 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
404 		return false;
405 
406 	/* null VMA's do not have dma addresses */
407 	if (xe_vma_is_null(xe_walk->vma))
408 		return true;
409 
410 	/* Is the DMA address huge PTE size aligned? */
411 	size = next - addr;
412 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
413 
414 	return IS_ALIGNED(dma, size);
415 }
416 
417 /*
418  * Scan the requested mapping to check whether it can be done entirely
419  * with 64K PTEs.
420  */
421 static bool
422 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
423 {
424 	struct xe_res_cursor curs = *xe_walk->curs;
425 
426 	if (!IS_ALIGNED(addr, SZ_64K))
427 		return false;
428 
429 	if (next > xe_walk->l0_end_addr)
430 		return false;
431 
432 	/* null VMA's do not have dma addresses */
433 	if (xe_vma_is_null(xe_walk->vma))
434 		return true;
435 
436 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
437 	for (; addr < next; addr += SZ_64K) {
438 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
439 			return false;
440 
441 		xe_res_next(&curs, SZ_64K);
442 	}
443 
444 	return addr == next;
445 }
446 
447 /*
448  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
449  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
450  * device to the PTE.
451  * This function determines whether the address is part of such a
452  * segment. For VRAM in normal pagetables, this is strictly necessary on
453  * some devices.
454  */
455 static bool
456 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
457 {
458 	/* Address is within an already found 64k region */
459 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
460 		return true;
461 
462 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
463 	xe_walk->addr_64K = addr;
464 
465 	return xe_walk->found_64K;
466 }
467 
468 static int
469 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
470 		       unsigned int level, u64 addr, u64 next,
471 		       struct xe_ptw **child,
472 		       enum page_walk_action *action,
473 		       struct xe_pt_walk *walk)
474 {
475 	struct xe_pt_stage_bind_walk *xe_walk =
476 		container_of(walk, typeof(*xe_walk), base);
477 	u16 pat_index = xe_walk->vma->pat_index;
478 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
479 	struct xe_vm *vm = xe_walk->vm;
480 	struct xe_pt *xe_child;
481 	bool covers;
482 	int ret = 0;
483 	u64 pte;
484 
485 	/* Is this a leaf entry ?*/
486 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
487 		struct xe_res_cursor *curs = xe_walk->curs;
488 		bool is_null = xe_vma_is_null(xe_walk->vma);
489 
490 		XE_WARN_ON(xe_walk->va_curs_start != addr);
491 
492 		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
493 						 xe_res_dma(curs) + xe_walk->dma_offset,
494 						 xe_walk->vma, pat_index, level);
495 		pte |= xe_walk->default_pte;
496 
497 		/*
498 		 * Set the XE_PTE_PS64 hint if possible, otherwise if
499 		 * this device *requires* 64K PTE size for VRAM, fail.
500 		 */
501 		if (level == 0 && !xe_parent->is_compact) {
502 			if (xe_pt_is_pte_ps64K(addr, next, xe_walk))
503 				pte |= XE_PTE_PS64;
504 			else if (XE_WARN_ON(xe_walk->needs_64K))
505 				return -EINVAL;
506 		}
507 
508 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
509 		if (unlikely(ret))
510 			return ret;
511 
512 		if (!is_null)
513 			xe_res_next(curs, next - addr);
514 		xe_walk->va_curs_start = next;
515 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
516 		*action = ACTION_CONTINUE;
517 
518 		return ret;
519 	}
520 
521 	/*
522 	 * Descending to lower level. Determine if we need to allocate a
523 	 * new page table or -directory, which we do if there is no
524 	 * previous one or there is one we can completely replace.
525 	 */
526 	if (level == 1) {
527 		walk->shifts = xe_normal_pt_shifts;
528 		xe_walk->l0_end_addr = next;
529 	}
530 
531 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
532 	if (covers || !*child) {
533 		u64 flags = 0;
534 
535 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
536 		if (IS_ERR(xe_child))
537 			return PTR_ERR(xe_child);
538 
539 		xe_pt_set_addr(xe_child,
540 			       round_down(addr, 1ull << walk->shifts[level]));
541 
542 		if (!covers)
543 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
544 
545 		*child = &xe_child->base;
546 
547 		/*
548 		 * Prefer the compact pagetable layout for L0 if possible.
549 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
550 		 * memory.
551 		 */
552 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
553 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
554 			walk->shifts = xe_compact_pt_shifts;
555 			flags |= XE_PDE_64K;
556 			xe_child->is_compact = true;
557 		}
558 
559 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
560 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
561 					 pte);
562 	}
563 
564 	*action = ACTION_SUBTREE;
565 	return ret;
566 }
567 
568 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
569 	.pt_entry = xe_pt_stage_bind_entry,
570 };
571 
572 /**
573  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
574  * range.
575  * @tile: The tile we're building for.
576  * @vma: The vma indicating the address range.
577  * @entries: Storage for the update entries used for connecting the tree to
578  * the main tree at commit time.
579  * @num_entries: On output contains the number of @entries used.
580  *
581  * This function builds a disconnected page-table tree for a given address
582  * range. The tree is connected to the main vm tree for the gpu using
583  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
584  * The function builds xe_vm_pgtable_update structures for already existing
585  * shared page-tables, and non-existing shared and non-shared page-tables
586  * are built and populated directly.
587  *
588  * Return 0 on success, negative error code on error.
589  */
590 static int
591 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
592 		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
593 {
594 	struct xe_device *xe = tile_to_xe(tile);
595 	struct xe_bo *bo = xe_vma_bo(vma);
596 	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
597 		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
598 	struct xe_res_cursor curs;
599 	struct xe_pt_stage_bind_walk xe_walk = {
600 		.base = {
601 			.ops = &xe_pt_stage_bind_ops,
602 			.shifts = xe_normal_pt_shifts,
603 			.max_level = XE_PT_HIGHEST_LEVEL,
604 		},
605 		.vm = xe_vma_vm(vma),
606 		.tile = tile,
607 		.curs = &curs,
608 		.va_curs_start = xe_vma_start(vma),
609 		.vma = vma,
610 		.wupd.entries = entries,
611 		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
612 	};
613 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
614 	int ret;
615 
616 	if (vma && (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) &&
617 	    (is_devmem || !IS_DGFX(xe)))
618 		xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
619 
620 	if (is_devmem) {
621 		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
622 		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
623 	}
624 
625 	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
626 		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
627 
628 	xe_bo_assert_held(bo);
629 
630 	if (!xe_vma_is_null(vma)) {
631 		if (xe_vma_is_userptr(vma))
632 			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
633 					xe_vma_size(vma), &curs);
634 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
635 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
636 				     xe_vma_size(vma), &curs);
637 		else
638 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
639 					xe_vma_size(vma), &curs);
640 	} else {
641 		curs.size = xe_vma_size(vma);
642 	}
643 
644 	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
645 			       xe_vma_end(vma), &xe_walk.base);
646 
647 	*num_entries = xe_walk.wupd.num_used_entries;
648 	return ret;
649 }
650 
651 /**
652  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
653  * shared pagetable.
654  * @addr: The start address within the non-shared pagetable.
655  * @end: The end address within the non-shared pagetable.
656  * @level: The level of the non-shared pagetable.
657  * @walk: Walk info. The function adjusts the walk action.
658  * @action: next action to perform (see enum page_walk_action)
659  * @offset: Ignored on input, First non-shared entry on output.
660  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
661  *
662  * A non-shared page-table has some entries that belong to the address range
663  * and others that don't. This function determines the entries that belong
664  * fully to the address range. Depending on level, some entries may
665  * partially belong to the address range (that can't happen at level 0).
666  * The function detects that and adjust those offsets to not include those
667  * partial entries. Iff it does detect partial entries, we know that there must
668  * be shared page tables also at lower levels, so it adjusts the walk action
669  * accordingly.
670  *
671  * Return: true if there were non-shared entries, false otherwise.
672  */
673 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
674 				    struct xe_pt_walk *walk,
675 				    enum page_walk_action *action,
676 				    pgoff_t *offset, pgoff_t *end_offset)
677 {
678 	u64 size = 1ull << walk->shifts[level];
679 
680 	*offset = xe_pt_offset(addr, level, walk);
681 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
682 
683 	if (!level)
684 		return true;
685 
686 	/*
687 	 * If addr or next are not size aligned, there are shared pts at lower
688 	 * level, so in that case traverse down the subtree
689 	 */
690 	*action = ACTION_CONTINUE;
691 	if (!IS_ALIGNED(addr, size)) {
692 		*action = ACTION_SUBTREE;
693 		(*offset)++;
694 	}
695 
696 	if (!IS_ALIGNED(end, size)) {
697 		*action = ACTION_SUBTREE;
698 		(*end_offset)--;
699 	}
700 
701 	return *end_offset > *offset;
702 }
703 
704 struct xe_pt_zap_ptes_walk {
705 	/** @base: The walk base-class */
706 	struct xe_pt_walk base;
707 
708 	/* Input parameters for the walk */
709 	/** @tile: The tile we're building for */
710 	struct xe_tile *tile;
711 
712 	/* Output */
713 	/** @needs_invalidate: Whether we need to invalidate TLB*/
714 	bool needs_invalidate;
715 };
716 
717 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
718 				unsigned int level, u64 addr, u64 next,
719 				struct xe_ptw **child,
720 				enum page_walk_action *action,
721 				struct xe_pt_walk *walk)
722 {
723 	struct xe_pt_zap_ptes_walk *xe_walk =
724 		container_of(walk, typeof(*xe_walk), base);
725 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
726 	pgoff_t end_offset;
727 
728 	XE_WARN_ON(!*child);
729 	XE_WARN_ON(!level && xe_child->is_compact);
730 
731 	/*
732 	 * Note that we're called from an entry callback, and we're dealing
733 	 * with the child of that entry rather than the parent, so need to
734 	 * adjust level down.
735 	 */
736 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
737 				    &end_offset)) {
738 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
739 			      offset * sizeof(u64), 0,
740 			      (end_offset - offset) * sizeof(u64));
741 		xe_walk->needs_invalidate = true;
742 	}
743 
744 	return 0;
745 }
746 
747 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
748 	.pt_entry = xe_pt_zap_ptes_entry,
749 };
750 
751 /**
752  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
753  * @tile: The tile we're zapping for.
754  * @vma: GPU VMA detailing address range.
755  *
756  * Eviction and Userptr invalidation needs to be able to zap the
757  * gpu ptes of a given address range in pagefaulting mode.
758  * In order to be able to do that, that function needs access to the shared
759  * page-table entrieaso it can either clear the leaf PTEs or
760  * clear the pointers to lower-level page-tables. The caller is required
761  * to hold the necessary locks to ensure neither the page-table connectivity
762  * nor the page-table entries of the range is updated from under us.
763  *
764  * Return: Whether ptes were actually updated and a TLB invalidation is
765  * required.
766  */
767 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
768 {
769 	struct xe_pt_zap_ptes_walk xe_walk = {
770 		.base = {
771 			.ops = &xe_pt_zap_ptes_ops,
772 			.shifts = xe_normal_pt_shifts,
773 			.max_level = XE_PT_HIGHEST_LEVEL,
774 		},
775 		.tile = tile,
776 	};
777 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
778 
779 	if (!(vma->tile_present & BIT(tile->id)))
780 		return false;
781 
782 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
783 				xe_vma_end(vma), &xe_walk.base);
784 
785 	return xe_walk.needs_invalidate;
786 }
787 
788 static void
789 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
790 		       struct iosys_map *map, void *data,
791 		       u32 qword_ofs, u32 num_qwords,
792 		       const struct xe_vm_pgtable_update *update)
793 {
794 	struct xe_pt_entry *ptes = update->pt_entries;
795 	u64 *ptr = data;
796 	u32 i;
797 
798 	for (i = 0; i < num_qwords; i++) {
799 		if (map)
800 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
801 				  sizeof(u64), u64, ptes[i].pte);
802 		else
803 			ptr[i] = ptes[i].pte;
804 	}
805 }
806 
807 static void xe_pt_abort_bind(struct xe_vma *vma,
808 			     struct xe_vm_pgtable_update *entries,
809 			     u32 num_entries)
810 {
811 	u32 i, j;
812 
813 	for (i = 0; i < num_entries; i++) {
814 		if (!entries[i].pt_entries)
815 			continue;
816 
817 		for (j = 0; j < entries[i].qwords; j++)
818 			xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL);
819 		kfree(entries[i].pt_entries);
820 	}
821 }
822 
823 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
824 {
825 	struct xe_vm *vm = xe_vma_vm(vma);
826 
827 	lockdep_assert_held(&vm->lock);
828 
829 	if (xe_vma_is_userptr(vma))
830 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
831 	else if (!xe_vma_is_null(vma))
832 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
833 
834 	xe_vm_assert_held(vm);
835 }
836 
837 static void xe_pt_commit_bind(struct xe_vma *vma,
838 			      struct xe_vm_pgtable_update *entries,
839 			      u32 num_entries, bool rebind,
840 			      struct llist_head *deferred)
841 {
842 	u32 i, j;
843 
844 	xe_pt_commit_locks_assert(vma);
845 
846 	for (i = 0; i < num_entries; i++) {
847 		struct xe_pt *pt = entries[i].pt;
848 		struct xe_pt_dir *pt_dir;
849 
850 		if (!rebind)
851 			pt->num_live += entries[i].qwords;
852 
853 		if (!pt->level) {
854 			kfree(entries[i].pt_entries);
855 			continue;
856 		}
857 
858 		pt_dir = as_xe_pt_dir(pt);
859 		for (j = 0; j < entries[i].qwords; j++) {
860 			u32 j_ = j + entries[i].ofs;
861 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
862 
863 			if (xe_pt_entry(pt_dir, j_))
864 				xe_pt_destroy(xe_pt_entry(pt_dir, j_),
865 					      xe_vma_vm(vma)->flags, deferred);
866 
867 			pt_dir->children[j_] = &newpte->base;
868 		}
869 		kfree(entries[i].pt_entries);
870 	}
871 }
872 
873 static int
874 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
875 		   struct xe_vm_pgtable_update *entries, u32 *num_entries,
876 		   bool rebind)
877 {
878 	int err;
879 
880 	*num_entries = 0;
881 	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
882 	if (!err)
883 		xe_tile_assert(tile, *num_entries);
884 	else /* abort! */
885 		xe_pt_abort_bind(vma, entries, *num_entries);
886 
887 	return err;
888 }
889 
890 static void xe_vm_dbg_print_entries(struct xe_device *xe,
891 				    const struct xe_vm_pgtable_update *entries,
892 				    unsigned int num_entries)
893 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
894 {
895 	unsigned int i;
896 
897 	vm_dbg(&xe->drm, "%u entries to update\n", num_entries);
898 	for (i = 0; i < num_entries; i++) {
899 		const struct xe_vm_pgtable_update *entry = &entries[i];
900 		struct xe_pt *xe_pt = entry->pt;
901 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
902 		u64 end;
903 		u64 start;
904 
905 		xe_assert(xe, !entry->pt->is_compact);
906 		start = entry->ofs * page_size;
907 		end = start + page_size * entry->qwords;
908 		vm_dbg(&xe->drm,
909 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
910 		       i, xe_pt->level, entry->ofs, entry->qwords,
911 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
912 	}
913 }
914 #else
915 {}
916 #endif
917 
918 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
919 
920 static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
921 {
922 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
923 	static u32 count;
924 
925 	if (count++ % divisor == divisor - 1) {
926 		struct xe_vm *vm = xe_vma_vm(&uvma->vma);
927 
928 		uvma->userptr.divisor = divisor << 1;
929 		spin_lock(&vm->userptr.invalidated_lock);
930 		list_move_tail(&uvma->userptr.invalidate_link,
931 			       &vm->userptr.invalidated);
932 		spin_unlock(&vm->userptr.invalidated_lock);
933 		return true;
934 	}
935 
936 	return false;
937 }
938 
939 #else
940 
941 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
942 {
943 	return false;
944 }
945 
946 #endif
947 
948 /**
949  * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks
950  * @base: Base we derive from.
951  * @bind: Whether this is a bind or an unbind operation. A bind operation
952  *        makes the pre-commit callback error with -EAGAIN if it detects a
953  *        pending invalidation.
954  * @locked: Whether the pre-commit callback locked the userptr notifier lock
955  *          and it needs unlocking.
956  */
957 struct xe_pt_migrate_pt_update {
958 	struct xe_migrate_pt_update base;
959 	bool bind;
960 	bool locked;
961 };
962 
963 /*
964  * This function adds the needed dependencies to a page-table update job
965  * to make sure racing jobs for separate bind engines don't race writing
966  * to the same page-table range, wreaking havoc. Initially use a single
967  * fence for the entire VM. An optimization would use smaller granularity.
968  */
969 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
970 				 struct xe_range_fence_tree *rftree,
971 				 u64 start, u64 last)
972 {
973 	struct xe_range_fence *rtfence;
974 	struct dma_fence *fence;
975 	int err;
976 
977 	rtfence = xe_range_fence_tree_first(rftree, start, last);
978 	while (rtfence) {
979 		fence = rtfence->fence;
980 
981 		if (!dma_fence_is_signaled(fence)) {
982 			/*
983 			 * Is this a CPU update? GPU is busy updating, so return
984 			 * an error
985 			 */
986 			if (!job)
987 				return -ETIME;
988 
989 			dma_fence_get(fence);
990 			err = drm_sched_job_add_dependency(&job->drm, fence);
991 			if (err)
992 				return err;
993 		}
994 
995 		rtfence = xe_range_fence_tree_next(rtfence, start, last);
996 	}
997 
998 	return 0;
999 }
1000 
1001 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1002 {
1003 	struct xe_range_fence_tree *rftree =
1004 		&xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id];
1005 
1006 	return xe_pt_vm_dependencies(pt_update->job, rftree,
1007 				     pt_update->start, pt_update->last);
1008 }
1009 
1010 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1011 {
1012 	struct xe_pt_migrate_pt_update *userptr_update =
1013 		container_of(pt_update, typeof(*userptr_update), base);
1014 	struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma);
1015 	unsigned long notifier_seq = uvma->userptr.notifier_seq;
1016 	struct xe_vm *vm = xe_vma_vm(&uvma->vma);
1017 	int err = xe_pt_vm_dependencies(pt_update->job,
1018 					&vm->rftree[pt_update->tile_id],
1019 					pt_update->start,
1020 					pt_update->last);
1021 
1022 	if (err)
1023 		return err;
1024 
1025 	userptr_update->locked = false;
1026 
1027 	/*
1028 	 * Wait until nobody is running the invalidation notifier, and
1029 	 * since we're exiting the loop holding the notifier lock,
1030 	 * nobody can proceed invalidating either.
1031 	 *
1032 	 * Note that we don't update the vma->userptr.notifier_seq since
1033 	 * we don't update the userptr pages.
1034 	 */
1035 	do {
1036 		down_read(&vm->userptr.notifier_lock);
1037 		if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1038 					     notifier_seq))
1039 			break;
1040 
1041 		up_read(&vm->userptr.notifier_lock);
1042 
1043 		if (userptr_update->bind)
1044 			return -EAGAIN;
1045 
1046 		notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier);
1047 	} while (true);
1048 
1049 	/* Inject errors to test_whether they are handled correctly */
1050 	if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) {
1051 		up_read(&vm->userptr.notifier_lock);
1052 		return -EAGAIN;
1053 	}
1054 
1055 	userptr_update->locked = true;
1056 
1057 	return 0;
1058 }
1059 
1060 static const struct xe_migrate_pt_update_ops bind_ops = {
1061 	.populate = xe_vm_populate_pgtable,
1062 	.pre_commit = xe_pt_pre_commit,
1063 };
1064 
1065 static const struct xe_migrate_pt_update_ops userptr_bind_ops = {
1066 	.populate = xe_vm_populate_pgtable,
1067 	.pre_commit = xe_pt_userptr_pre_commit,
1068 };
1069 
1070 struct invalidation_fence {
1071 	struct xe_gt_tlb_invalidation_fence base;
1072 	struct xe_gt *gt;
1073 	struct xe_vma *vma;
1074 	struct dma_fence *fence;
1075 	struct dma_fence_cb cb;
1076 	struct work_struct work;
1077 };
1078 
1079 static const char *
1080 invalidation_fence_get_driver_name(struct dma_fence *dma_fence)
1081 {
1082 	return "xe";
1083 }
1084 
1085 static const char *
1086 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence)
1087 {
1088 	return "invalidation_fence";
1089 }
1090 
1091 static const struct dma_fence_ops invalidation_fence_ops = {
1092 	.get_driver_name = invalidation_fence_get_driver_name,
1093 	.get_timeline_name = invalidation_fence_get_timeline_name,
1094 };
1095 
1096 static void invalidation_fence_cb(struct dma_fence *fence,
1097 				  struct dma_fence_cb *cb)
1098 {
1099 	struct invalidation_fence *ifence =
1100 		container_of(cb, struct invalidation_fence, cb);
1101 
1102 	trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base);
1103 	if (!ifence->fence->error) {
1104 		queue_work(system_wq, &ifence->work);
1105 	} else {
1106 		ifence->base.base.error = ifence->fence->error;
1107 		dma_fence_signal(&ifence->base.base);
1108 		dma_fence_put(&ifence->base.base);
1109 	}
1110 	dma_fence_put(ifence->fence);
1111 }
1112 
1113 static void invalidation_fence_work_func(struct work_struct *w)
1114 {
1115 	struct invalidation_fence *ifence =
1116 		container_of(w, struct invalidation_fence, work);
1117 
1118 	trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base);
1119 	xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma);
1120 }
1121 
1122 static int invalidation_fence_init(struct xe_gt *gt,
1123 				   struct invalidation_fence *ifence,
1124 				   struct dma_fence *fence,
1125 				   struct xe_vma *vma)
1126 {
1127 	int ret;
1128 
1129 	trace_xe_gt_tlb_invalidation_fence_create(&ifence->base);
1130 
1131 	spin_lock_irq(&gt->tlb_invalidation.lock);
1132 	dma_fence_init(&ifence->base.base, &invalidation_fence_ops,
1133 		       &gt->tlb_invalidation.lock,
1134 		       gt->tlb_invalidation.fence_context,
1135 		       ++gt->tlb_invalidation.fence_seqno);
1136 	spin_unlock_irq(&gt->tlb_invalidation.lock);
1137 
1138 	INIT_LIST_HEAD(&ifence->base.link);
1139 
1140 	dma_fence_get(&ifence->base.base);	/* Ref for caller */
1141 	ifence->fence = fence;
1142 	ifence->gt = gt;
1143 	ifence->vma = vma;
1144 
1145 	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1146 	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1147 	if (ret == -ENOENT) {
1148 		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1149 		invalidation_fence_work_func(&ifence->work);
1150 	} else if (ret) {
1151 		dma_fence_put(&ifence->base.base);	/* Caller ref */
1152 		dma_fence_put(&ifence->base.base);	/* Creation ref */
1153 	}
1154 
1155 	xe_gt_assert(gt, !ret || ret == -ENOENT);
1156 
1157 	return ret && ret != -ENOENT ? ret : 0;
1158 }
1159 
1160 static void xe_pt_calc_rfence_interval(struct xe_vma *vma,
1161 				       struct xe_pt_migrate_pt_update *update,
1162 				       struct xe_vm_pgtable_update *entries,
1163 				       u32 num_entries)
1164 {
1165 	int i, level = 0;
1166 
1167 	for (i = 0; i < num_entries; i++) {
1168 		const struct xe_vm_pgtable_update *entry = &entries[i];
1169 
1170 		if (entry->pt->level > level)
1171 			level = entry->pt->level;
1172 	}
1173 
1174 	/* Greedy (non-optimal) calculation but simple */
1175 	update->base.start = ALIGN_DOWN(xe_vma_start(vma),
1176 					0x1ull << xe_pt_shift(level));
1177 	update->base.last = ALIGN(xe_vma_end(vma),
1178 				  0x1ull << xe_pt_shift(level)) - 1;
1179 }
1180 
1181 /**
1182  * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma
1183  * address range.
1184  * @tile: The tile to bind for.
1185  * @vma: The vma to bind.
1186  * @q: The exec_queue with which to do pipelined page-table updates.
1187  * @syncs: Entries to sync on before binding the built tree to the live vm tree.
1188  * @num_syncs: Number of @sync entries.
1189  * @rebind: Whether we're rebinding this vma to the same address range without
1190  * an unbind in-between.
1191  *
1192  * This function builds a page-table tree (see xe_pt_stage_bind() for more
1193  * information on page-table building), and the xe_vm_pgtable_update entries
1194  * abstracting the operations needed to attach it to the main vm tree. It
1195  * then takes the relevant locks and updates the metadata side of the main
1196  * vm tree and submits the operations for pipelined attachment of the
1197  * gpu page-table to the vm main tree, (which can be done either by the
1198  * cpu and the GPU).
1199  *
1200  * Return: A valid dma-fence representing the pipelined attachment operation
1201  * on success, an error pointer on error.
1202  */
1203 struct dma_fence *
1204 __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1205 		 struct xe_sync_entry *syncs, u32 num_syncs,
1206 		 bool rebind)
1207 {
1208 	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1209 	struct xe_pt_migrate_pt_update bind_pt_update = {
1210 		.base = {
1211 			.ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops,
1212 			.vma = vma,
1213 			.tile_id = tile->id,
1214 		},
1215 		.bind = true,
1216 	};
1217 	struct xe_vm *vm = xe_vma_vm(vma);
1218 	u32 num_entries;
1219 	struct dma_fence *fence;
1220 	struct invalidation_fence *ifence = NULL;
1221 	struct xe_range_fence *rfence;
1222 	int err;
1223 
1224 	bind_pt_update.locked = false;
1225 	xe_bo_assert_held(xe_vma_bo(vma));
1226 	xe_vm_assert_held(vm);
1227 
1228 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1229 	       "Preparing bind, with range [%llx...%llx) engine %p.\n",
1230 	       xe_vma_start(vma), xe_vma_end(vma), q);
1231 
1232 	err = xe_pt_prepare_bind(tile, vma, entries, &num_entries, rebind);
1233 	if (err)
1234 		goto err;
1235 	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1236 
1237 	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1238 	xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries,
1239 				   num_entries);
1240 
1241 	/*
1242 	 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1243 	 * cached PTEs point to freed memory. on LR vms this is done
1244 	 * automatically when the context is re-enabled by the rebind worker,
1245 	 * or in fault mode it was invalidated on PTE zapping.
1246 	 *
1247 	 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1248 	 * PTE is already cached in the TLB so it needs to be invalidated.
1249 	 * on !LR VMs this is done in the ring ops preceding a batch, but on
1250 	 * non-faulting LR, in particular on user-space batch buffer chaining,
1251 	 * it needs to be done here.
1252 	 */
1253 	if ((rebind && !xe_vm_in_lr_mode(vm) && !vm->batch_invalidate_tlb) ||
1254 	    (!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) {
1255 		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1256 		if (!ifence)
1257 			return ERR_PTR(-ENOMEM);
1258 	}
1259 
1260 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1261 	if (!rfence) {
1262 		kfree(ifence);
1263 		return ERR_PTR(-ENOMEM);
1264 	}
1265 
1266 	fence = xe_migrate_update_pgtables(tile->migrate,
1267 					   vm, xe_vma_bo(vma), q,
1268 					   entries, num_entries,
1269 					   syncs, num_syncs,
1270 					   &bind_pt_update.base);
1271 	if (!IS_ERR(fence)) {
1272 		bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND;
1273 		LLIST_HEAD(deferred);
1274 		int err;
1275 
1276 		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1277 					    &xe_range_fence_kfree_ops,
1278 					    bind_pt_update.base.start,
1279 					    bind_pt_update.base.last, fence);
1280 		if (err)
1281 			dma_fence_wait(fence, false);
1282 
1283 		/* TLB invalidation must be done before signaling rebind */
1284 		if (ifence) {
1285 			int err = invalidation_fence_init(tile->primary_gt, ifence, fence,
1286 							  vma);
1287 			if (err) {
1288 				dma_fence_put(fence);
1289 				kfree(ifence);
1290 				return ERR_PTR(err);
1291 			}
1292 			fence = &ifence->base.base;
1293 		}
1294 
1295 		/* add shared fence now for pagetable delayed destroy */
1296 		dma_resv_add_fence(xe_vm_resv(vm), fence, !rebind &&
1297 				   last_munmap_rebind ?
1298 				   DMA_RESV_USAGE_KERNEL :
1299 				   DMA_RESV_USAGE_BOOKKEEP);
1300 
1301 		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1302 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1303 					   DMA_RESV_USAGE_BOOKKEEP);
1304 		xe_pt_commit_bind(vma, entries, num_entries, rebind,
1305 				  bind_pt_update.locked ? &deferred : NULL);
1306 
1307 		/* This vma is live (again?) now */
1308 		vma->tile_present |= BIT(tile->id);
1309 
1310 		if (bind_pt_update.locked) {
1311 			to_userptr_vma(vma)->userptr.initial_bind = true;
1312 			up_read(&vm->userptr.notifier_lock);
1313 			xe_bo_put_commit(&deferred);
1314 		}
1315 		if (!rebind && last_munmap_rebind &&
1316 		    xe_vm_in_preempt_fence_mode(vm))
1317 			xe_vm_queue_rebind_worker(vm);
1318 	} else {
1319 		kfree(rfence);
1320 		kfree(ifence);
1321 		if (bind_pt_update.locked)
1322 			up_read(&vm->userptr.notifier_lock);
1323 		xe_pt_abort_bind(vma, entries, num_entries);
1324 	}
1325 
1326 	return fence;
1327 
1328 err:
1329 	return ERR_PTR(err);
1330 }
1331 
1332 struct xe_pt_stage_unbind_walk {
1333 	/** @base: The pagewalk base-class. */
1334 	struct xe_pt_walk base;
1335 
1336 	/* Input parameters for the walk */
1337 	/** @tile: The tile we're unbinding from. */
1338 	struct xe_tile *tile;
1339 
1340 	/**
1341 	 * @modified_start: Walk range start, modified to include any
1342 	 * shared pagetables that we're the only user of and can thus
1343 	 * treat as private.
1344 	 */
1345 	u64 modified_start;
1346 	/** @modified_end: Walk range start, modified like @modified_start. */
1347 	u64 modified_end;
1348 
1349 	/* Output */
1350 	/* @wupd: Structure to track the page-table updates we're building */
1351 	struct xe_walk_update wupd;
1352 };
1353 
1354 /*
1355  * Check whether this range is the only one populating this pagetable,
1356  * and in that case, update the walk range checks so that higher levels don't
1357  * view us as a shared pagetable.
1358  */
1359 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1360 			     const struct xe_pt *child,
1361 			     enum page_walk_action *action,
1362 			     struct xe_pt_walk *walk)
1363 {
1364 	struct xe_pt_stage_unbind_walk *xe_walk =
1365 		container_of(walk, typeof(*xe_walk), base);
1366 	unsigned int shift = walk->shifts[level];
1367 	u64 size = 1ull << shift;
1368 
1369 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1370 	    ((next - addr) >> shift) == child->num_live) {
1371 		u64 size = 1ull << walk->shifts[level + 1];
1372 
1373 		*action = ACTION_CONTINUE;
1374 
1375 		if (xe_walk->modified_start >= addr)
1376 			xe_walk->modified_start = round_down(addr, size);
1377 		if (xe_walk->modified_end <= next)
1378 			xe_walk->modified_end = round_up(next, size);
1379 
1380 		return true;
1381 	}
1382 
1383 	return false;
1384 }
1385 
1386 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1387 				    unsigned int level, u64 addr, u64 next,
1388 				    struct xe_ptw **child,
1389 				    enum page_walk_action *action,
1390 				    struct xe_pt_walk *walk)
1391 {
1392 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1393 
1394 	XE_WARN_ON(!*child);
1395 	XE_WARN_ON(!level && xe_child->is_compact);
1396 
1397 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1398 
1399 	return 0;
1400 }
1401 
1402 static int
1403 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1404 				unsigned int level, u64 addr, u64 next,
1405 				struct xe_ptw **child,
1406 				enum page_walk_action *action,
1407 				struct xe_pt_walk *walk)
1408 {
1409 	struct xe_pt_stage_unbind_walk *xe_walk =
1410 		container_of(walk, typeof(*xe_walk), base);
1411 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1412 	pgoff_t end_offset;
1413 	u64 size = 1ull << walk->shifts[--level];
1414 
1415 	if (!IS_ALIGNED(addr, size))
1416 		addr = xe_walk->modified_start;
1417 	if (!IS_ALIGNED(next, size))
1418 		next = xe_walk->modified_end;
1419 
1420 	/* Parent == *child is the root pt. Don't kill it. */
1421 	if (parent != *child &&
1422 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1423 		return 0;
1424 
1425 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1426 				     &end_offset))
1427 		return 0;
1428 
1429 	(void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false);
1430 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1431 
1432 	return 0;
1433 }
1434 
1435 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1436 	.pt_entry = xe_pt_stage_unbind_entry,
1437 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1438 };
1439 
1440 /**
1441  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1442  * operation
1443  * @tile: The tile we're unbinding for.
1444  * @vma: The vma we're unbinding.
1445  * @entries: Caller-provided storage for the update structures.
1446  *
1447  * Builds page-table update structures for an unbind operation. The function
1448  * will attempt to remove all page-tables that we're the only user
1449  * of, and for that to work, the unbind operation must be committed in the
1450  * same critical section that blocks racing binds to the same page-table tree.
1451  *
1452  * Return: The number of entries used.
1453  */
1454 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1455 				       struct xe_vm_pgtable_update *entries)
1456 {
1457 	struct xe_pt_stage_unbind_walk xe_walk = {
1458 		.base = {
1459 			.ops = &xe_pt_stage_unbind_ops,
1460 			.shifts = xe_normal_pt_shifts,
1461 			.max_level = XE_PT_HIGHEST_LEVEL,
1462 		},
1463 		.tile = tile,
1464 		.modified_start = xe_vma_start(vma),
1465 		.modified_end = xe_vma_end(vma),
1466 		.wupd.entries = entries,
1467 	};
1468 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1469 
1470 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1471 				xe_vma_end(vma), &xe_walk.base);
1472 
1473 	return xe_walk.wupd.num_used_entries;
1474 }
1475 
1476 static void
1477 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1478 				  struct xe_tile *tile, struct iosys_map *map,
1479 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1480 				  const struct xe_vm_pgtable_update *update)
1481 {
1482 	struct xe_vma *vma = pt_update->vma;
1483 	u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level);
1484 	int i;
1485 
1486 	if (map && map->is_iomem)
1487 		for (i = 0; i < num_qwords; ++i)
1488 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1489 				  sizeof(u64), u64, empty);
1490 	else if (map)
1491 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1492 			 num_qwords);
1493 	else
1494 		memset64(ptr, empty, num_qwords);
1495 }
1496 
1497 static void
1498 xe_pt_commit_unbind(struct xe_vma *vma,
1499 		    struct xe_vm_pgtable_update *entries, u32 num_entries,
1500 		    struct llist_head *deferred)
1501 {
1502 	u32 j;
1503 
1504 	xe_pt_commit_locks_assert(vma);
1505 
1506 	for (j = 0; j < num_entries; ++j) {
1507 		struct xe_vm_pgtable_update *entry = &entries[j];
1508 		struct xe_pt *pt = entry->pt;
1509 
1510 		pt->num_live -= entry->qwords;
1511 		if (pt->level) {
1512 			struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1513 			u32 i;
1514 
1515 			for (i = entry->ofs; i < entry->ofs + entry->qwords;
1516 			     i++) {
1517 				if (xe_pt_entry(pt_dir, i))
1518 					xe_pt_destroy(xe_pt_entry(pt_dir, i),
1519 						      xe_vma_vm(vma)->flags, deferred);
1520 
1521 				pt_dir->children[i] = NULL;
1522 			}
1523 		}
1524 	}
1525 }
1526 
1527 static const struct xe_migrate_pt_update_ops unbind_ops = {
1528 	.populate = xe_migrate_clear_pgtable_callback,
1529 	.pre_commit = xe_pt_pre_commit,
1530 };
1531 
1532 static const struct xe_migrate_pt_update_ops userptr_unbind_ops = {
1533 	.populate = xe_migrate_clear_pgtable_callback,
1534 	.pre_commit = xe_pt_userptr_pre_commit,
1535 };
1536 
1537 /**
1538  * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma
1539  * address range.
1540  * @tile: The tile to unbind for.
1541  * @vma: The vma to unbind.
1542  * @q: The exec_queue with which to do pipelined page-table updates.
1543  * @syncs: Entries to sync on before disconnecting the tree to be destroyed.
1544  * @num_syncs: Number of @sync entries.
1545  *
1546  * This function builds a the xe_vm_pgtable_update entries abstracting the
1547  * operations needed to detach the page-table tree to be destroyed from the
1548  * man vm tree.
1549  * It then takes the relevant locks and submits the operations for
1550  * pipelined detachment of the gpu page-table from  the vm main tree,
1551  * (which can be done either by the cpu and the GPU), Finally it frees the
1552  * detached page-table tree.
1553  *
1554  * Return: A valid dma-fence representing the pipelined detachment operation
1555  * on success, an error pointer on error.
1556  */
1557 struct dma_fence *
1558 __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1559 		   struct xe_sync_entry *syncs, u32 num_syncs)
1560 {
1561 	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1562 	struct xe_pt_migrate_pt_update unbind_pt_update = {
1563 		.base = {
1564 			.ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops :
1565 			&unbind_ops,
1566 			.vma = vma,
1567 			.tile_id = tile->id,
1568 		},
1569 	};
1570 	struct xe_vm *vm = xe_vma_vm(vma);
1571 	u32 num_entries;
1572 	struct dma_fence *fence = NULL;
1573 	struct invalidation_fence *ifence;
1574 	struct xe_range_fence *rfence;
1575 
1576 	LLIST_HEAD(deferred);
1577 
1578 	xe_bo_assert_held(xe_vma_bo(vma));
1579 	xe_vm_assert_held(vm);
1580 
1581 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1582 	       "Preparing unbind, with range [%llx...%llx) engine %p.\n",
1583 	       xe_vma_start(vma), xe_vma_end(vma), q);
1584 
1585 	num_entries = xe_pt_stage_unbind(tile, vma, entries);
1586 	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1587 
1588 	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1589 	xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries,
1590 				   num_entries);
1591 
1592 	ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1593 	if (!ifence)
1594 		return ERR_PTR(-ENOMEM);
1595 
1596 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1597 	if (!rfence) {
1598 		kfree(ifence);
1599 		return ERR_PTR(-ENOMEM);
1600 	}
1601 
1602 	/*
1603 	 * Even if we were already evicted and unbind to destroy, we need to
1604 	 * clear again here. The eviction may have updated pagetables at a
1605 	 * lower level, because it needs to be more conservative.
1606 	 */
1607 	fence = xe_migrate_update_pgtables(tile->migrate,
1608 					   vm, NULL, q ? q :
1609 					   vm->q[tile->id],
1610 					   entries, num_entries,
1611 					   syncs, num_syncs,
1612 					   &unbind_pt_update.base);
1613 	if (!IS_ERR(fence)) {
1614 		int err;
1615 
1616 		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1617 					    &xe_range_fence_kfree_ops,
1618 					    unbind_pt_update.base.start,
1619 					    unbind_pt_update.base.last, fence);
1620 		if (err)
1621 			dma_fence_wait(fence, false);
1622 
1623 		/* TLB invalidation must be done before signaling unbind */
1624 		err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma);
1625 		if (err) {
1626 			dma_fence_put(fence);
1627 			kfree(ifence);
1628 			return ERR_PTR(err);
1629 		}
1630 		fence = &ifence->base.base;
1631 
1632 		/* add shared fence now for pagetable delayed destroy */
1633 		dma_resv_add_fence(xe_vm_resv(vm), fence,
1634 				   DMA_RESV_USAGE_BOOKKEEP);
1635 
1636 		/* This fence will be installed by caller when doing eviction */
1637 		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1638 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1639 					   DMA_RESV_USAGE_BOOKKEEP);
1640 		xe_pt_commit_unbind(vma, entries, num_entries,
1641 				    unbind_pt_update.locked ? &deferred : NULL);
1642 		vma->tile_present &= ~BIT(tile->id);
1643 	} else {
1644 		kfree(rfence);
1645 		kfree(ifence);
1646 	}
1647 
1648 	if (!vma->tile_present)
1649 		list_del_init(&vma->combined_links.rebind);
1650 
1651 	if (unbind_pt_update.locked) {
1652 		xe_tile_assert(tile, xe_vma_is_userptr(vma));
1653 
1654 		if (!vma->tile_present) {
1655 			spin_lock(&vm->userptr.invalidated_lock);
1656 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1657 			spin_unlock(&vm->userptr.invalidated_lock);
1658 		}
1659 		up_read(&vm->userptr.notifier_lock);
1660 		xe_bo_put_commit(&deferred);
1661 	}
1662 
1663 	return fence;
1664 }
1665