1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <linux/dma-fence-array.h> 7 8 #include "xe_pt.h" 9 10 #include "regs/xe_gtt_defs.h" 11 #include "xe_bo.h" 12 #include "xe_device.h" 13 #include "xe_drm_client.h" 14 #include "xe_exec_queue.h" 15 #include "xe_gt.h" 16 #include "xe_gt_tlb_invalidation.h" 17 #include "xe_migrate.h" 18 #include "xe_pt_types.h" 19 #include "xe_pt_walk.h" 20 #include "xe_res_cursor.h" 21 #include "xe_sched_job.h" 22 #include "xe_sync.h" 23 #include "xe_svm.h" 24 #include "xe_trace.h" 25 #include "xe_ttm_stolen_mgr.h" 26 #include "xe_vm.h" 27 28 struct xe_pt_dir { 29 struct xe_pt pt; 30 /** @children: Array of page-table child nodes */ 31 struct xe_ptw *children[XE_PDES]; 32 /** @staging: Array of page-table staging nodes */ 33 struct xe_ptw *staging[XE_PDES]; 34 }; 35 36 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 37 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 38 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 39 #else 40 #define xe_pt_set_addr(__xe_pt, __addr) 41 #define xe_pt_addr(__xe_pt) 0ull 42 #endif 43 44 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 45 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 46 47 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 48 49 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 50 { 51 return container_of(pt, struct xe_pt_dir, pt); 52 } 53 54 static struct xe_pt * 55 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index) 56 { 57 return container_of(pt_dir->staging[index], struct xe_pt, base); 58 } 59 60 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 61 unsigned int level) 62 { 63 struct xe_device *xe = tile_to_xe(tile); 64 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 65 u8 id = tile->id; 66 67 if (!xe_vm_has_scratch(vm)) 68 return 0; 69 70 if (level > MAX_HUGEPTE_LEVEL) 71 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 72 0, pat_index); 73 74 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 75 XE_PTE_NULL; 76 } 77 78 static void xe_pt_free(struct xe_pt *pt) 79 { 80 if (pt->level) 81 kfree(as_xe_pt_dir(pt)); 82 else 83 kfree(pt); 84 } 85 86 /** 87 * xe_pt_create() - Create a page-table. 88 * @vm: The vm to create for. 89 * @tile: The tile to create for. 90 * @level: The page-table level. 91 * 92 * Allocate and initialize a single struct xe_pt metadata structure. Also 93 * create the corresponding page-table bo, but don't initialize it. If the 94 * level is grater than zero, then it's assumed to be a directory page- 95 * table and the directory structure is also allocated and initialized to 96 * NULL pointers. 97 * 98 * Return: A valid struct xe_pt pointer on success, Pointer error code on 99 * error. 100 */ 101 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 102 unsigned int level) 103 { 104 struct xe_pt *pt; 105 struct xe_bo *bo; 106 int err; 107 108 if (level) { 109 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 110 111 pt = (dir) ? &dir->pt : NULL; 112 } else { 113 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 114 } 115 if (!pt) 116 return ERR_PTR(-ENOMEM); 117 118 pt->level = level; 119 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 120 ttm_bo_type_kernel, 121 XE_BO_FLAG_VRAM_IF_DGFX(tile) | 122 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 123 XE_BO_FLAG_PINNED | 124 XE_BO_FLAG_NO_RESV_EVICT | 125 XE_BO_FLAG_PAGETABLE); 126 if (IS_ERR(bo)) { 127 err = PTR_ERR(bo); 128 goto err_kfree; 129 } 130 pt->bo = bo; 131 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 132 pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL; 133 134 if (vm->xef) 135 xe_drm_client_add_bo(vm->xef->client, pt->bo); 136 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 137 138 return pt; 139 140 err_kfree: 141 xe_pt_free(pt); 142 return ERR_PTR(err); 143 } 144 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO); 145 146 /** 147 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 148 * entries. 149 * @tile: The tile the scratch pagetable of which to use. 150 * @vm: The vm we populate for. 151 * @pt: The pagetable the bo of which to initialize. 152 * 153 * Populate the page-table bo of @pt with entries pointing into the tile's 154 * scratch page-table tree if any. Otherwise populate with zeros. 155 */ 156 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 157 struct xe_pt *pt) 158 { 159 struct iosys_map *map = &pt->bo->vmap; 160 u64 empty; 161 int i; 162 163 if (!xe_vm_has_scratch(vm)) { 164 /* 165 * FIXME: Some memory is allocated already allocated to zero? 166 * Find out which memory that is and avoid this memset... 167 */ 168 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 169 } else { 170 empty = __xe_pt_empty_pte(tile, vm, pt->level); 171 for (i = 0; i < XE_PDES; i++) 172 xe_pt_write(vm->xe, map, i, empty); 173 } 174 } 175 176 /** 177 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 178 * a page-table at a certain level. 179 * @level: The level. 180 * 181 * Return: The ilog2 value of the size of the address range of a page-table 182 * at level @level. 183 */ 184 unsigned int xe_pt_shift(unsigned int level) 185 { 186 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 187 } 188 189 /** 190 * xe_pt_destroy() - Destroy a page-table tree. 191 * @pt: The root of the page-table tree to destroy. 192 * @flags: vm flags. Currently unused. 193 * @deferred: List head of lockless list for deferred putting. NULL for 194 * immediate putting. 195 * 196 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 197 * and finally frees @pt. TODO: Can we remove the @flags argument? 198 */ 199 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 200 { 201 int i; 202 203 if (!pt) 204 return; 205 206 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 207 xe_bo_unpin(pt->bo); 208 xe_bo_put_deferred(pt->bo, deferred); 209 210 if (pt->level > 0 && pt->num_live) { 211 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 212 213 for (i = 0; i < XE_PDES; i++) { 214 if (xe_pt_entry_staging(pt_dir, i)) 215 xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags, 216 deferred); 217 } 218 } 219 xe_pt_free(pt); 220 } 221 222 /** 223 * xe_pt_clear() - Clear a page-table. 224 * @xe: xe device. 225 * @pt: The page-table. 226 * 227 * Clears page-table by setting to zero. 228 */ 229 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt) 230 { 231 struct iosys_map *map = &pt->bo->vmap; 232 233 xe_map_memset(xe, map, 0, 0, SZ_4K); 234 } 235 236 /** 237 * DOC: Pagetable building 238 * 239 * Below we use the term "page-table" for both page-directories, containing 240 * pointers to lower level page-directories or page-tables, and level 0 241 * page-tables that contain only page-table-entries pointing to memory pages. 242 * 243 * When inserting an address range in an already existing page-table tree 244 * there will typically be a set of page-tables that are shared with other 245 * address ranges, and a set that are private to this address range. 246 * The set of shared page-tables can be at most two per level, 247 * and those can't be updated immediately because the entries of those 248 * page-tables may still be in use by the gpu for other mappings. Therefore 249 * when inserting entries into those, we instead stage those insertions by 250 * adding insertion data into struct xe_vm_pgtable_update structures. This 251 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 252 * added in a separate commit step. CPU-data is committed while still under the 253 * vm lock, the object lock and for userptr, the notifier lock in read mode. 254 * The GPU async data is committed either by the GPU or CPU after fulfilling 255 * relevant dependencies. 256 * For non-shared page-tables (and, in fact, for shared ones that aren't 257 * existing at the time of staging), we add the data in-place without the 258 * special update structures. This private part of the page-table tree will 259 * remain disconnected from the vm page-table tree until data is committed to 260 * the shared page tables of the vm tree in the commit phase. 261 */ 262 263 struct xe_pt_update { 264 /** @update: The update structure we're building for this parent. */ 265 struct xe_vm_pgtable_update *update; 266 /** @parent: The parent. Used to detect a parent change. */ 267 struct xe_pt *parent; 268 /** @preexisting: Whether the parent was pre-existing or allocated */ 269 bool preexisting; 270 }; 271 272 struct xe_pt_stage_bind_walk { 273 /** base: The base class. */ 274 struct xe_pt_walk base; 275 276 /* Input parameters for the walk */ 277 /** @vm: The vm we're building for. */ 278 struct xe_vm *vm; 279 /** @tile: The tile we're building for. */ 280 struct xe_tile *tile; 281 /** @default_pte: PTE flag only template. No address is associated */ 282 u64 default_pte; 283 /** @dma_offset: DMA offset to add to the PTE. */ 284 u64 dma_offset; 285 /** 286 * @needs_64k: This address range enforces 64K alignment and 287 * granularity. 288 */ 289 bool needs_64K; 290 /** 291 * @vma: VMA being mapped 292 */ 293 struct xe_vma *vma; 294 295 /* Also input, but is updated during the walk*/ 296 /** @curs: The DMA address cursor. */ 297 struct xe_res_cursor *curs; 298 /** @va_curs_start: The Virtual address corresponding to @curs->start */ 299 u64 va_curs_start; 300 301 /* Output */ 302 struct xe_walk_update { 303 /** @wupd.entries: Caller provided storage. */ 304 struct xe_vm_pgtable_update *entries; 305 /** @wupd.num_used_entries: Number of update @entries used. */ 306 unsigned int num_used_entries; 307 /** @wupd.updates: Tracks the update entry at a given level */ 308 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 309 } wupd; 310 311 /* Walk state */ 312 /** 313 * @l0_end_addr: The end address of the current l0 leaf. Used for 314 * 64K granularity detection. 315 */ 316 u64 l0_end_addr; 317 /** @addr_64K: The start address of the current 64K chunk. */ 318 u64 addr_64K; 319 /** @found_64: Whether @add_64K actually points to a 64K chunk. */ 320 bool found_64K; 321 }; 322 323 static int 324 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 325 pgoff_t offset, bool alloc_entries) 326 { 327 struct xe_pt_update *upd = &wupd->updates[parent->level]; 328 struct xe_vm_pgtable_update *entry; 329 330 /* 331 * For *each level*, we could only have one active 332 * struct xt_pt_update at any one time. Once we move on to a 333 * new parent and page-directory, the old one is complete, and 334 * updates are either already stored in the build tree or in 335 * @wupd->entries 336 */ 337 if (likely(upd->parent == parent)) 338 return 0; 339 340 upd->parent = parent; 341 upd->preexisting = true; 342 343 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 344 return -EINVAL; 345 346 entry = wupd->entries + wupd->num_used_entries++; 347 upd->update = entry; 348 entry->ofs = offset; 349 entry->pt_bo = parent->bo; 350 entry->pt = parent; 351 entry->flags = 0; 352 entry->qwords = 0; 353 entry->pt_bo->update_index = -1; 354 355 if (alloc_entries) { 356 entry->pt_entries = kmalloc_array(XE_PDES, 357 sizeof(*entry->pt_entries), 358 GFP_KERNEL); 359 if (!entry->pt_entries) 360 return -ENOMEM; 361 } 362 363 return 0; 364 } 365 366 /* 367 * NOTE: This is a very frequently called function so we allow ourselves 368 * to annotate (using branch prediction hints) the fastpath of updating a 369 * non-pre-existing pagetable with leaf ptes. 370 */ 371 static int 372 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 373 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 374 { 375 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 376 struct xe_pt_update *child_upd = xe_child ? 377 &xe_walk->wupd.updates[xe_child->level] : NULL; 378 int ret; 379 380 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 381 if (unlikely(ret)) 382 return ret; 383 384 /* 385 * Register this new pagetable so that it won't be recognized as 386 * a shared pagetable by a subsequent insertion. 387 */ 388 if (unlikely(child_upd)) { 389 child_upd->update = NULL; 390 child_upd->parent = xe_child; 391 child_upd->preexisting = false; 392 } 393 394 if (likely(!upd->preexisting)) { 395 /* Continue building a non-connected subtree. */ 396 struct iosys_map *map = &parent->bo->vmap; 397 398 if (unlikely(xe_child)) { 399 parent->base.children[offset] = &xe_child->base; 400 parent->base.staging[offset] = &xe_child->base; 401 } 402 403 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 404 parent->num_live++; 405 } else { 406 /* Shared pt. Stage update. */ 407 unsigned int idx; 408 struct xe_vm_pgtable_update *entry = upd->update; 409 410 idx = offset - entry->ofs; 411 entry->pt_entries[idx].pt = xe_child; 412 entry->pt_entries[idx].pte = pte; 413 entry->qwords++; 414 } 415 416 return 0; 417 } 418 419 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 420 struct xe_pt_stage_bind_walk *xe_walk) 421 { 422 u64 size, dma; 423 424 if (level > MAX_HUGEPTE_LEVEL) 425 return false; 426 427 /* Does the virtual range requested cover a huge pte? */ 428 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 429 return false; 430 431 /* Does the DMA segment cover the whole pte? */ 432 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 433 return false; 434 435 /* null VMA's do not have dma addresses */ 436 if (xe_vma_is_null(xe_walk->vma)) 437 return true; 438 439 /* Is the DMA address huge PTE size aligned? */ 440 size = next - addr; 441 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 442 443 return IS_ALIGNED(dma, size); 444 } 445 446 /* 447 * Scan the requested mapping to check whether it can be done entirely 448 * with 64K PTEs. 449 */ 450 static bool 451 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 452 { 453 struct xe_res_cursor curs = *xe_walk->curs; 454 455 if (!IS_ALIGNED(addr, SZ_64K)) 456 return false; 457 458 if (next > xe_walk->l0_end_addr) 459 return false; 460 461 /* null VMA's do not have dma addresses */ 462 if (xe_vma_is_null(xe_walk->vma)) 463 return true; 464 465 xe_res_next(&curs, addr - xe_walk->va_curs_start); 466 for (; addr < next; addr += SZ_64K) { 467 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 468 return false; 469 470 xe_res_next(&curs, SZ_64K); 471 } 472 473 return addr == next; 474 } 475 476 /* 477 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 478 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 479 * device to the PTE. 480 * This function determines whether the address is part of such a 481 * segment. For VRAM in normal pagetables, this is strictly necessary on 482 * some devices. 483 */ 484 static bool 485 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 486 { 487 /* Address is within an already found 64k region */ 488 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 489 return true; 490 491 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 492 xe_walk->addr_64K = addr; 493 494 return xe_walk->found_64K; 495 } 496 497 static int 498 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 499 unsigned int level, u64 addr, u64 next, 500 struct xe_ptw **child, 501 enum page_walk_action *action, 502 struct xe_pt_walk *walk) 503 { 504 struct xe_pt_stage_bind_walk *xe_walk = 505 container_of(walk, typeof(*xe_walk), base); 506 u16 pat_index = xe_walk->vma->pat_index; 507 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 508 struct xe_vm *vm = xe_walk->vm; 509 struct xe_pt *xe_child; 510 bool covers; 511 int ret = 0; 512 u64 pte; 513 514 /* Is this a leaf entry ?*/ 515 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 516 struct xe_res_cursor *curs = xe_walk->curs; 517 bool is_null = xe_vma_is_null(xe_walk->vma); 518 519 XE_WARN_ON(xe_walk->va_curs_start != addr); 520 521 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 522 xe_res_dma(curs) + xe_walk->dma_offset, 523 xe_walk->vma, pat_index, level); 524 pte |= xe_walk->default_pte; 525 526 /* 527 * Set the XE_PTE_PS64 hint if possible, otherwise if 528 * this device *requires* 64K PTE size for VRAM, fail. 529 */ 530 if (level == 0 && !xe_parent->is_compact) { 531 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 532 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K; 533 pte |= XE_PTE_PS64; 534 } else if (XE_WARN_ON(xe_walk->needs_64K)) { 535 return -EINVAL; 536 } 537 } 538 539 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 540 if (unlikely(ret)) 541 return ret; 542 543 if (!is_null) 544 xe_res_next(curs, next - addr); 545 xe_walk->va_curs_start = next; 546 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 547 *action = ACTION_CONTINUE; 548 549 return ret; 550 } 551 552 /* 553 * Descending to lower level. Determine if we need to allocate a 554 * new page table or -directory, which we do if there is no 555 * previous one or there is one we can completely replace. 556 */ 557 if (level == 1) { 558 walk->shifts = xe_normal_pt_shifts; 559 xe_walk->l0_end_addr = next; 560 } 561 562 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 563 if (covers || !*child) { 564 u64 flags = 0; 565 566 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 567 if (IS_ERR(xe_child)) 568 return PTR_ERR(xe_child); 569 570 xe_pt_set_addr(xe_child, 571 round_down(addr, 1ull << walk->shifts[level])); 572 573 if (!covers) 574 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 575 576 *child = &xe_child->base; 577 578 /* 579 * Prefer the compact pagetable layout for L0 if possible. Only 580 * possible if VMA covers entire 2MB region as compact 64k and 581 * 4k pages cannot be mixed within a 2MB region. 582 * TODO: Suballocate the pt bo to avoid wasting a lot of 583 * memory. 584 */ 585 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 586 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 587 walk->shifts = xe_compact_pt_shifts; 588 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 589 flags |= XE_PDE_64K; 590 xe_child->is_compact = true; 591 } 592 593 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; 594 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 595 pte); 596 } 597 598 *action = ACTION_SUBTREE; 599 return ret; 600 } 601 602 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 603 .pt_entry = xe_pt_stage_bind_entry, 604 }; 605 606 /** 607 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 608 * range. 609 * @tile: The tile we're building for. 610 * @vma: The vma indicating the address range. 611 * @range: The range indicating the address range. 612 * @entries: Storage for the update entries used for connecting the tree to 613 * the main tree at commit time. 614 * @num_entries: On output contains the number of @entries used. 615 * 616 * This function builds a disconnected page-table tree for a given address 617 * range. The tree is connected to the main vm tree for the gpu using 618 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 619 * The function builds xe_vm_pgtable_update structures for already existing 620 * shared page-tables, and non-existing shared and non-shared page-tables 621 * are built and populated directly. 622 * 623 * Return 0 on success, negative error code on error. 624 */ 625 static int 626 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 627 struct xe_svm_range *range, 628 struct xe_vm_pgtable_update *entries, u32 *num_entries) 629 { 630 struct xe_device *xe = tile_to_xe(tile); 631 struct xe_bo *bo = xe_vma_bo(vma); 632 bool is_devmem = !xe_vma_is_userptr(vma) && bo && 633 (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)); 634 struct xe_res_cursor curs; 635 struct xe_pt_stage_bind_walk xe_walk = { 636 .base = { 637 .ops = &xe_pt_stage_bind_ops, 638 .shifts = xe_normal_pt_shifts, 639 .max_level = XE_PT_HIGHEST_LEVEL, 640 .staging = true, 641 }, 642 .vm = xe_vma_vm(vma), 643 .tile = tile, 644 .curs = &curs, 645 .va_curs_start = range ? range->base.itree.start : 646 xe_vma_start(vma), 647 .vma = vma, 648 .wupd.entries = entries, 649 }; 650 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 651 int ret; 652 653 if (range) { 654 /* Move this entire thing to xe_svm.c? */ 655 xe_svm_notifier_lock(xe_vma_vm(vma)); 656 if (!xe_svm_range_pages_valid(range)) { 657 xe_svm_range_debug(range, "BIND PREPARE - RETRY"); 658 xe_svm_notifier_unlock(xe_vma_vm(vma)); 659 return -EAGAIN; 660 } 661 if (xe_svm_range_has_dma_mapping(range)) { 662 xe_res_first_dma(range->base.dma_addr, 0, 663 range->base.itree.last + 1 - range->base.itree.start, 664 &curs); 665 is_devmem = xe_res_is_vram(&curs); 666 if (is_devmem) 667 xe_svm_range_debug(range, "BIND PREPARE - DMA VRAM"); 668 else 669 xe_svm_range_debug(range, "BIND PREPARE - DMA"); 670 } else { 671 xe_assert(xe, false); 672 } 673 /* 674 * Note, when unlocking the resource cursor dma addresses may become 675 * stale, but the bind will be aborted anyway at commit time. 676 */ 677 xe_svm_notifier_unlock(xe_vma_vm(vma)); 678 } 679 680 xe_walk.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem; 681 682 /** 683 * Default atomic expectations for different allocation scenarios are as follows: 684 * 685 * 1. Traditional API: When the VM is not in LR mode: 686 * - Device atomics are expected to function with all allocations. 687 * 688 * 2. Compute/SVM API: When the VM is in LR mode: 689 * - Device atomics are the default behavior when the bo is placed in a single region. 690 * - In all other cases device atomics will be disabled with AE=0 until an application 691 * request differently using a ioctl like madvise. 692 */ 693 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { 694 if (xe_vm_in_lr_mode(xe_vma_vm(vma))) { 695 if (bo && xe_bo_has_single_placement(bo)) 696 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 697 /** 698 * If a SMEM+LMEM allocation is backed by SMEM, a device 699 * atomics will cause a gpu page fault and which then 700 * gets migrated to LMEM, bind such allocations with 701 * device atomics enabled. 702 */ 703 else if (is_devmem) 704 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 705 } else { 706 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 707 } 708 709 /** 710 * Unset AE if the platform(PVC) doesn't support it on an 711 * allocation 712 */ 713 if (!xe->info.has_device_atomics_on_smem && !is_devmem) 714 xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE; 715 } 716 717 if (is_devmem) { 718 xe_walk.default_pte |= XE_PPGTT_PTE_DM; 719 xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0; 720 } 721 722 if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo)) 723 xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); 724 725 if (!range) 726 xe_bo_assert_held(bo); 727 728 if (!xe_vma_is_null(vma) && !range) { 729 if (xe_vma_is_userptr(vma)) 730 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, 731 xe_vma_size(vma), &curs); 732 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 733 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 734 xe_vma_size(vma), &curs); 735 else 736 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 737 xe_vma_size(vma), &curs); 738 } else if (!range) { 739 curs.size = xe_vma_size(vma); 740 } 741 742 ret = xe_pt_walk_range(&pt->base, pt->level, 743 range ? range->base.itree.start : xe_vma_start(vma), 744 range ? range->base.itree.last + 1 : xe_vma_end(vma), 745 &xe_walk.base); 746 747 *num_entries = xe_walk.wupd.num_used_entries; 748 return ret; 749 } 750 751 /** 752 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 753 * shared pagetable. 754 * @addr: The start address within the non-shared pagetable. 755 * @end: The end address within the non-shared pagetable. 756 * @level: The level of the non-shared pagetable. 757 * @walk: Walk info. The function adjusts the walk action. 758 * @action: next action to perform (see enum page_walk_action) 759 * @offset: Ignored on input, First non-shared entry on output. 760 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 761 * 762 * A non-shared page-table has some entries that belong to the address range 763 * and others that don't. This function determines the entries that belong 764 * fully to the address range. Depending on level, some entries may 765 * partially belong to the address range (that can't happen at level 0). 766 * The function detects that and adjust those offsets to not include those 767 * partial entries. Iff it does detect partial entries, we know that there must 768 * be shared page tables also at lower levels, so it adjusts the walk action 769 * accordingly. 770 * 771 * Return: true if there were non-shared entries, false otherwise. 772 */ 773 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 774 struct xe_pt_walk *walk, 775 enum page_walk_action *action, 776 pgoff_t *offset, pgoff_t *end_offset) 777 { 778 u64 size = 1ull << walk->shifts[level]; 779 780 *offset = xe_pt_offset(addr, level, walk); 781 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 782 783 if (!level) 784 return true; 785 786 /* 787 * If addr or next are not size aligned, there are shared pts at lower 788 * level, so in that case traverse down the subtree 789 */ 790 *action = ACTION_CONTINUE; 791 if (!IS_ALIGNED(addr, size)) { 792 *action = ACTION_SUBTREE; 793 (*offset)++; 794 } 795 796 if (!IS_ALIGNED(end, size)) { 797 *action = ACTION_SUBTREE; 798 (*end_offset)--; 799 } 800 801 return *end_offset > *offset; 802 } 803 804 struct xe_pt_zap_ptes_walk { 805 /** @base: The walk base-class */ 806 struct xe_pt_walk base; 807 808 /* Input parameters for the walk */ 809 /** @tile: The tile we're building for */ 810 struct xe_tile *tile; 811 812 /* Output */ 813 /** @needs_invalidate: Whether we need to invalidate TLB*/ 814 bool needs_invalidate; 815 }; 816 817 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 818 unsigned int level, u64 addr, u64 next, 819 struct xe_ptw **child, 820 enum page_walk_action *action, 821 struct xe_pt_walk *walk) 822 { 823 struct xe_pt_zap_ptes_walk *xe_walk = 824 container_of(walk, typeof(*xe_walk), base); 825 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 826 pgoff_t end_offset; 827 828 XE_WARN_ON(!*child); 829 XE_WARN_ON(!level); 830 831 /* 832 * Note that we're called from an entry callback, and we're dealing 833 * with the child of that entry rather than the parent, so need to 834 * adjust level down. 835 */ 836 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 837 &end_offset)) { 838 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 839 offset * sizeof(u64), 0, 840 (end_offset - offset) * sizeof(u64)); 841 xe_walk->needs_invalidate = true; 842 } 843 844 return 0; 845 } 846 847 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 848 .pt_entry = xe_pt_zap_ptes_entry, 849 }; 850 851 /** 852 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 853 * @tile: The tile we're zapping for. 854 * @vma: GPU VMA detailing address range. 855 * 856 * Eviction and Userptr invalidation needs to be able to zap the 857 * gpu ptes of a given address range in pagefaulting mode. 858 * In order to be able to do that, that function needs access to the shared 859 * page-table entrieaso it can either clear the leaf PTEs or 860 * clear the pointers to lower-level page-tables. The caller is required 861 * to hold the necessary locks to ensure neither the page-table connectivity 862 * nor the page-table entries of the range is updated from under us. 863 * 864 * Return: Whether ptes were actually updated and a TLB invalidation is 865 * required. 866 */ 867 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 868 { 869 struct xe_pt_zap_ptes_walk xe_walk = { 870 .base = { 871 .ops = &xe_pt_zap_ptes_ops, 872 .shifts = xe_normal_pt_shifts, 873 .max_level = XE_PT_HIGHEST_LEVEL, 874 }, 875 .tile = tile, 876 }; 877 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 878 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); 879 880 if (!(pt_mask & BIT(tile->id))) 881 return false; 882 883 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 884 xe_vma_end(vma), &xe_walk.base); 885 886 return xe_walk.needs_invalidate; 887 } 888 889 /** 890 * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range 891 * @tile: The tile we're zapping for. 892 * @vm: The VM we're zapping for. 893 * @range: The SVM range we're zapping for. 894 * 895 * SVM invalidation needs to be able to zap the gpu ptes of a given address 896 * range. In order to be able to do that, that function needs access to the 897 * shared page-table entries so it can either clear the leaf PTEs or 898 * clear the pointers to lower-level page-tables. The caller is required 899 * to hold the SVM notifier lock. 900 * 901 * Return: Whether ptes were actually updated and a TLB invalidation is 902 * required. 903 */ 904 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm, 905 struct xe_svm_range *range) 906 { 907 struct xe_pt_zap_ptes_walk xe_walk = { 908 .base = { 909 .ops = &xe_pt_zap_ptes_ops, 910 .shifts = xe_normal_pt_shifts, 911 .max_level = XE_PT_HIGHEST_LEVEL, 912 }, 913 .tile = tile, 914 }; 915 struct xe_pt *pt = vm->pt_root[tile->id]; 916 u8 pt_mask = (range->tile_present & ~range->tile_invalidated); 917 918 xe_svm_assert_in_notifier(vm); 919 920 if (!(pt_mask & BIT(tile->id))) 921 return false; 922 923 (void)xe_pt_walk_shared(&pt->base, pt->level, range->base.itree.start, 924 range->base.itree.last + 1, &xe_walk.base); 925 926 return xe_walk.needs_invalidate; 927 } 928 929 static void 930 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 931 struct iosys_map *map, void *data, 932 u32 qword_ofs, u32 num_qwords, 933 const struct xe_vm_pgtable_update *update) 934 { 935 struct xe_pt_entry *ptes = update->pt_entries; 936 u64 *ptr = data; 937 u32 i; 938 939 for (i = 0; i < num_qwords; i++) { 940 if (map) 941 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 942 sizeof(u64), u64, ptes[i].pte); 943 else 944 ptr[i] = ptes[i].pte; 945 } 946 } 947 948 static void xe_pt_cancel_bind(struct xe_vma *vma, 949 struct xe_vm_pgtable_update *entries, 950 u32 num_entries) 951 { 952 u32 i, j; 953 954 for (i = 0; i < num_entries; i++) { 955 struct xe_pt *pt = entries[i].pt; 956 957 if (!pt) 958 continue; 959 960 if (pt->level) { 961 for (j = 0; j < entries[i].qwords; j++) 962 xe_pt_destroy(entries[i].pt_entries[j].pt, 963 xe_vma_vm(vma)->flags, NULL); 964 } 965 966 kfree(entries[i].pt_entries); 967 entries[i].pt_entries = NULL; 968 entries[i].qwords = 0; 969 } 970 } 971 972 #define XE_INVALID_VMA ((struct xe_vma *)(0xdeaddeadull)) 973 974 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma) 975 { 976 struct xe_vm *vm; 977 978 if (vma == XE_INVALID_VMA) 979 return; 980 981 vm = xe_vma_vm(vma); 982 lockdep_assert_held(&vm->lock); 983 984 if (!xe_vma_has_no_bo(vma)) 985 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 986 987 xe_vm_assert_held(vm); 988 } 989 990 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 991 { 992 struct xe_vm *vm; 993 994 if (vma == XE_INVALID_VMA) 995 return; 996 997 vm = xe_vma_vm(vma); 998 xe_pt_commit_prepare_locks_assert(vma); 999 1000 if (xe_vma_is_userptr(vma)) 1001 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1002 } 1003 1004 static void xe_pt_commit(struct xe_vma *vma, 1005 struct xe_vm_pgtable_update *entries, 1006 u32 num_entries, struct llist_head *deferred) 1007 { 1008 u32 i, j; 1009 1010 xe_pt_commit_locks_assert(vma); 1011 1012 for (i = 0; i < num_entries; i++) { 1013 struct xe_pt *pt = entries[i].pt; 1014 struct xe_pt_dir *pt_dir; 1015 1016 if (!pt->level) 1017 continue; 1018 1019 pt_dir = as_xe_pt_dir(pt); 1020 for (j = 0; j < entries[i].qwords; j++) { 1021 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1022 int j_ = j + entries[i].ofs; 1023 1024 pt_dir->children[j_] = pt_dir->staging[j_]; 1025 xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 : 1026 xe_vma_vm(vma)->flags, deferred); 1027 } 1028 } 1029 } 1030 1031 static void xe_pt_abort_bind(struct xe_vma *vma, 1032 struct xe_vm_pgtable_update *entries, 1033 u32 num_entries, bool rebind) 1034 { 1035 int i, j; 1036 1037 xe_pt_commit_prepare_locks_assert(vma); 1038 1039 for (i = num_entries - 1; i >= 0; --i) { 1040 struct xe_pt *pt = entries[i].pt; 1041 struct xe_pt_dir *pt_dir; 1042 1043 if (!rebind) 1044 pt->num_live -= entries[i].qwords; 1045 1046 if (!pt->level) 1047 continue; 1048 1049 pt_dir = as_xe_pt_dir(pt); 1050 for (j = 0; j < entries[i].qwords; j++) { 1051 u32 j_ = j + entries[i].ofs; 1052 struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_); 1053 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1054 1055 pt_dir->staging[j_] = oldpte ? &oldpte->base : 0; 1056 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL); 1057 } 1058 } 1059 } 1060 1061 static void xe_pt_commit_prepare_bind(struct xe_vma *vma, 1062 struct xe_vm_pgtable_update *entries, 1063 u32 num_entries, bool rebind) 1064 { 1065 u32 i, j; 1066 1067 xe_pt_commit_prepare_locks_assert(vma); 1068 1069 for (i = 0; i < num_entries; i++) { 1070 struct xe_pt *pt = entries[i].pt; 1071 struct xe_pt_dir *pt_dir; 1072 1073 if (!rebind) 1074 pt->num_live += entries[i].qwords; 1075 1076 if (!pt->level) 1077 continue; 1078 1079 pt_dir = as_xe_pt_dir(pt); 1080 for (j = 0; j < entries[i].qwords; j++) { 1081 u32 j_ = j + entries[i].ofs; 1082 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 1083 struct xe_pt *oldpte = NULL; 1084 1085 if (xe_pt_entry_staging(pt_dir, j_)) 1086 oldpte = xe_pt_entry_staging(pt_dir, j_); 1087 1088 pt_dir->staging[j_] = &newpte->base; 1089 entries[i].pt_entries[j].pt = oldpte; 1090 } 1091 } 1092 } 1093 1094 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries, 1095 u32 num_entries) 1096 { 1097 u32 i; 1098 1099 for (i = 0; i < num_entries; i++) 1100 kfree(entries[i].pt_entries); 1101 } 1102 1103 static int 1104 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 1105 struct xe_svm_range *range, 1106 struct xe_vm_pgtable_update *entries, u32 *num_entries) 1107 { 1108 int err; 1109 1110 *num_entries = 0; 1111 err = xe_pt_stage_bind(tile, vma, range, entries, num_entries); 1112 if (!err) 1113 xe_tile_assert(tile, *num_entries); 1114 1115 return err; 1116 } 1117 1118 static void xe_vm_dbg_print_entries(struct xe_device *xe, 1119 const struct xe_vm_pgtable_update *entries, 1120 unsigned int num_entries, bool bind) 1121 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1122 { 1123 unsigned int i; 1124 1125 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind", 1126 num_entries); 1127 for (i = 0; i < num_entries; i++) { 1128 const struct xe_vm_pgtable_update *entry = &entries[i]; 1129 struct xe_pt *xe_pt = entry->pt; 1130 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1131 u64 end; 1132 u64 start; 1133 1134 xe_assert(xe, !entry->pt->is_compact); 1135 start = entry->ofs * page_size; 1136 end = start + page_size * entry->qwords; 1137 vm_dbg(&xe->drm, 1138 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1139 i, xe_pt->level, entry->ofs, entry->qwords, 1140 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1141 } 1142 } 1143 #else 1144 {} 1145 #endif 1146 1147 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs) 1148 { 1149 int i; 1150 1151 for (i = 0; i < num_syncs; i++) { 1152 struct dma_fence *fence = syncs[i].fence; 1153 1154 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1155 &fence->flags)) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static int job_test_add_deps(struct xe_sched_job *job, 1163 struct dma_resv *resv, 1164 enum dma_resv_usage usage) 1165 { 1166 if (!job) { 1167 if (!dma_resv_test_signaled(resv, usage)) 1168 return -ETIME; 1169 1170 return 0; 1171 } 1172 1173 return xe_sched_job_add_deps(job, resv, usage); 1174 } 1175 1176 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job) 1177 { 1178 struct xe_bo *bo = xe_vma_bo(vma); 1179 1180 xe_bo_assert_held(bo); 1181 1182 if (bo && !bo->vm) 1183 return job_test_add_deps(job, bo->ttm.base.resv, 1184 DMA_RESV_USAGE_KERNEL); 1185 1186 return 0; 1187 } 1188 1189 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op, 1190 struct xe_sched_job *job) 1191 { 1192 int err = 0; 1193 1194 /* 1195 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a 1196 * NOP if VMA is_cpu_addr_mirror 1197 */ 1198 1199 switch (op->base.op) { 1200 case DRM_GPUVA_OP_MAP: 1201 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1202 break; 1203 1204 err = vma_add_deps(op->map.vma, job); 1205 break; 1206 case DRM_GPUVA_OP_REMAP: 1207 if (op->remap.prev) 1208 err = vma_add_deps(op->remap.prev, job); 1209 if (!err && op->remap.next) 1210 err = vma_add_deps(op->remap.next, job); 1211 break; 1212 case DRM_GPUVA_OP_UNMAP: 1213 break; 1214 case DRM_GPUVA_OP_PREFETCH: 1215 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job); 1216 break; 1217 case DRM_GPUVA_OP_DRIVER: 1218 break; 1219 default: 1220 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1221 } 1222 1223 return err; 1224 } 1225 1226 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 1227 struct xe_vm *vm, 1228 struct xe_vma_ops *vops, 1229 struct xe_vm_pgtable_update_ops *pt_update_ops, 1230 struct xe_range_fence_tree *rftree) 1231 { 1232 struct xe_range_fence *rtfence; 1233 struct dma_fence *fence; 1234 struct xe_vma_op *op; 1235 int err = 0, i; 1236 1237 xe_vm_assert_held(vm); 1238 1239 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs)) 1240 return -ETIME; 1241 1242 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q)) 1243 return -ETIME; 1244 1245 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) { 1246 err = job_test_add_deps(job, xe_vm_resv(vm), 1247 pt_update_ops->wait_vm_bookkeep ? 1248 DMA_RESV_USAGE_BOOKKEEP : 1249 DMA_RESV_USAGE_KERNEL); 1250 if (err) 1251 return err; 1252 } 1253 1254 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start, 1255 pt_update_ops->last); 1256 while (rtfence) { 1257 fence = rtfence->fence; 1258 1259 if (!dma_fence_is_signaled(fence)) { 1260 /* 1261 * Is this a CPU update? GPU is busy updating, so return 1262 * an error 1263 */ 1264 if (!job) 1265 return -ETIME; 1266 1267 dma_fence_get(fence); 1268 err = drm_sched_job_add_dependency(&job->drm, fence); 1269 if (err) 1270 return err; 1271 } 1272 1273 rtfence = xe_range_fence_tree_next(rtfence, 1274 pt_update_ops->start, 1275 pt_update_ops->last); 1276 } 1277 1278 list_for_each_entry(op, &vops->list, link) { 1279 err = op_add_deps(vm, op, job); 1280 if (err) 1281 return err; 1282 } 1283 1284 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) { 1285 if (job) 1286 err = xe_sched_job_last_fence_add_dep(job, vm); 1287 else 1288 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm); 1289 } 1290 1291 for (i = 0; job && !err && i < vops->num_syncs; i++) 1292 err = xe_sync_entry_add_deps(&vops->syncs[i], job); 1293 1294 return err; 1295 } 1296 1297 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1298 { 1299 struct xe_vma_ops *vops = pt_update->vops; 1300 struct xe_vm *vm = vops->vm; 1301 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id]; 1302 struct xe_vm_pgtable_update_ops *pt_update_ops = 1303 &vops->pt_update_ops[pt_update->tile_id]; 1304 1305 return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops, 1306 pt_update_ops, rftree); 1307 } 1308 1309 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1310 1311 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1312 { 1313 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 1314 static u32 count; 1315 1316 if (count++ % divisor == divisor - 1) { 1317 uvma->userptr.divisor = divisor << 1; 1318 return true; 1319 } 1320 1321 return false; 1322 } 1323 1324 #else 1325 1326 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1327 { 1328 return false; 1329 } 1330 1331 #endif 1332 1333 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma, 1334 struct xe_vm_pgtable_update_ops *pt_update) 1335 { 1336 struct xe_userptr_vma *uvma; 1337 unsigned long notifier_seq; 1338 1339 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1340 1341 if (!xe_vma_is_userptr(vma)) 1342 return 0; 1343 1344 uvma = to_userptr_vma(vma); 1345 if (xe_pt_userptr_inject_eagain(uvma)) 1346 xe_vma_userptr_force_invalidate(uvma); 1347 1348 notifier_seq = uvma->userptr.notifier_seq; 1349 1350 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1351 notifier_seq)) 1352 return 0; 1353 1354 if (xe_vm_in_fault_mode(vm)) 1355 return -EAGAIN; 1356 1357 /* 1358 * Just continue the operation since exec or rebind worker 1359 * will take care of rebinding. 1360 */ 1361 return 0; 1362 } 1363 1364 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op, 1365 struct xe_vm_pgtable_update_ops *pt_update) 1366 { 1367 int err = 0; 1368 1369 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1370 1371 switch (op->base.op) { 1372 case DRM_GPUVA_OP_MAP: 1373 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1374 break; 1375 1376 err = vma_check_userptr(vm, op->map.vma, pt_update); 1377 break; 1378 case DRM_GPUVA_OP_REMAP: 1379 if (op->remap.prev) 1380 err = vma_check_userptr(vm, op->remap.prev, pt_update); 1381 if (!err && op->remap.next) 1382 err = vma_check_userptr(vm, op->remap.next, pt_update); 1383 break; 1384 case DRM_GPUVA_OP_UNMAP: 1385 break; 1386 case DRM_GPUVA_OP_PREFETCH: 1387 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), 1388 pt_update); 1389 break; 1390 default: 1391 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1392 } 1393 1394 return err; 1395 } 1396 1397 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1398 { 1399 struct xe_vm *vm = pt_update->vops->vm; 1400 struct xe_vma_ops *vops = pt_update->vops; 1401 struct xe_vm_pgtable_update_ops *pt_update_ops = 1402 &vops->pt_update_ops[pt_update->tile_id]; 1403 struct xe_vma_op *op; 1404 int err; 1405 1406 err = xe_pt_pre_commit(pt_update); 1407 if (err) 1408 return err; 1409 1410 down_read(&vm->userptr.notifier_lock); 1411 1412 list_for_each_entry(op, &vops->list, link) { 1413 err = op_check_userptr(vm, op, pt_update_ops); 1414 if (err) { 1415 up_read(&vm->userptr.notifier_lock); 1416 break; 1417 } 1418 } 1419 1420 return err; 1421 } 1422 1423 static int xe_pt_svm_pre_commit(struct xe_migrate_pt_update *pt_update) 1424 { 1425 struct xe_vm *vm = pt_update->vops->vm; 1426 struct xe_vma_ops *vops = pt_update->vops; 1427 struct xe_vma_op *op; 1428 int err; 1429 1430 err = xe_pt_pre_commit(pt_update); 1431 if (err) 1432 return err; 1433 1434 xe_svm_notifier_lock(vm); 1435 1436 list_for_each_entry(op, &vops->list, link) { 1437 struct xe_svm_range *range = op->map_range.range; 1438 1439 if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) 1440 continue; 1441 1442 xe_svm_range_debug(range, "PRE-COMMIT"); 1443 1444 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 1445 xe_assert(vm->xe, op->subop == XE_VMA_SUBOP_MAP_RANGE); 1446 1447 if (!xe_svm_range_pages_valid(range)) { 1448 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1449 xe_svm_notifier_unlock(vm); 1450 return -EAGAIN; 1451 } 1452 } 1453 1454 return 0; 1455 } 1456 1457 struct invalidation_fence { 1458 struct xe_gt_tlb_invalidation_fence base; 1459 struct xe_gt *gt; 1460 struct dma_fence *fence; 1461 struct dma_fence_cb cb; 1462 struct work_struct work; 1463 u64 start; 1464 u64 end; 1465 u32 asid; 1466 }; 1467 1468 static void invalidation_fence_cb(struct dma_fence *fence, 1469 struct dma_fence_cb *cb) 1470 { 1471 struct invalidation_fence *ifence = 1472 container_of(cb, struct invalidation_fence, cb); 1473 struct xe_device *xe = gt_to_xe(ifence->gt); 1474 1475 trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base); 1476 if (!ifence->fence->error) { 1477 queue_work(system_wq, &ifence->work); 1478 } else { 1479 ifence->base.base.error = ifence->fence->error; 1480 xe_gt_tlb_invalidation_fence_signal(&ifence->base); 1481 } 1482 dma_fence_put(ifence->fence); 1483 } 1484 1485 static void invalidation_fence_work_func(struct work_struct *w) 1486 { 1487 struct invalidation_fence *ifence = 1488 container_of(w, struct invalidation_fence, work); 1489 struct xe_device *xe = gt_to_xe(ifence->gt); 1490 1491 trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base); 1492 xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start, 1493 ifence->end, ifence->asid); 1494 } 1495 1496 static void invalidation_fence_init(struct xe_gt *gt, 1497 struct invalidation_fence *ifence, 1498 struct dma_fence *fence, 1499 u64 start, u64 end, u32 asid) 1500 { 1501 int ret; 1502 1503 trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base); 1504 1505 xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false); 1506 1507 ifence->fence = fence; 1508 ifence->gt = gt; 1509 ifence->start = start; 1510 ifence->end = end; 1511 ifence->asid = asid; 1512 1513 INIT_WORK(&ifence->work, invalidation_fence_work_func); 1514 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); 1515 if (ret == -ENOENT) { 1516 dma_fence_put(ifence->fence); /* Usually dropped in CB */ 1517 invalidation_fence_work_func(&ifence->work); 1518 } else if (ret) { 1519 dma_fence_put(&ifence->base.base); /* Caller ref */ 1520 dma_fence_put(&ifence->base.base); /* Creation ref */ 1521 } 1522 1523 xe_gt_assert(gt, !ret || ret == -ENOENT); 1524 } 1525 1526 struct xe_pt_stage_unbind_walk { 1527 /** @base: The pagewalk base-class. */ 1528 struct xe_pt_walk base; 1529 1530 /* Input parameters for the walk */ 1531 /** @tile: The tile we're unbinding from. */ 1532 struct xe_tile *tile; 1533 1534 /** 1535 * @modified_start: Walk range start, modified to include any 1536 * shared pagetables that we're the only user of and can thus 1537 * treat as private. 1538 */ 1539 u64 modified_start; 1540 /** @modified_end: Walk range start, modified like @modified_start. */ 1541 u64 modified_end; 1542 1543 /* Output */ 1544 /* @wupd: Structure to track the page-table updates we're building */ 1545 struct xe_walk_update wupd; 1546 }; 1547 1548 /* 1549 * Check whether this range is the only one populating this pagetable, 1550 * and in that case, update the walk range checks so that higher levels don't 1551 * view us as a shared pagetable. 1552 */ 1553 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1554 const struct xe_pt *child, 1555 enum page_walk_action *action, 1556 struct xe_pt_walk *walk) 1557 { 1558 struct xe_pt_stage_unbind_walk *xe_walk = 1559 container_of(walk, typeof(*xe_walk), base); 1560 unsigned int shift = walk->shifts[level]; 1561 u64 size = 1ull << shift; 1562 1563 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1564 ((next - addr) >> shift) == child->num_live) { 1565 u64 size = 1ull << walk->shifts[level + 1]; 1566 1567 *action = ACTION_CONTINUE; 1568 1569 if (xe_walk->modified_start >= addr) 1570 xe_walk->modified_start = round_down(addr, size); 1571 if (xe_walk->modified_end <= next) 1572 xe_walk->modified_end = round_up(next, size); 1573 1574 return true; 1575 } 1576 1577 return false; 1578 } 1579 1580 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1581 unsigned int level, u64 addr, u64 next, 1582 struct xe_ptw **child, 1583 enum page_walk_action *action, 1584 struct xe_pt_walk *walk) 1585 { 1586 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1587 1588 XE_WARN_ON(!*child); 1589 XE_WARN_ON(!level); 1590 1591 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1592 1593 return 0; 1594 } 1595 1596 static int 1597 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1598 unsigned int level, u64 addr, u64 next, 1599 struct xe_ptw **child, 1600 enum page_walk_action *action, 1601 struct xe_pt_walk *walk) 1602 { 1603 struct xe_pt_stage_unbind_walk *xe_walk = 1604 container_of(walk, typeof(*xe_walk), base); 1605 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1606 pgoff_t end_offset; 1607 u64 size = 1ull << walk->shifts[--level]; 1608 int err; 1609 1610 if (!IS_ALIGNED(addr, size)) 1611 addr = xe_walk->modified_start; 1612 if (!IS_ALIGNED(next, size)) 1613 next = xe_walk->modified_end; 1614 1615 /* Parent == *child is the root pt. Don't kill it. */ 1616 if (parent != *child && 1617 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1618 return 0; 1619 1620 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1621 &end_offset)) 1622 return 0; 1623 1624 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true); 1625 if (err) 1626 return err; 1627 1628 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1629 1630 return 0; 1631 } 1632 1633 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1634 .pt_entry = xe_pt_stage_unbind_entry, 1635 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1636 }; 1637 1638 /** 1639 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1640 * operation 1641 * @tile: The tile we're unbinding for. 1642 * @vm: The vm 1643 * @vma: The vma we're unbinding. 1644 * @range: The range we're unbinding. 1645 * @entries: Caller-provided storage for the update structures. 1646 * 1647 * Builds page-table update structures for an unbind operation. The function 1648 * will attempt to remove all page-tables that we're the only user 1649 * of, and for that to work, the unbind operation must be committed in the 1650 * same critical section that blocks racing binds to the same page-table tree. 1651 * 1652 * Return: The number of entries used. 1653 */ 1654 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, 1655 struct xe_vm *vm, 1656 struct xe_vma *vma, 1657 struct xe_svm_range *range, 1658 struct xe_vm_pgtable_update *entries) 1659 { 1660 u64 start = range ? range->base.itree.start : xe_vma_start(vma); 1661 u64 end = range ? range->base.itree.last + 1 : xe_vma_end(vma); 1662 struct xe_pt_stage_unbind_walk xe_walk = { 1663 .base = { 1664 .ops = &xe_pt_stage_unbind_ops, 1665 .shifts = xe_normal_pt_shifts, 1666 .max_level = XE_PT_HIGHEST_LEVEL, 1667 .staging = true, 1668 }, 1669 .tile = tile, 1670 .modified_start = start, 1671 .modified_end = end, 1672 .wupd.entries = entries, 1673 }; 1674 struct xe_pt *pt = vm->pt_root[tile->id]; 1675 1676 (void)xe_pt_walk_shared(&pt->base, pt->level, start, end, 1677 &xe_walk.base); 1678 1679 return xe_walk.wupd.num_used_entries; 1680 } 1681 1682 static void 1683 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1684 struct xe_tile *tile, struct iosys_map *map, 1685 void *ptr, u32 qword_ofs, u32 num_qwords, 1686 const struct xe_vm_pgtable_update *update) 1687 { 1688 struct xe_vm *vm = pt_update->vops->vm; 1689 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level); 1690 int i; 1691 1692 if (map && map->is_iomem) 1693 for (i = 0; i < num_qwords; ++i) 1694 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1695 sizeof(u64), u64, empty); 1696 else if (map) 1697 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1698 num_qwords); 1699 else 1700 memset64(ptr, empty, num_qwords); 1701 } 1702 1703 static void xe_pt_abort_unbind(struct xe_vma *vma, 1704 struct xe_vm_pgtable_update *entries, 1705 u32 num_entries) 1706 { 1707 int i, j; 1708 1709 xe_pt_commit_prepare_locks_assert(vma); 1710 1711 for (i = num_entries - 1; i >= 0; --i) { 1712 struct xe_vm_pgtable_update *entry = &entries[i]; 1713 struct xe_pt *pt = entry->pt; 1714 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1715 1716 pt->num_live += entry->qwords; 1717 1718 if (!pt->level) 1719 continue; 1720 1721 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) 1722 pt_dir->staging[j] = 1723 entries[i].pt_entries[j - entry->ofs].pt ? 1724 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL; 1725 } 1726 } 1727 1728 static void 1729 xe_pt_commit_prepare_unbind(struct xe_vma *vma, 1730 struct xe_vm_pgtable_update *entries, 1731 u32 num_entries) 1732 { 1733 int i, j; 1734 1735 xe_pt_commit_prepare_locks_assert(vma); 1736 1737 for (i = 0; i < num_entries; ++i) { 1738 struct xe_vm_pgtable_update *entry = &entries[i]; 1739 struct xe_pt *pt = entry->pt; 1740 struct xe_pt_dir *pt_dir; 1741 1742 pt->num_live -= entry->qwords; 1743 if (!pt->level) 1744 continue; 1745 1746 pt_dir = as_xe_pt_dir(pt); 1747 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) { 1748 entry->pt_entries[j - entry->ofs].pt = 1749 xe_pt_entry_staging(pt_dir, j); 1750 pt_dir->staging[j] = NULL; 1751 } 1752 } 1753 } 1754 1755 static void 1756 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops, 1757 u64 start, u64 end) 1758 { 1759 u64 last; 1760 u32 current_op = pt_update_ops->current_op; 1761 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1762 int i, level = 0; 1763 1764 for (i = 0; i < pt_op->num_entries; i++) { 1765 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i]; 1766 1767 if (entry->pt->level > level) 1768 level = entry->pt->level; 1769 } 1770 1771 /* Greedy (non-optimal) calculation but simple */ 1772 start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level)); 1773 last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1; 1774 1775 if (start < pt_update_ops->start) 1776 pt_update_ops->start = start; 1777 if (last > pt_update_ops->last) 1778 pt_update_ops->last = last; 1779 } 1780 1781 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma) 1782 { 1783 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0; 1784 1785 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1786 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1787 xe->info.tile_count << shift); 1788 1789 return 0; 1790 } 1791 1792 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile, 1793 struct xe_vm_pgtable_update_ops *pt_update_ops, 1794 struct xe_vma *vma) 1795 { 1796 u32 current_op = pt_update_ops->current_op; 1797 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1798 int err; 1799 1800 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1801 xe_bo_assert_held(xe_vma_bo(vma)); 1802 1803 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1804 "Preparing bind, with range [%llx...%llx)\n", 1805 xe_vma_start(vma), xe_vma_end(vma) - 1); 1806 1807 pt_op->vma = NULL; 1808 pt_op->bind = true; 1809 pt_op->rebind = BIT(tile->id) & vma->tile_present; 1810 1811 err = vma_reserve_fences(tile_to_xe(tile), vma); 1812 if (err) 1813 return err; 1814 1815 err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries, 1816 &pt_op->num_entries); 1817 if (!err) { 1818 xe_tile_assert(tile, pt_op->num_entries <= 1819 ARRAY_SIZE(pt_op->entries)); 1820 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1821 pt_op->num_entries, true); 1822 1823 xe_pt_update_ops_rfence_interval(pt_update_ops, 1824 xe_vma_start(vma), 1825 xe_vma_end(vma)); 1826 ++pt_update_ops->current_op; 1827 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1828 1829 /* 1830 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1831 * cached PTEs point to freed memory. On LR vms this is done 1832 * automatically when the context is re-enabled by the rebind worker, 1833 * or in fault mode it was invalidated on PTE zapping. 1834 * 1835 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1836 * PTE is already cached in the TLB so it needs to be invalidated. 1837 * On !LR VMs this is done in the ring ops preceding a batch, but on 1838 * non-faulting LR, in particular on user-space batch buffer chaining, 1839 * it needs to be done here. 1840 */ 1841 if ((!pt_op->rebind && xe_vm_has_scratch(vm) && 1842 xe_vm_in_preempt_fence_mode(vm))) 1843 pt_update_ops->needs_invalidation = true; 1844 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm)) 1845 /* We bump also if batch_invalidate_tlb is true */ 1846 vm->tlb_flush_seqno++; 1847 1848 vma->tile_staged |= BIT(tile->id); 1849 pt_op->vma = vma; 1850 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1851 pt_op->num_entries, pt_op->rebind); 1852 } else { 1853 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1854 } 1855 1856 return err; 1857 } 1858 1859 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile, 1860 struct xe_vm_pgtable_update_ops *pt_update_ops, 1861 struct xe_vma *vma, struct xe_svm_range *range) 1862 { 1863 u32 current_op = pt_update_ops->current_op; 1864 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1865 int err; 1866 1867 xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma)); 1868 1869 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1870 "Preparing bind, with range [%lx...%lx)\n", 1871 range->base.itree.start, range->base.itree.last); 1872 1873 pt_op->vma = NULL; 1874 pt_op->bind = true; 1875 pt_op->rebind = BIT(tile->id) & range->tile_present; 1876 1877 err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries, 1878 &pt_op->num_entries); 1879 if (!err) { 1880 xe_tile_assert(tile, pt_op->num_entries <= 1881 ARRAY_SIZE(pt_op->entries)); 1882 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1883 pt_op->num_entries, true); 1884 1885 xe_pt_update_ops_rfence_interval(pt_update_ops, 1886 range->base.itree.start, 1887 range->base.itree.last + 1); 1888 ++pt_update_ops->current_op; 1889 pt_update_ops->needs_svm_lock = true; 1890 1891 pt_op->vma = vma; 1892 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1893 pt_op->num_entries, pt_op->rebind); 1894 } else { 1895 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1896 } 1897 1898 return err; 1899 } 1900 1901 static int unbind_op_prepare(struct xe_tile *tile, 1902 struct xe_vm_pgtable_update_ops *pt_update_ops, 1903 struct xe_vma *vma) 1904 { 1905 u32 current_op = pt_update_ops->current_op; 1906 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1907 int err; 1908 1909 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id))) 1910 return 0; 1911 1912 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1913 xe_bo_assert_held(xe_vma_bo(vma)); 1914 1915 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1916 "Preparing unbind, with range [%llx...%llx)\n", 1917 xe_vma_start(vma), xe_vma_end(vma) - 1); 1918 1919 pt_op->vma = vma; 1920 pt_op->bind = false; 1921 pt_op->rebind = false; 1922 1923 err = vma_reserve_fences(tile_to_xe(tile), vma); 1924 if (err) 1925 return err; 1926 1927 pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma), 1928 vma, NULL, pt_op->entries); 1929 1930 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1931 pt_op->num_entries, false); 1932 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma), 1933 xe_vma_end(vma)); 1934 ++pt_update_ops->current_op; 1935 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1936 pt_update_ops->needs_invalidation = true; 1937 1938 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries); 1939 1940 return 0; 1941 } 1942 1943 static int unbind_range_prepare(struct xe_vm *vm, 1944 struct xe_tile *tile, 1945 struct xe_vm_pgtable_update_ops *pt_update_ops, 1946 struct xe_svm_range *range) 1947 { 1948 u32 current_op = pt_update_ops->current_op; 1949 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1950 1951 if (!(range->tile_present & BIT(tile->id))) 1952 return 0; 1953 1954 vm_dbg(&vm->xe->drm, 1955 "Preparing unbind, with range [%lx...%lx)\n", 1956 range->base.itree.start, range->base.itree.last); 1957 1958 pt_op->vma = XE_INVALID_VMA; 1959 pt_op->bind = false; 1960 pt_op->rebind = false; 1961 1962 pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range, 1963 pt_op->entries); 1964 1965 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1966 pt_op->num_entries, false); 1967 xe_pt_update_ops_rfence_interval(pt_update_ops, range->base.itree.start, 1968 range->base.itree.last + 1); 1969 ++pt_update_ops->current_op; 1970 pt_update_ops->needs_svm_lock = true; 1971 pt_update_ops->needs_invalidation = true; 1972 1973 xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries, 1974 pt_op->num_entries); 1975 1976 return 0; 1977 } 1978 1979 static int op_prepare(struct xe_vm *vm, 1980 struct xe_tile *tile, 1981 struct xe_vm_pgtable_update_ops *pt_update_ops, 1982 struct xe_vma_op *op) 1983 { 1984 int err = 0; 1985 1986 xe_vm_assert_held(vm); 1987 1988 switch (op->base.op) { 1989 case DRM_GPUVA_OP_MAP: 1990 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) || 1991 op->map.is_cpu_addr_mirror) 1992 break; 1993 1994 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma); 1995 pt_update_ops->wait_vm_kernel = true; 1996 break; 1997 case DRM_GPUVA_OP_REMAP: 1998 { 1999 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2000 2001 if (xe_vma_is_cpu_addr_mirror(old)) 2002 break; 2003 2004 err = unbind_op_prepare(tile, pt_update_ops, old); 2005 2006 if (!err && op->remap.prev) { 2007 err = bind_op_prepare(vm, tile, pt_update_ops, 2008 op->remap.prev); 2009 pt_update_ops->wait_vm_bookkeep = true; 2010 } 2011 if (!err && op->remap.next) { 2012 err = bind_op_prepare(vm, tile, pt_update_ops, 2013 op->remap.next); 2014 pt_update_ops->wait_vm_bookkeep = true; 2015 } 2016 break; 2017 } 2018 case DRM_GPUVA_OP_UNMAP: 2019 { 2020 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2021 2022 if (xe_vma_is_cpu_addr_mirror(vma)) 2023 break; 2024 2025 err = unbind_op_prepare(tile, pt_update_ops, vma); 2026 break; 2027 } 2028 case DRM_GPUVA_OP_PREFETCH: 2029 { 2030 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2031 2032 if (xe_vma_is_cpu_addr_mirror(vma)) 2033 break; 2034 2035 err = bind_op_prepare(vm, tile, pt_update_ops, vma); 2036 pt_update_ops->wait_vm_kernel = true; 2037 break; 2038 } 2039 case DRM_GPUVA_OP_DRIVER: 2040 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 2041 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 2042 2043 err = bind_range_prepare(vm, tile, pt_update_ops, 2044 op->map_range.vma, 2045 op->map_range.range); 2046 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) { 2047 err = unbind_range_prepare(vm, tile, pt_update_ops, 2048 op->unmap_range.range); 2049 } 2050 break; 2051 default: 2052 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2053 } 2054 2055 return err; 2056 } 2057 2058 static void 2059 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops) 2060 { 2061 init_llist_head(&pt_update_ops->deferred); 2062 pt_update_ops->start = ~0x0ull; 2063 pt_update_ops->last = 0x0ull; 2064 } 2065 2066 /** 2067 * xe_pt_update_ops_prepare() - Prepare PT update operations 2068 * @tile: Tile of PT update operations 2069 * @vops: VMA operationa 2070 * 2071 * Prepare PT update operations which includes updating internal PT state, 2072 * allocate memory for page tables, populate page table being pruned in, and 2073 * create PT update operations for leaf insertion / removal. 2074 * 2075 * Return: 0 on success, negative error code on error. 2076 */ 2077 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops) 2078 { 2079 struct xe_vm_pgtable_update_ops *pt_update_ops = 2080 &vops->pt_update_ops[tile->id]; 2081 struct xe_vma_op *op; 2082 int shift = tile->media_gt ? 1 : 0; 2083 int err; 2084 2085 lockdep_assert_held(&vops->vm->lock); 2086 xe_vm_assert_held(vops->vm); 2087 2088 xe_pt_update_ops_init(pt_update_ops); 2089 2090 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm), 2091 tile_to_xe(tile)->info.tile_count << shift); 2092 if (err) 2093 return err; 2094 2095 list_for_each_entry(op, &vops->list, link) { 2096 err = op_prepare(vops->vm, tile, pt_update_ops, op); 2097 2098 if (err) 2099 return err; 2100 } 2101 2102 xe_tile_assert(tile, pt_update_ops->current_op <= 2103 pt_update_ops->num_ops); 2104 2105 #ifdef TEST_VM_OPS_ERROR 2106 if (vops->inject_error && 2107 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE) 2108 return -ENOSPC; 2109 #endif 2110 2111 return 0; 2112 } 2113 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO); 2114 2115 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2116 struct xe_vm_pgtable_update_ops *pt_update_ops, 2117 struct xe_vma *vma, struct dma_fence *fence, 2118 struct dma_fence *fence2) 2119 { 2120 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2121 2122 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2123 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2124 pt_update_ops->wait_vm_bookkeep ? 2125 DMA_RESV_USAGE_KERNEL : 2126 DMA_RESV_USAGE_BOOKKEEP); 2127 if (fence2) 2128 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2129 pt_update_ops->wait_vm_bookkeep ? 2130 DMA_RESV_USAGE_KERNEL : 2131 DMA_RESV_USAGE_BOOKKEEP); 2132 } 2133 vma->tile_present |= BIT(tile->id); 2134 vma->tile_staged &= ~BIT(tile->id); 2135 if (xe_vma_is_userptr(vma)) { 2136 lockdep_assert_held_read(&vm->userptr.notifier_lock); 2137 to_userptr_vma(vma)->userptr.initial_bind = true; 2138 } 2139 2140 /* 2141 * Kick rebind worker if this bind triggers preempt fences and not in 2142 * the rebind worker 2143 */ 2144 if (pt_update_ops->wait_vm_bookkeep && 2145 xe_vm_in_preempt_fence_mode(vm) && 2146 !current->mm) 2147 xe_vm_queue_rebind_worker(vm); 2148 } 2149 2150 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2151 struct xe_vm_pgtable_update_ops *pt_update_ops, 2152 struct xe_vma *vma, struct dma_fence *fence, 2153 struct dma_fence *fence2) 2154 { 2155 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2156 2157 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2158 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2159 pt_update_ops->wait_vm_bookkeep ? 2160 DMA_RESV_USAGE_KERNEL : 2161 DMA_RESV_USAGE_BOOKKEEP); 2162 if (fence2) 2163 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2164 pt_update_ops->wait_vm_bookkeep ? 2165 DMA_RESV_USAGE_KERNEL : 2166 DMA_RESV_USAGE_BOOKKEEP); 2167 } 2168 vma->tile_present &= ~BIT(tile->id); 2169 if (!vma->tile_present) { 2170 list_del_init(&vma->combined_links.rebind); 2171 if (xe_vma_is_userptr(vma)) { 2172 lockdep_assert_held_read(&vm->userptr.notifier_lock); 2173 2174 spin_lock(&vm->userptr.invalidated_lock); 2175 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 2176 spin_unlock(&vm->userptr.invalidated_lock); 2177 } 2178 } 2179 } 2180 2181 static void op_commit(struct xe_vm *vm, 2182 struct xe_tile *tile, 2183 struct xe_vm_pgtable_update_ops *pt_update_ops, 2184 struct xe_vma_op *op, struct dma_fence *fence, 2185 struct dma_fence *fence2) 2186 { 2187 xe_vm_assert_held(vm); 2188 2189 switch (op->base.op) { 2190 case DRM_GPUVA_OP_MAP: 2191 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) || 2192 op->map.is_cpu_addr_mirror) 2193 break; 2194 2195 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence, 2196 fence2); 2197 break; 2198 case DRM_GPUVA_OP_REMAP: 2199 { 2200 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2201 2202 if (xe_vma_is_cpu_addr_mirror(old)) 2203 break; 2204 2205 unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2); 2206 2207 if (op->remap.prev) 2208 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev, 2209 fence, fence2); 2210 if (op->remap.next) 2211 bind_op_commit(vm, tile, pt_update_ops, op->remap.next, 2212 fence, fence2); 2213 break; 2214 } 2215 case DRM_GPUVA_OP_UNMAP: 2216 { 2217 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2218 2219 if (!xe_vma_is_cpu_addr_mirror(vma)) 2220 unbind_op_commit(vm, tile, pt_update_ops, vma, fence, 2221 fence2); 2222 break; 2223 } 2224 case DRM_GPUVA_OP_PREFETCH: 2225 { 2226 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2227 2228 if (!xe_vma_is_cpu_addr_mirror(vma)) 2229 bind_op_commit(vm, tile, pt_update_ops, vma, fence, 2230 fence2); 2231 break; 2232 } 2233 case DRM_GPUVA_OP_DRIVER: 2234 { 2235 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 2236 op->map_range.range->tile_present |= BIT(tile->id); 2237 op->map_range.range->tile_invalidated &= ~BIT(tile->id); 2238 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) { 2239 op->unmap_range.range->tile_present &= ~BIT(tile->id); 2240 } 2241 break; 2242 } 2243 default: 2244 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2245 } 2246 } 2247 2248 static const struct xe_migrate_pt_update_ops migrate_ops = { 2249 .populate = xe_vm_populate_pgtable, 2250 .clear = xe_migrate_clear_pgtable_callback, 2251 .pre_commit = xe_pt_pre_commit, 2252 }; 2253 2254 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = { 2255 .populate = xe_vm_populate_pgtable, 2256 .clear = xe_migrate_clear_pgtable_callback, 2257 .pre_commit = xe_pt_userptr_pre_commit, 2258 }; 2259 2260 static const struct xe_migrate_pt_update_ops svm_migrate_ops = { 2261 .populate = xe_vm_populate_pgtable, 2262 .clear = xe_migrate_clear_pgtable_callback, 2263 .pre_commit = xe_pt_svm_pre_commit, 2264 }; 2265 2266 /** 2267 * xe_pt_update_ops_run() - Run PT update operations 2268 * @tile: Tile of PT update operations 2269 * @vops: VMA operationa 2270 * 2271 * Run PT update operations which includes committing internal PT state changes, 2272 * creating job for PT update operations for leaf insertion / removal, and 2273 * installing job fence in various places. 2274 * 2275 * Return: fence on success, negative ERR_PTR on error. 2276 */ 2277 struct dma_fence * 2278 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops) 2279 { 2280 struct xe_vm *vm = vops->vm; 2281 struct xe_vm_pgtable_update_ops *pt_update_ops = 2282 &vops->pt_update_ops[tile->id]; 2283 struct dma_fence *fence; 2284 struct invalidation_fence *ifence = NULL, *mfence = NULL; 2285 struct dma_fence **fences = NULL; 2286 struct dma_fence_array *cf = NULL; 2287 struct xe_range_fence *rfence; 2288 struct xe_vma_op *op; 2289 int err = 0, i; 2290 struct xe_migrate_pt_update update = { 2291 .ops = pt_update_ops->needs_svm_lock ? 2292 &svm_migrate_ops : 2293 pt_update_ops->needs_userptr_lock ? 2294 &userptr_migrate_ops : 2295 &migrate_ops, 2296 .vops = vops, 2297 .tile_id = tile->id, 2298 }; 2299 2300 lockdep_assert_held(&vm->lock); 2301 xe_vm_assert_held(vm); 2302 2303 if (!pt_update_ops->current_op) { 2304 xe_tile_assert(tile, xe_vm_in_fault_mode(vm)); 2305 2306 return dma_fence_get_stub(); 2307 } 2308 2309 #ifdef TEST_VM_OPS_ERROR 2310 if (vops->inject_error && 2311 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN) 2312 return ERR_PTR(-ENOSPC); 2313 #endif 2314 2315 if (pt_update_ops->needs_invalidation) { 2316 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2317 if (!ifence) { 2318 err = -ENOMEM; 2319 goto kill_vm_tile1; 2320 } 2321 if (tile->media_gt) { 2322 mfence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2323 if (!mfence) { 2324 err = -ENOMEM; 2325 goto free_ifence; 2326 } 2327 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL); 2328 if (!fences) { 2329 err = -ENOMEM; 2330 goto free_ifence; 2331 } 2332 cf = dma_fence_array_alloc(2); 2333 if (!cf) { 2334 err = -ENOMEM; 2335 goto free_ifence; 2336 } 2337 } 2338 } 2339 2340 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 2341 if (!rfence) { 2342 err = -ENOMEM; 2343 goto free_ifence; 2344 } 2345 2346 fence = xe_migrate_update_pgtables(tile->migrate, &update); 2347 if (IS_ERR(fence)) { 2348 err = PTR_ERR(fence); 2349 goto free_rfence; 2350 } 2351 2352 /* Point of no return - VM killed if failure after this */ 2353 for (i = 0; i < pt_update_ops->current_op; ++i) { 2354 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2355 2356 xe_pt_commit(pt_op->vma, pt_op->entries, 2357 pt_op->num_entries, &pt_update_ops->deferred); 2358 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */ 2359 } 2360 2361 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence, 2362 &xe_range_fence_kfree_ops, 2363 pt_update_ops->start, 2364 pt_update_ops->last, fence)) 2365 dma_fence_wait(fence, false); 2366 2367 /* tlb invalidation must be done before signaling rebind */ 2368 if (ifence) { 2369 if (mfence) 2370 dma_fence_get(fence); 2371 invalidation_fence_init(tile->primary_gt, ifence, fence, 2372 pt_update_ops->start, 2373 pt_update_ops->last, vm->usm.asid); 2374 if (mfence) { 2375 invalidation_fence_init(tile->media_gt, mfence, fence, 2376 pt_update_ops->start, 2377 pt_update_ops->last, vm->usm.asid); 2378 fences[0] = &ifence->base.base; 2379 fences[1] = &mfence->base.base; 2380 dma_fence_array_init(cf, 2, fences, 2381 vm->composite_fence_ctx, 2382 vm->composite_fence_seqno++, 2383 false); 2384 fence = &cf->base; 2385 } else { 2386 fence = &ifence->base.base; 2387 } 2388 } 2389 2390 if (!mfence) { 2391 dma_resv_add_fence(xe_vm_resv(vm), fence, 2392 pt_update_ops->wait_vm_bookkeep ? 2393 DMA_RESV_USAGE_KERNEL : 2394 DMA_RESV_USAGE_BOOKKEEP); 2395 2396 list_for_each_entry(op, &vops->list, link) 2397 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL); 2398 } else { 2399 dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base, 2400 pt_update_ops->wait_vm_bookkeep ? 2401 DMA_RESV_USAGE_KERNEL : 2402 DMA_RESV_USAGE_BOOKKEEP); 2403 2404 dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base, 2405 pt_update_ops->wait_vm_bookkeep ? 2406 DMA_RESV_USAGE_KERNEL : 2407 DMA_RESV_USAGE_BOOKKEEP); 2408 2409 list_for_each_entry(op, &vops->list, link) 2410 op_commit(vops->vm, tile, pt_update_ops, op, 2411 &ifence->base.base, &mfence->base.base); 2412 } 2413 2414 if (pt_update_ops->needs_svm_lock) 2415 xe_svm_notifier_unlock(vm); 2416 if (pt_update_ops->needs_userptr_lock) 2417 up_read(&vm->userptr.notifier_lock); 2418 2419 return fence; 2420 2421 free_rfence: 2422 kfree(rfence); 2423 free_ifence: 2424 kfree(cf); 2425 kfree(fences); 2426 kfree(mfence); 2427 kfree(ifence); 2428 kill_vm_tile1: 2429 if (err != -EAGAIN && tile->id) 2430 xe_vm_kill(vops->vm, false); 2431 2432 return ERR_PTR(err); 2433 } 2434 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO); 2435 2436 /** 2437 * xe_pt_update_ops_fini() - Finish PT update operations 2438 * @tile: Tile of PT update operations 2439 * @vops: VMA operations 2440 * 2441 * Finish PT update operations by committing to destroy page table memory 2442 */ 2443 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops) 2444 { 2445 struct xe_vm_pgtable_update_ops *pt_update_ops = 2446 &vops->pt_update_ops[tile->id]; 2447 int i; 2448 2449 lockdep_assert_held(&vops->vm->lock); 2450 xe_vm_assert_held(vops->vm); 2451 2452 for (i = 0; i < pt_update_ops->current_op; ++i) { 2453 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2454 2455 xe_pt_free_bind(pt_op->entries, pt_op->num_entries); 2456 } 2457 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred); 2458 } 2459 2460 /** 2461 * xe_pt_update_ops_abort() - Abort PT update operations 2462 * @tile: Tile of PT update operations 2463 * @vops: VMA operationa 2464 * 2465 * Abort PT update operations by unwinding internal PT state 2466 */ 2467 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops) 2468 { 2469 struct xe_vm_pgtable_update_ops *pt_update_ops = 2470 &vops->pt_update_ops[tile->id]; 2471 int i; 2472 2473 lockdep_assert_held(&vops->vm->lock); 2474 xe_vm_assert_held(vops->vm); 2475 2476 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) { 2477 struct xe_vm_pgtable_update_op *pt_op = 2478 &pt_update_ops->ops[i]; 2479 2480 if (!pt_op->vma || i >= pt_update_ops->current_op) 2481 continue; 2482 2483 if (pt_op->bind) 2484 xe_pt_abort_bind(pt_op->vma, pt_op->entries, 2485 pt_op->num_entries, 2486 pt_op->rebind); 2487 else 2488 xe_pt_abort_unbind(pt_op->vma, pt_op->entries, 2489 pt_op->num_entries); 2490 } 2491 2492 xe_pt_update_ops_fini(tile, vops); 2493 } 2494