1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <linux/dma-fence-array.h> 7 8 #include "xe_pt.h" 9 10 #include "regs/xe_gtt_defs.h" 11 #include "xe_bo.h" 12 #include "xe_device.h" 13 #include "xe_drm_client.h" 14 #include "xe_exec_queue.h" 15 #include "xe_gt.h" 16 #include "xe_gt_tlb_invalidation.h" 17 #include "xe_migrate.h" 18 #include "xe_pt_types.h" 19 #include "xe_pt_walk.h" 20 #include "xe_res_cursor.h" 21 #include "xe_sched_job.h" 22 #include "xe_sync.h" 23 #include "xe_trace.h" 24 #include "xe_ttm_stolen_mgr.h" 25 #include "xe_vm.h" 26 27 struct xe_pt_dir { 28 struct xe_pt pt; 29 /** @children: Array of page-table child nodes */ 30 struct xe_ptw *children[XE_PDES]; 31 }; 32 33 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 34 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 35 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 36 #else 37 #define xe_pt_set_addr(__xe_pt, __addr) 38 #define xe_pt_addr(__xe_pt) 0ull 39 #endif 40 41 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 42 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 43 44 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 45 46 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 47 { 48 return container_of(pt, struct xe_pt_dir, pt); 49 } 50 51 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) 52 { 53 return container_of(pt_dir->children[index], struct xe_pt, base); 54 } 55 56 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 57 unsigned int level) 58 { 59 struct xe_device *xe = tile_to_xe(tile); 60 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 61 u8 id = tile->id; 62 63 if (!xe_vm_has_scratch(vm)) 64 return 0; 65 66 if (level > MAX_HUGEPTE_LEVEL) 67 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 68 0, pat_index); 69 70 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 71 XE_PTE_NULL; 72 } 73 74 static void xe_pt_free(struct xe_pt *pt) 75 { 76 if (pt->level) 77 kfree(as_xe_pt_dir(pt)); 78 else 79 kfree(pt); 80 } 81 82 /** 83 * xe_pt_create() - Create a page-table. 84 * @vm: The vm to create for. 85 * @tile: The tile to create for. 86 * @level: The page-table level. 87 * 88 * Allocate and initialize a single struct xe_pt metadata structure. Also 89 * create the corresponding page-table bo, but don't initialize it. If the 90 * level is grater than zero, then it's assumed to be a directory page- 91 * table and the directory structure is also allocated and initialized to 92 * NULL pointers. 93 * 94 * Return: A valid struct xe_pt pointer on success, Pointer error code on 95 * error. 96 */ 97 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 98 unsigned int level) 99 { 100 struct xe_pt *pt; 101 struct xe_bo *bo; 102 int err; 103 104 if (level) { 105 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 106 107 pt = (dir) ? &dir->pt : NULL; 108 } else { 109 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 110 } 111 if (!pt) 112 return ERR_PTR(-ENOMEM); 113 114 pt->level = level; 115 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 116 ttm_bo_type_kernel, 117 XE_BO_FLAG_VRAM_IF_DGFX(tile) | 118 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 119 XE_BO_FLAG_PINNED | 120 XE_BO_FLAG_NO_RESV_EVICT | 121 XE_BO_FLAG_PAGETABLE); 122 if (IS_ERR(bo)) { 123 err = PTR_ERR(bo); 124 goto err_kfree; 125 } 126 pt->bo = bo; 127 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 128 129 if (vm->xef) 130 xe_drm_client_add_bo(vm->xef->client, pt->bo); 131 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 132 133 return pt; 134 135 err_kfree: 136 xe_pt_free(pt); 137 return ERR_PTR(err); 138 } 139 140 /** 141 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 142 * entries. 143 * @tile: The tile the scratch pagetable of which to use. 144 * @vm: The vm we populate for. 145 * @pt: The pagetable the bo of which to initialize. 146 * 147 * Populate the page-table bo of @pt with entries pointing into the tile's 148 * scratch page-table tree if any. Otherwise populate with zeros. 149 */ 150 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 151 struct xe_pt *pt) 152 { 153 struct iosys_map *map = &pt->bo->vmap; 154 u64 empty; 155 int i; 156 157 if (!xe_vm_has_scratch(vm)) { 158 /* 159 * FIXME: Some memory is allocated already allocated to zero? 160 * Find out which memory that is and avoid this memset... 161 */ 162 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 163 } else { 164 empty = __xe_pt_empty_pte(tile, vm, pt->level); 165 for (i = 0; i < XE_PDES; i++) 166 xe_pt_write(vm->xe, map, i, empty); 167 } 168 } 169 170 /** 171 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 172 * a page-table at a certain level. 173 * @level: The level. 174 * 175 * Return: The ilog2 value of the size of the address range of a page-table 176 * at level @level. 177 */ 178 unsigned int xe_pt_shift(unsigned int level) 179 { 180 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 181 } 182 183 /** 184 * xe_pt_destroy() - Destroy a page-table tree. 185 * @pt: The root of the page-table tree to destroy. 186 * @flags: vm flags. Currently unused. 187 * @deferred: List head of lockless list for deferred putting. NULL for 188 * immediate putting. 189 * 190 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 191 * and finally frees @pt. TODO: Can we remove the @flags argument? 192 */ 193 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 194 { 195 int i; 196 197 if (!pt) 198 return; 199 200 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 201 xe_bo_unpin(pt->bo); 202 xe_bo_put_deferred(pt->bo, deferred); 203 204 if (pt->level > 0 && pt->num_live) { 205 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 206 207 for (i = 0; i < XE_PDES; i++) { 208 if (xe_pt_entry(pt_dir, i)) 209 xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, 210 deferred); 211 } 212 } 213 xe_pt_free(pt); 214 } 215 216 /** 217 * DOC: Pagetable building 218 * 219 * Below we use the term "page-table" for both page-directories, containing 220 * pointers to lower level page-directories or page-tables, and level 0 221 * page-tables that contain only page-table-entries pointing to memory pages. 222 * 223 * When inserting an address range in an already existing page-table tree 224 * there will typically be a set of page-tables that are shared with other 225 * address ranges, and a set that are private to this address range. 226 * The set of shared page-tables can be at most two per level, 227 * and those can't be updated immediately because the entries of those 228 * page-tables may still be in use by the gpu for other mappings. Therefore 229 * when inserting entries into those, we instead stage those insertions by 230 * adding insertion data into struct xe_vm_pgtable_update structures. This 231 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 232 * added in a separate commit step. CPU-data is committed while still under the 233 * vm lock, the object lock and for userptr, the notifier lock in read mode. 234 * The GPU async data is committed either by the GPU or CPU after fulfilling 235 * relevant dependencies. 236 * For non-shared page-tables (and, in fact, for shared ones that aren't 237 * existing at the time of staging), we add the data in-place without the 238 * special update structures. This private part of the page-table tree will 239 * remain disconnected from the vm page-table tree until data is committed to 240 * the shared page tables of the vm tree in the commit phase. 241 */ 242 243 struct xe_pt_update { 244 /** @update: The update structure we're building for this parent. */ 245 struct xe_vm_pgtable_update *update; 246 /** @parent: The parent. Used to detect a parent change. */ 247 struct xe_pt *parent; 248 /** @preexisting: Whether the parent was pre-existing or allocated */ 249 bool preexisting; 250 }; 251 252 struct xe_pt_stage_bind_walk { 253 /** base: The base class. */ 254 struct xe_pt_walk base; 255 256 /* Input parameters for the walk */ 257 /** @vm: The vm we're building for. */ 258 struct xe_vm *vm; 259 /** @tile: The tile we're building for. */ 260 struct xe_tile *tile; 261 /** @default_pte: PTE flag only template. No address is associated */ 262 u64 default_pte; 263 /** @dma_offset: DMA offset to add to the PTE. */ 264 u64 dma_offset; 265 /** 266 * @needs_64k: This address range enforces 64K alignment and 267 * granularity. 268 */ 269 bool needs_64K; 270 /** 271 * @vma: VMA being mapped 272 */ 273 struct xe_vma *vma; 274 275 /* Also input, but is updated during the walk*/ 276 /** @curs: The DMA address cursor. */ 277 struct xe_res_cursor *curs; 278 /** @va_curs_start: The Virtual address coresponding to @curs->start */ 279 u64 va_curs_start; 280 281 /* Output */ 282 struct xe_walk_update { 283 /** @wupd.entries: Caller provided storage. */ 284 struct xe_vm_pgtable_update *entries; 285 /** @wupd.num_used_entries: Number of update @entries used. */ 286 unsigned int num_used_entries; 287 /** @wupd.updates: Tracks the update entry at a given level */ 288 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 289 } wupd; 290 291 /* Walk state */ 292 /** 293 * @l0_end_addr: The end address of the current l0 leaf. Used for 294 * 64K granularity detection. 295 */ 296 u64 l0_end_addr; 297 /** @addr_64K: The start address of the current 64K chunk. */ 298 u64 addr_64K; 299 /** @found_64: Whether @add_64K actually points to a 64K chunk. */ 300 bool found_64K; 301 }; 302 303 static int 304 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 305 pgoff_t offset, bool alloc_entries) 306 { 307 struct xe_pt_update *upd = &wupd->updates[parent->level]; 308 struct xe_vm_pgtable_update *entry; 309 310 /* 311 * For *each level*, we could only have one active 312 * struct xt_pt_update at any one time. Once we move on to a 313 * new parent and page-directory, the old one is complete, and 314 * updates are either already stored in the build tree or in 315 * @wupd->entries 316 */ 317 if (likely(upd->parent == parent)) 318 return 0; 319 320 upd->parent = parent; 321 upd->preexisting = true; 322 323 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 324 return -EINVAL; 325 326 entry = wupd->entries + wupd->num_used_entries++; 327 upd->update = entry; 328 entry->ofs = offset; 329 entry->pt_bo = parent->bo; 330 entry->pt = parent; 331 entry->flags = 0; 332 entry->qwords = 0; 333 entry->pt_bo->update_index = -1; 334 335 if (alloc_entries) { 336 entry->pt_entries = kmalloc_array(XE_PDES, 337 sizeof(*entry->pt_entries), 338 GFP_KERNEL); 339 if (!entry->pt_entries) 340 return -ENOMEM; 341 } 342 343 return 0; 344 } 345 346 /* 347 * NOTE: This is a very frequently called function so we allow ourselves 348 * to annotate (using branch prediction hints) the fastpath of updating a 349 * non-pre-existing pagetable with leaf ptes. 350 */ 351 static int 352 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 353 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 354 { 355 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 356 struct xe_pt_update *child_upd = xe_child ? 357 &xe_walk->wupd.updates[xe_child->level] : NULL; 358 int ret; 359 360 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 361 if (unlikely(ret)) 362 return ret; 363 364 /* 365 * Register this new pagetable so that it won't be recognized as 366 * a shared pagetable by a subsequent insertion. 367 */ 368 if (unlikely(child_upd)) { 369 child_upd->update = NULL; 370 child_upd->parent = xe_child; 371 child_upd->preexisting = false; 372 } 373 374 if (likely(!upd->preexisting)) { 375 /* Continue building a non-connected subtree. */ 376 struct iosys_map *map = &parent->bo->vmap; 377 378 if (unlikely(xe_child)) 379 parent->base.children[offset] = &xe_child->base; 380 381 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 382 parent->num_live++; 383 } else { 384 /* Shared pt. Stage update. */ 385 unsigned int idx; 386 struct xe_vm_pgtable_update *entry = upd->update; 387 388 idx = offset - entry->ofs; 389 entry->pt_entries[idx].pt = xe_child; 390 entry->pt_entries[idx].pte = pte; 391 entry->qwords++; 392 } 393 394 return 0; 395 } 396 397 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 398 struct xe_pt_stage_bind_walk *xe_walk) 399 { 400 u64 size, dma; 401 402 if (level > MAX_HUGEPTE_LEVEL) 403 return false; 404 405 /* Does the virtual range requested cover a huge pte? */ 406 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 407 return false; 408 409 /* Does the DMA segment cover the whole pte? */ 410 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 411 return false; 412 413 /* null VMA's do not have dma addresses */ 414 if (xe_vma_is_null(xe_walk->vma)) 415 return true; 416 417 /* Is the DMA address huge PTE size aligned? */ 418 size = next - addr; 419 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 420 421 return IS_ALIGNED(dma, size); 422 } 423 424 /* 425 * Scan the requested mapping to check whether it can be done entirely 426 * with 64K PTEs. 427 */ 428 static bool 429 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 430 { 431 struct xe_res_cursor curs = *xe_walk->curs; 432 433 if (!IS_ALIGNED(addr, SZ_64K)) 434 return false; 435 436 if (next > xe_walk->l0_end_addr) 437 return false; 438 439 /* null VMA's do not have dma addresses */ 440 if (xe_vma_is_null(xe_walk->vma)) 441 return true; 442 443 xe_res_next(&curs, addr - xe_walk->va_curs_start); 444 for (; addr < next; addr += SZ_64K) { 445 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 446 return false; 447 448 xe_res_next(&curs, SZ_64K); 449 } 450 451 return addr == next; 452 } 453 454 /* 455 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 456 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 457 * device to the PTE. 458 * This function determines whether the address is part of such a 459 * segment. For VRAM in normal pagetables, this is strictly necessary on 460 * some devices. 461 */ 462 static bool 463 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 464 { 465 /* Address is within an already found 64k region */ 466 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 467 return true; 468 469 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 470 xe_walk->addr_64K = addr; 471 472 return xe_walk->found_64K; 473 } 474 475 static int 476 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 477 unsigned int level, u64 addr, u64 next, 478 struct xe_ptw **child, 479 enum page_walk_action *action, 480 struct xe_pt_walk *walk) 481 { 482 struct xe_pt_stage_bind_walk *xe_walk = 483 container_of(walk, typeof(*xe_walk), base); 484 u16 pat_index = xe_walk->vma->pat_index; 485 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 486 struct xe_vm *vm = xe_walk->vm; 487 struct xe_pt *xe_child; 488 bool covers; 489 int ret = 0; 490 u64 pte; 491 492 /* Is this a leaf entry ?*/ 493 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 494 struct xe_res_cursor *curs = xe_walk->curs; 495 bool is_null = xe_vma_is_null(xe_walk->vma); 496 497 XE_WARN_ON(xe_walk->va_curs_start != addr); 498 499 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 500 xe_res_dma(curs) + xe_walk->dma_offset, 501 xe_walk->vma, pat_index, level); 502 pte |= xe_walk->default_pte; 503 504 /* 505 * Set the XE_PTE_PS64 hint if possible, otherwise if 506 * this device *requires* 64K PTE size for VRAM, fail. 507 */ 508 if (level == 0 && !xe_parent->is_compact) { 509 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 510 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K; 511 pte |= XE_PTE_PS64; 512 } else if (XE_WARN_ON(xe_walk->needs_64K)) { 513 return -EINVAL; 514 } 515 } 516 517 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 518 if (unlikely(ret)) 519 return ret; 520 521 if (!is_null) 522 xe_res_next(curs, next - addr); 523 xe_walk->va_curs_start = next; 524 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 525 *action = ACTION_CONTINUE; 526 527 return ret; 528 } 529 530 /* 531 * Descending to lower level. Determine if we need to allocate a 532 * new page table or -directory, which we do if there is no 533 * previous one or there is one we can completely replace. 534 */ 535 if (level == 1) { 536 walk->shifts = xe_normal_pt_shifts; 537 xe_walk->l0_end_addr = next; 538 } 539 540 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 541 if (covers || !*child) { 542 u64 flags = 0; 543 544 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 545 if (IS_ERR(xe_child)) 546 return PTR_ERR(xe_child); 547 548 xe_pt_set_addr(xe_child, 549 round_down(addr, 1ull << walk->shifts[level])); 550 551 if (!covers) 552 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 553 554 *child = &xe_child->base; 555 556 /* 557 * Prefer the compact pagetable layout for L0 if possible. Only 558 * possible if VMA covers entire 2MB region as compact 64k and 559 * 4k pages cannot be mixed within a 2MB region. 560 * TODO: Suballocate the pt bo to avoid wasting a lot of 561 * memory. 562 */ 563 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 564 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 565 walk->shifts = xe_compact_pt_shifts; 566 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 567 flags |= XE_PDE_64K; 568 xe_child->is_compact = true; 569 } 570 571 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; 572 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 573 pte); 574 } 575 576 *action = ACTION_SUBTREE; 577 return ret; 578 } 579 580 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 581 .pt_entry = xe_pt_stage_bind_entry, 582 }; 583 584 /** 585 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 586 * range. 587 * @tile: The tile we're building for. 588 * @vma: The vma indicating the address range. 589 * @entries: Storage for the update entries used for connecting the tree to 590 * the main tree at commit time. 591 * @num_entries: On output contains the number of @entries used. 592 * 593 * This function builds a disconnected page-table tree for a given address 594 * range. The tree is connected to the main vm tree for the gpu using 595 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 596 * The function builds xe_vm_pgtable_update structures for already existing 597 * shared page-tables, and non-existing shared and non-shared page-tables 598 * are built and populated directly. 599 * 600 * Return 0 on success, negative error code on error. 601 */ 602 static int 603 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 604 struct xe_vm_pgtable_update *entries, u32 *num_entries) 605 { 606 struct xe_device *xe = tile_to_xe(tile); 607 struct xe_bo *bo = xe_vma_bo(vma); 608 bool is_devmem = !xe_vma_is_userptr(vma) && bo && 609 (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)); 610 struct xe_res_cursor curs; 611 struct xe_pt_stage_bind_walk xe_walk = { 612 .base = { 613 .ops = &xe_pt_stage_bind_ops, 614 .shifts = xe_normal_pt_shifts, 615 .max_level = XE_PT_HIGHEST_LEVEL, 616 }, 617 .vm = xe_vma_vm(vma), 618 .tile = tile, 619 .curs = &curs, 620 .va_curs_start = xe_vma_start(vma), 621 .vma = vma, 622 .wupd.entries = entries, 623 .needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem, 624 }; 625 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 626 int ret; 627 628 /** 629 * Default atomic expectations for different allocation scenarios are as follows: 630 * 631 * 1. Traditional API: When the VM is not in LR mode: 632 * - Device atomics are expected to function with all allocations. 633 * 634 * 2. Compute/SVM API: When the VM is in LR mode: 635 * - Device atomics are the default behavior when the bo is placed in a single region. 636 * - In all other cases device atomics will be disabled with AE=0 until an application 637 * request differently using a ioctl like madvise. 638 */ 639 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { 640 if (xe_vm_in_lr_mode(xe_vma_vm(vma))) { 641 if (bo && xe_bo_has_single_placement(bo)) 642 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 643 /** 644 * If a SMEM+LMEM allocation is backed by SMEM, a device 645 * atomics will cause a gpu page fault and which then 646 * gets migrated to LMEM, bind such allocations with 647 * device atomics enabled. 648 */ 649 else if (is_devmem && !xe_bo_has_single_placement(bo)) 650 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 651 } else { 652 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 653 } 654 655 /** 656 * Unset AE if the platform(PVC) doesn't support it on an 657 * allocation 658 */ 659 if (!xe->info.has_device_atomics_on_smem && !is_devmem) 660 xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE; 661 } 662 663 if (is_devmem) { 664 xe_walk.default_pte |= XE_PPGTT_PTE_DM; 665 xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource); 666 } 667 668 if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo)) 669 xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); 670 671 xe_bo_assert_held(bo); 672 673 if (!xe_vma_is_null(vma)) { 674 if (xe_vma_is_userptr(vma)) 675 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, 676 xe_vma_size(vma), &curs); 677 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 678 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 679 xe_vma_size(vma), &curs); 680 else 681 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 682 xe_vma_size(vma), &curs); 683 } else { 684 curs.size = xe_vma_size(vma); 685 } 686 687 ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma), 688 xe_vma_end(vma), &xe_walk.base); 689 690 *num_entries = xe_walk.wupd.num_used_entries; 691 return ret; 692 } 693 694 /** 695 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 696 * shared pagetable. 697 * @addr: The start address within the non-shared pagetable. 698 * @end: The end address within the non-shared pagetable. 699 * @level: The level of the non-shared pagetable. 700 * @walk: Walk info. The function adjusts the walk action. 701 * @action: next action to perform (see enum page_walk_action) 702 * @offset: Ignored on input, First non-shared entry on output. 703 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 704 * 705 * A non-shared page-table has some entries that belong to the address range 706 * and others that don't. This function determines the entries that belong 707 * fully to the address range. Depending on level, some entries may 708 * partially belong to the address range (that can't happen at level 0). 709 * The function detects that and adjust those offsets to not include those 710 * partial entries. Iff it does detect partial entries, we know that there must 711 * be shared page tables also at lower levels, so it adjusts the walk action 712 * accordingly. 713 * 714 * Return: true if there were non-shared entries, false otherwise. 715 */ 716 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 717 struct xe_pt_walk *walk, 718 enum page_walk_action *action, 719 pgoff_t *offset, pgoff_t *end_offset) 720 { 721 u64 size = 1ull << walk->shifts[level]; 722 723 *offset = xe_pt_offset(addr, level, walk); 724 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 725 726 if (!level) 727 return true; 728 729 /* 730 * If addr or next are not size aligned, there are shared pts at lower 731 * level, so in that case traverse down the subtree 732 */ 733 *action = ACTION_CONTINUE; 734 if (!IS_ALIGNED(addr, size)) { 735 *action = ACTION_SUBTREE; 736 (*offset)++; 737 } 738 739 if (!IS_ALIGNED(end, size)) { 740 *action = ACTION_SUBTREE; 741 (*end_offset)--; 742 } 743 744 return *end_offset > *offset; 745 } 746 747 struct xe_pt_zap_ptes_walk { 748 /** @base: The walk base-class */ 749 struct xe_pt_walk base; 750 751 /* Input parameters for the walk */ 752 /** @tile: The tile we're building for */ 753 struct xe_tile *tile; 754 755 /* Output */ 756 /** @needs_invalidate: Whether we need to invalidate TLB*/ 757 bool needs_invalidate; 758 }; 759 760 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 761 unsigned int level, u64 addr, u64 next, 762 struct xe_ptw **child, 763 enum page_walk_action *action, 764 struct xe_pt_walk *walk) 765 { 766 struct xe_pt_zap_ptes_walk *xe_walk = 767 container_of(walk, typeof(*xe_walk), base); 768 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 769 pgoff_t end_offset; 770 771 XE_WARN_ON(!*child); 772 XE_WARN_ON(!level); 773 774 /* 775 * Note that we're called from an entry callback, and we're dealing 776 * with the child of that entry rather than the parent, so need to 777 * adjust level down. 778 */ 779 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 780 &end_offset)) { 781 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 782 offset * sizeof(u64), 0, 783 (end_offset - offset) * sizeof(u64)); 784 xe_walk->needs_invalidate = true; 785 } 786 787 return 0; 788 } 789 790 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 791 .pt_entry = xe_pt_zap_ptes_entry, 792 }; 793 794 /** 795 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 796 * @tile: The tile we're zapping for. 797 * @vma: GPU VMA detailing address range. 798 * 799 * Eviction and Userptr invalidation needs to be able to zap the 800 * gpu ptes of a given address range in pagefaulting mode. 801 * In order to be able to do that, that function needs access to the shared 802 * page-table entrieaso it can either clear the leaf PTEs or 803 * clear the pointers to lower-level page-tables. The caller is required 804 * to hold the necessary locks to ensure neither the page-table connectivity 805 * nor the page-table entries of the range is updated from under us. 806 * 807 * Return: Whether ptes were actually updated and a TLB invalidation is 808 * required. 809 */ 810 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 811 { 812 struct xe_pt_zap_ptes_walk xe_walk = { 813 .base = { 814 .ops = &xe_pt_zap_ptes_ops, 815 .shifts = xe_normal_pt_shifts, 816 .max_level = XE_PT_HIGHEST_LEVEL, 817 }, 818 .tile = tile, 819 }; 820 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 821 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); 822 823 if (!(pt_mask & BIT(tile->id))) 824 return false; 825 826 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 827 xe_vma_end(vma), &xe_walk.base); 828 829 return xe_walk.needs_invalidate; 830 } 831 832 static void 833 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 834 struct iosys_map *map, void *data, 835 u32 qword_ofs, u32 num_qwords, 836 const struct xe_vm_pgtable_update *update) 837 { 838 struct xe_pt_entry *ptes = update->pt_entries; 839 u64 *ptr = data; 840 u32 i; 841 842 for (i = 0; i < num_qwords; i++) { 843 if (map) 844 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 845 sizeof(u64), u64, ptes[i].pte); 846 else 847 ptr[i] = ptes[i].pte; 848 } 849 } 850 851 static void xe_pt_cancel_bind(struct xe_vma *vma, 852 struct xe_vm_pgtable_update *entries, 853 u32 num_entries) 854 { 855 u32 i, j; 856 857 for (i = 0; i < num_entries; i++) { 858 struct xe_pt *pt = entries[i].pt; 859 860 if (!pt) 861 continue; 862 863 if (pt->level) { 864 for (j = 0; j < entries[i].qwords; j++) 865 xe_pt_destroy(entries[i].pt_entries[j].pt, 866 xe_vma_vm(vma)->flags, NULL); 867 } 868 869 kfree(entries[i].pt_entries); 870 entries[i].pt_entries = NULL; 871 entries[i].qwords = 0; 872 } 873 } 874 875 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 876 { 877 struct xe_vm *vm = xe_vma_vm(vma); 878 879 lockdep_assert_held(&vm->lock); 880 881 if (!xe_vma_is_userptr(vma) && !xe_vma_is_null(vma)) 882 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 883 884 xe_vm_assert_held(vm); 885 } 886 887 static void xe_pt_commit(struct xe_vma *vma, 888 struct xe_vm_pgtable_update *entries, 889 u32 num_entries, struct llist_head *deferred) 890 { 891 u32 i, j; 892 893 xe_pt_commit_locks_assert(vma); 894 895 for (i = 0; i < num_entries; i++) { 896 struct xe_pt *pt = entries[i].pt; 897 898 if (!pt->level) 899 continue; 900 901 for (j = 0; j < entries[i].qwords; j++) { 902 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 903 904 xe_pt_destroy(oldpte, xe_vma_vm(vma)->flags, deferred); 905 } 906 } 907 } 908 909 static void xe_pt_abort_bind(struct xe_vma *vma, 910 struct xe_vm_pgtable_update *entries, 911 u32 num_entries, bool rebind) 912 { 913 int i, j; 914 915 xe_pt_commit_locks_assert(vma); 916 917 for (i = num_entries - 1; i >= 0; --i) { 918 struct xe_pt *pt = entries[i].pt; 919 struct xe_pt_dir *pt_dir; 920 921 if (!rebind) 922 pt->num_live -= entries[i].qwords; 923 924 if (!pt->level) 925 continue; 926 927 pt_dir = as_xe_pt_dir(pt); 928 for (j = 0; j < entries[i].qwords; j++) { 929 u32 j_ = j + entries[i].ofs; 930 struct xe_pt *newpte = xe_pt_entry(pt_dir, j_); 931 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 932 933 pt_dir->children[j_] = oldpte ? &oldpte->base : 0; 934 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL); 935 } 936 } 937 } 938 939 static void xe_pt_commit_prepare_bind(struct xe_vma *vma, 940 struct xe_vm_pgtable_update *entries, 941 u32 num_entries, bool rebind) 942 { 943 u32 i, j; 944 945 xe_pt_commit_locks_assert(vma); 946 947 for (i = 0; i < num_entries; i++) { 948 struct xe_pt *pt = entries[i].pt; 949 struct xe_pt_dir *pt_dir; 950 951 if (!rebind) 952 pt->num_live += entries[i].qwords; 953 954 if (!pt->level) 955 continue; 956 957 pt_dir = as_xe_pt_dir(pt); 958 for (j = 0; j < entries[i].qwords; j++) { 959 u32 j_ = j + entries[i].ofs; 960 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 961 struct xe_pt *oldpte = NULL; 962 963 if (xe_pt_entry(pt_dir, j_)) 964 oldpte = xe_pt_entry(pt_dir, j_); 965 966 pt_dir->children[j_] = &newpte->base; 967 entries[i].pt_entries[j].pt = oldpte; 968 } 969 } 970 } 971 972 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries, 973 u32 num_entries) 974 { 975 u32 i; 976 977 for (i = 0; i < num_entries; i++) 978 kfree(entries[i].pt_entries); 979 } 980 981 static int 982 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 983 struct xe_vm_pgtable_update *entries, u32 *num_entries) 984 { 985 int err; 986 987 *num_entries = 0; 988 err = xe_pt_stage_bind(tile, vma, entries, num_entries); 989 if (!err) 990 xe_tile_assert(tile, *num_entries); 991 992 return err; 993 } 994 995 static void xe_vm_dbg_print_entries(struct xe_device *xe, 996 const struct xe_vm_pgtable_update *entries, 997 unsigned int num_entries, bool bind) 998 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 999 { 1000 unsigned int i; 1001 1002 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind", 1003 num_entries); 1004 for (i = 0; i < num_entries; i++) { 1005 const struct xe_vm_pgtable_update *entry = &entries[i]; 1006 struct xe_pt *xe_pt = entry->pt; 1007 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1008 u64 end; 1009 u64 start; 1010 1011 xe_assert(xe, !entry->pt->is_compact); 1012 start = entry->ofs * page_size; 1013 end = start + page_size * entry->qwords; 1014 vm_dbg(&xe->drm, 1015 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1016 i, xe_pt->level, entry->ofs, entry->qwords, 1017 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1018 } 1019 } 1020 #else 1021 {} 1022 #endif 1023 1024 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs) 1025 { 1026 int i; 1027 1028 for (i = 0; i < num_syncs; i++) { 1029 struct dma_fence *fence = syncs[i].fence; 1030 1031 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1032 &fence->flags)) 1033 return false; 1034 } 1035 1036 return true; 1037 } 1038 1039 static int job_test_add_deps(struct xe_sched_job *job, 1040 struct dma_resv *resv, 1041 enum dma_resv_usage usage) 1042 { 1043 if (!job) { 1044 if (!dma_resv_test_signaled(resv, usage)) 1045 return -ETIME; 1046 1047 return 0; 1048 } 1049 1050 return xe_sched_job_add_deps(job, resv, usage); 1051 } 1052 1053 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job) 1054 { 1055 struct xe_bo *bo = xe_vma_bo(vma); 1056 1057 xe_bo_assert_held(bo); 1058 1059 if (bo && !bo->vm) 1060 return job_test_add_deps(job, bo->ttm.base.resv, 1061 DMA_RESV_USAGE_KERNEL); 1062 1063 return 0; 1064 } 1065 1066 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op, 1067 struct xe_sched_job *job) 1068 { 1069 int err = 0; 1070 1071 switch (op->base.op) { 1072 case DRM_GPUVA_OP_MAP: 1073 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1074 break; 1075 1076 err = vma_add_deps(op->map.vma, job); 1077 break; 1078 case DRM_GPUVA_OP_REMAP: 1079 if (op->remap.prev) 1080 err = vma_add_deps(op->remap.prev, job); 1081 if (!err && op->remap.next) 1082 err = vma_add_deps(op->remap.next, job); 1083 break; 1084 case DRM_GPUVA_OP_UNMAP: 1085 break; 1086 case DRM_GPUVA_OP_PREFETCH: 1087 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job); 1088 break; 1089 default: 1090 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1091 } 1092 1093 return err; 1094 } 1095 1096 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 1097 struct xe_vm *vm, 1098 struct xe_vma_ops *vops, 1099 struct xe_vm_pgtable_update_ops *pt_update_ops, 1100 struct xe_range_fence_tree *rftree) 1101 { 1102 struct xe_range_fence *rtfence; 1103 struct dma_fence *fence; 1104 struct xe_vma_op *op; 1105 int err = 0, i; 1106 1107 xe_vm_assert_held(vm); 1108 1109 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs)) 1110 return -ETIME; 1111 1112 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q)) 1113 return -ETIME; 1114 1115 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) { 1116 err = job_test_add_deps(job, xe_vm_resv(vm), 1117 pt_update_ops->wait_vm_bookkeep ? 1118 DMA_RESV_USAGE_BOOKKEEP : 1119 DMA_RESV_USAGE_KERNEL); 1120 if (err) 1121 return err; 1122 } 1123 1124 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start, 1125 pt_update_ops->last); 1126 while (rtfence) { 1127 fence = rtfence->fence; 1128 1129 if (!dma_fence_is_signaled(fence)) { 1130 /* 1131 * Is this a CPU update? GPU is busy updating, so return 1132 * an error 1133 */ 1134 if (!job) 1135 return -ETIME; 1136 1137 dma_fence_get(fence); 1138 err = drm_sched_job_add_dependency(&job->drm, fence); 1139 if (err) 1140 return err; 1141 } 1142 1143 rtfence = xe_range_fence_tree_next(rtfence, 1144 pt_update_ops->start, 1145 pt_update_ops->last); 1146 } 1147 1148 list_for_each_entry(op, &vops->list, link) { 1149 err = op_add_deps(vm, op, job); 1150 if (err) 1151 return err; 1152 } 1153 1154 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) { 1155 if (job) 1156 err = xe_sched_job_last_fence_add_dep(job, vm); 1157 else 1158 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm); 1159 } 1160 1161 for (i = 0; job && !err && i < vops->num_syncs; i++) 1162 err = xe_sync_entry_add_deps(&vops->syncs[i], job); 1163 1164 return err; 1165 } 1166 1167 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1168 { 1169 struct xe_vma_ops *vops = pt_update->vops; 1170 struct xe_vm *vm = vops->vm; 1171 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id]; 1172 struct xe_vm_pgtable_update_ops *pt_update_ops = 1173 &vops->pt_update_ops[pt_update->tile_id]; 1174 1175 return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops, 1176 pt_update_ops, rftree); 1177 } 1178 1179 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1180 1181 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1182 { 1183 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 1184 static u32 count; 1185 1186 if (count++ % divisor == divisor - 1) { 1187 uvma->userptr.divisor = divisor << 1; 1188 return true; 1189 } 1190 1191 return false; 1192 } 1193 1194 #else 1195 1196 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1197 { 1198 return false; 1199 } 1200 1201 #endif 1202 1203 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma, 1204 struct xe_vm_pgtable_update_ops *pt_update) 1205 { 1206 struct xe_userptr_vma *uvma; 1207 unsigned long notifier_seq; 1208 1209 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1210 1211 if (!xe_vma_is_userptr(vma)) 1212 return 0; 1213 1214 uvma = to_userptr_vma(vma); 1215 notifier_seq = uvma->userptr.notifier_seq; 1216 1217 if (uvma->userptr.initial_bind && !xe_vm_in_fault_mode(vm)) 1218 return 0; 1219 1220 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1221 notifier_seq) && 1222 !xe_pt_userptr_inject_eagain(uvma)) 1223 return 0; 1224 1225 if (xe_vm_in_fault_mode(vm)) { 1226 return -EAGAIN; 1227 } else { 1228 spin_lock(&vm->userptr.invalidated_lock); 1229 list_move_tail(&uvma->userptr.invalidate_link, 1230 &vm->userptr.invalidated); 1231 spin_unlock(&vm->userptr.invalidated_lock); 1232 1233 if (xe_vm_in_preempt_fence_mode(vm)) { 1234 struct dma_resv_iter cursor; 1235 struct dma_fence *fence; 1236 long err; 1237 1238 dma_resv_iter_begin(&cursor, xe_vm_resv(vm), 1239 DMA_RESV_USAGE_BOOKKEEP); 1240 dma_resv_for_each_fence_unlocked(&cursor, fence) 1241 dma_fence_enable_sw_signaling(fence); 1242 dma_resv_iter_end(&cursor); 1243 1244 err = dma_resv_wait_timeout(xe_vm_resv(vm), 1245 DMA_RESV_USAGE_BOOKKEEP, 1246 false, MAX_SCHEDULE_TIMEOUT); 1247 XE_WARN_ON(err <= 0); 1248 } 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op, 1255 struct xe_vm_pgtable_update_ops *pt_update) 1256 { 1257 int err = 0; 1258 1259 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1260 1261 switch (op->base.op) { 1262 case DRM_GPUVA_OP_MAP: 1263 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1264 break; 1265 1266 err = vma_check_userptr(vm, op->map.vma, pt_update); 1267 break; 1268 case DRM_GPUVA_OP_REMAP: 1269 if (op->remap.prev) 1270 err = vma_check_userptr(vm, op->remap.prev, pt_update); 1271 if (!err && op->remap.next) 1272 err = vma_check_userptr(vm, op->remap.next, pt_update); 1273 break; 1274 case DRM_GPUVA_OP_UNMAP: 1275 break; 1276 case DRM_GPUVA_OP_PREFETCH: 1277 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), 1278 pt_update); 1279 break; 1280 default: 1281 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1282 } 1283 1284 return err; 1285 } 1286 1287 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1288 { 1289 struct xe_vm *vm = pt_update->vops->vm; 1290 struct xe_vma_ops *vops = pt_update->vops; 1291 struct xe_vm_pgtable_update_ops *pt_update_ops = 1292 &vops->pt_update_ops[pt_update->tile_id]; 1293 struct xe_vma_op *op; 1294 int err; 1295 1296 err = xe_pt_pre_commit(pt_update); 1297 if (err) 1298 return err; 1299 1300 down_read(&vm->userptr.notifier_lock); 1301 1302 list_for_each_entry(op, &vops->list, link) { 1303 err = op_check_userptr(vm, op, pt_update_ops); 1304 if (err) { 1305 up_read(&vm->userptr.notifier_lock); 1306 break; 1307 } 1308 } 1309 1310 return err; 1311 } 1312 1313 struct invalidation_fence { 1314 struct xe_gt_tlb_invalidation_fence base; 1315 struct xe_gt *gt; 1316 struct dma_fence *fence; 1317 struct dma_fence_cb cb; 1318 struct work_struct work; 1319 u64 start; 1320 u64 end; 1321 u32 asid; 1322 }; 1323 1324 static void invalidation_fence_cb(struct dma_fence *fence, 1325 struct dma_fence_cb *cb) 1326 { 1327 struct invalidation_fence *ifence = 1328 container_of(cb, struct invalidation_fence, cb); 1329 struct xe_device *xe = gt_to_xe(ifence->gt); 1330 1331 trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base); 1332 if (!ifence->fence->error) { 1333 queue_work(system_wq, &ifence->work); 1334 } else { 1335 ifence->base.base.error = ifence->fence->error; 1336 xe_gt_tlb_invalidation_fence_signal(&ifence->base); 1337 } 1338 dma_fence_put(ifence->fence); 1339 } 1340 1341 static void invalidation_fence_work_func(struct work_struct *w) 1342 { 1343 struct invalidation_fence *ifence = 1344 container_of(w, struct invalidation_fence, work); 1345 struct xe_device *xe = gt_to_xe(ifence->gt); 1346 1347 trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base); 1348 xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start, 1349 ifence->end, ifence->asid); 1350 } 1351 1352 static void invalidation_fence_init(struct xe_gt *gt, 1353 struct invalidation_fence *ifence, 1354 struct dma_fence *fence, 1355 u64 start, u64 end, u32 asid) 1356 { 1357 int ret; 1358 1359 trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base); 1360 1361 xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false); 1362 1363 ifence->fence = fence; 1364 ifence->gt = gt; 1365 ifence->start = start; 1366 ifence->end = end; 1367 ifence->asid = asid; 1368 1369 INIT_WORK(&ifence->work, invalidation_fence_work_func); 1370 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); 1371 if (ret == -ENOENT) { 1372 dma_fence_put(ifence->fence); /* Usually dropped in CB */ 1373 invalidation_fence_work_func(&ifence->work); 1374 } else if (ret) { 1375 dma_fence_put(&ifence->base.base); /* Caller ref */ 1376 dma_fence_put(&ifence->base.base); /* Creation ref */ 1377 } 1378 1379 xe_gt_assert(gt, !ret || ret == -ENOENT); 1380 } 1381 1382 struct xe_pt_stage_unbind_walk { 1383 /** @base: The pagewalk base-class. */ 1384 struct xe_pt_walk base; 1385 1386 /* Input parameters for the walk */ 1387 /** @tile: The tile we're unbinding from. */ 1388 struct xe_tile *tile; 1389 1390 /** 1391 * @modified_start: Walk range start, modified to include any 1392 * shared pagetables that we're the only user of and can thus 1393 * treat as private. 1394 */ 1395 u64 modified_start; 1396 /** @modified_end: Walk range start, modified like @modified_start. */ 1397 u64 modified_end; 1398 1399 /* Output */ 1400 /* @wupd: Structure to track the page-table updates we're building */ 1401 struct xe_walk_update wupd; 1402 }; 1403 1404 /* 1405 * Check whether this range is the only one populating this pagetable, 1406 * and in that case, update the walk range checks so that higher levels don't 1407 * view us as a shared pagetable. 1408 */ 1409 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1410 const struct xe_pt *child, 1411 enum page_walk_action *action, 1412 struct xe_pt_walk *walk) 1413 { 1414 struct xe_pt_stage_unbind_walk *xe_walk = 1415 container_of(walk, typeof(*xe_walk), base); 1416 unsigned int shift = walk->shifts[level]; 1417 u64 size = 1ull << shift; 1418 1419 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1420 ((next - addr) >> shift) == child->num_live) { 1421 u64 size = 1ull << walk->shifts[level + 1]; 1422 1423 *action = ACTION_CONTINUE; 1424 1425 if (xe_walk->modified_start >= addr) 1426 xe_walk->modified_start = round_down(addr, size); 1427 if (xe_walk->modified_end <= next) 1428 xe_walk->modified_end = round_up(next, size); 1429 1430 return true; 1431 } 1432 1433 return false; 1434 } 1435 1436 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1437 unsigned int level, u64 addr, u64 next, 1438 struct xe_ptw **child, 1439 enum page_walk_action *action, 1440 struct xe_pt_walk *walk) 1441 { 1442 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1443 1444 XE_WARN_ON(!*child); 1445 XE_WARN_ON(!level); 1446 1447 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1448 1449 return 0; 1450 } 1451 1452 static int 1453 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1454 unsigned int level, u64 addr, u64 next, 1455 struct xe_ptw **child, 1456 enum page_walk_action *action, 1457 struct xe_pt_walk *walk) 1458 { 1459 struct xe_pt_stage_unbind_walk *xe_walk = 1460 container_of(walk, typeof(*xe_walk), base); 1461 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1462 pgoff_t end_offset; 1463 u64 size = 1ull << walk->shifts[--level]; 1464 int err; 1465 1466 if (!IS_ALIGNED(addr, size)) 1467 addr = xe_walk->modified_start; 1468 if (!IS_ALIGNED(next, size)) 1469 next = xe_walk->modified_end; 1470 1471 /* Parent == *child is the root pt. Don't kill it. */ 1472 if (parent != *child && 1473 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1474 return 0; 1475 1476 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1477 &end_offset)) 1478 return 0; 1479 1480 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true); 1481 if (err) 1482 return err; 1483 1484 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1485 1486 return 0; 1487 } 1488 1489 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1490 .pt_entry = xe_pt_stage_unbind_entry, 1491 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1492 }; 1493 1494 /** 1495 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1496 * operation 1497 * @tile: The tile we're unbinding for. 1498 * @vma: The vma we're unbinding. 1499 * @entries: Caller-provided storage for the update structures. 1500 * 1501 * Builds page-table update structures for an unbind operation. The function 1502 * will attempt to remove all page-tables that we're the only user 1503 * of, and for that to work, the unbind operation must be committed in the 1504 * same critical section that blocks racing binds to the same page-table tree. 1505 * 1506 * Return: The number of entries used. 1507 */ 1508 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma, 1509 struct xe_vm_pgtable_update *entries) 1510 { 1511 struct xe_pt_stage_unbind_walk xe_walk = { 1512 .base = { 1513 .ops = &xe_pt_stage_unbind_ops, 1514 .shifts = xe_normal_pt_shifts, 1515 .max_level = XE_PT_HIGHEST_LEVEL, 1516 }, 1517 .tile = tile, 1518 .modified_start = xe_vma_start(vma), 1519 .modified_end = xe_vma_end(vma), 1520 .wupd.entries = entries, 1521 }; 1522 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 1523 1524 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 1525 xe_vma_end(vma), &xe_walk.base); 1526 1527 return xe_walk.wupd.num_used_entries; 1528 } 1529 1530 static void 1531 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1532 struct xe_tile *tile, struct iosys_map *map, 1533 void *ptr, u32 qword_ofs, u32 num_qwords, 1534 const struct xe_vm_pgtable_update *update) 1535 { 1536 struct xe_vm *vm = pt_update->vops->vm; 1537 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level); 1538 int i; 1539 1540 if (map && map->is_iomem) 1541 for (i = 0; i < num_qwords; ++i) 1542 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1543 sizeof(u64), u64, empty); 1544 else if (map) 1545 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1546 num_qwords); 1547 else 1548 memset64(ptr, empty, num_qwords); 1549 } 1550 1551 static void xe_pt_abort_unbind(struct xe_vma *vma, 1552 struct xe_vm_pgtable_update *entries, 1553 u32 num_entries) 1554 { 1555 int i, j; 1556 1557 xe_pt_commit_locks_assert(vma); 1558 1559 for (i = num_entries - 1; i >= 0; --i) { 1560 struct xe_vm_pgtable_update *entry = &entries[i]; 1561 struct xe_pt *pt = entry->pt; 1562 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1563 1564 pt->num_live += entry->qwords; 1565 1566 if (!pt->level) 1567 continue; 1568 1569 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) 1570 pt_dir->children[j] = 1571 entries[i].pt_entries[j - entry->ofs].pt ? 1572 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL; 1573 } 1574 } 1575 1576 static void 1577 xe_pt_commit_prepare_unbind(struct xe_vma *vma, 1578 struct xe_vm_pgtable_update *entries, 1579 u32 num_entries) 1580 { 1581 int i, j; 1582 1583 xe_pt_commit_locks_assert(vma); 1584 1585 for (i = 0; i < num_entries; ++i) { 1586 struct xe_vm_pgtable_update *entry = &entries[i]; 1587 struct xe_pt *pt = entry->pt; 1588 struct xe_pt_dir *pt_dir; 1589 1590 pt->num_live -= entry->qwords; 1591 if (!pt->level) 1592 continue; 1593 1594 pt_dir = as_xe_pt_dir(pt); 1595 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) { 1596 entry->pt_entries[j - entry->ofs].pt = 1597 xe_pt_entry(pt_dir, j); 1598 pt_dir->children[j] = NULL; 1599 } 1600 } 1601 } 1602 1603 static void 1604 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops, 1605 struct xe_vma *vma) 1606 { 1607 u32 current_op = pt_update_ops->current_op; 1608 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1609 int i, level = 0; 1610 u64 start, last; 1611 1612 for (i = 0; i < pt_op->num_entries; i++) { 1613 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i]; 1614 1615 if (entry->pt->level > level) 1616 level = entry->pt->level; 1617 } 1618 1619 /* Greedy (non-optimal) calculation but simple */ 1620 start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level)); 1621 last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1; 1622 1623 if (start < pt_update_ops->start) 1624 pt_update_ops->start = start; 1625 if (last > pt_update_ops->last) 1626 pt_update_ops->last = last; 1627 } 1628 1629 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma) 1630 { 1631 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0; 1632 1633 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1634 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1635 xe->info.tile_count << shift); 1636 1637 return 0; 1638 } 1639 1640 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile, 1641 struct xe_vm_pgtable_update_ops *pt_update_ops, 1642 struct xe_vma *vma) 1643 { 1644 u32 current_op = pt_update_ops->current_op; 1645 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1646 int err; 1647 1648 xe_bo_assert_held(xe_vma_bo(vma)); 1649 1650 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1651 "Preparing bind, with range [%llx...%llx)\n", 1652 xe_vma_start(vma), xe_vma_end(vma) - 1); 1653 1654 pt_op->vma = NULL; 1655 pt_op->bind = true; 1656 pt_op->rebind = BIT(tile->id) & vma->tile_present; 1657 1658 err = vma_reserve_fences(tile_to_xe(tile), vma); 1659 if (err) 1660 return err; 1661 1662 err = xe_pt_prepare_bind(tile, vma, pt_op->entries, 1663 &pt_op->num_entries); 1664 if (!err) { 1665 xe_tile_assert(tile, pt_op->num_entries <= 1666 ARRAY_SIZE(pt_op->entries)); 1667 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1668 pt_op->num_entries, true); 1669 1670 xe_pt_update_ops_rfence_interval(pt_update_ops, vma); 1671 ++pt_update_ops->current_op; 1672 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1673 1674 /* 1675 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1676 * cached PTEs point to freed memory. On LR vms this is done 1677 * automatically when the context is re-enabled by the rebind worker, 1678 * or in fault mode it was invalidated on PTE zapping. 1679 * 1680 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1681 * PTE is already cached in the TLB so it needs to be invalidated. 1682 * On !LR VMs this is done in the ring ops preceding a batch, but on 1683 * non-faulting LR, in particular on user-space batch buffer chaining, 1684 * it needs to be done here. 1685 */ 1686 if ((!pt_op->rebind && xe_vm_has_scratch(vm) && 1687 xe_vm_in_preempt_fence_mode(vm))) 1688 pt_update_ops->needs_invalidation = true; 1689 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm)) 1690 /* We bump also if batch_invalidate_tlb is true */ 1691 vm->tlb_flush_seqno++; 1692 1693 vma->tile_staged |= BIT(tile->id); 1694 pt_op->vma = vma; 1695 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1696 pt_op->num_entries, pt_op->rebind); 1697 } else { 1698 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1699 } 1700 1701 return err; 1702 } 1703 1704 static int unbind_op_prepare(struct xe_tile *tile, 1705 struct xe_vm_pgtable_update_ops *pt_update_ops, 1706 struct xe_vma *vma) 1707 { 1708 u32 current_op = pt_update_ops->current_op; 1709 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1710 int err; 1711 1712 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id))) 1713 return 0; 1714 1715 xe_bo_assert_held(xe_vma_bo(vma)); 1716 1717 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1718 "Preparing unbind, with range [%llx...%llx)\n", 1719 xe_vma_start(vma), xe_vma_end(vma) - 1); 1720 1721 /* 1722 * Wait for invalidation to complete. Can corrupt internal page table 1723 * state if an invalidation is running while preparing an unbind. 1724 */ 1725 if (xe_vma_is_userptr(vma) && xe_vm_in_fault_mode(xe_vma_vm(vma))) 1726 mmu_interval_read_begin(&to_userptr_vma(vma)->userptr.notifier); 1727 1728 pt_op->vma = vma; 1729 pt_op->bind = false; 1730 pt_op->rebind = false; 1731 1732 err = vma_reserve_fences(tile_to_xe(tile), vma); 1733 if (err) 1734 return err; 1735 1736 pt_op->num_entries = xe_pt_stage_unbind(tile, vma, pt_op->entries); 1737 1738 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1739 pt_op->num_entries, false); 1740 xe_pt_update_ops_rfence_interval(pt_update_ops, vma); 1741 ++pt_update_ops->current_op; 1742 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1743 pt_update_ops->needs_invalidation = true; 1744 1745 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries); 1746 1747 return 0; 1748 } 1749 1750 static int op_prepare(struct xe_vm *vm, 1751 struct xe_tile *tile, 1752 struct xe_vm_pgtable_update_ops *pt_update_ops, 1753 struct xe_vma_op *op) 1754 { 1755 int err = 0; 1756 1757 xe_vm_assert_held(vm); 1758 1759 switch (op->base.op) { 1760 case DRM_GPUVA_OP_MAP: 1761 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1762 break; 1763 1764 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma); 1765 pt_update_ops->wait_vm_kernel = true; 1766 break; 1767 case DRM_GPUVA_OP_REMAP: 1768 err = unbind_op_prepare(tile, pt_update_ops, 1769 gpuva_to_vma(op->base.remap.unmap->va)); 1770 1771 if (!err && op->remap.prev) { 1772 err = bind_op_prepare(vm, tile, pt_update_ops, 1773 op->remap.prev); 1774 pt_update_ops->wait_vm_bookkeep = true; 1775 } 1776 if (!err && op->remap.next) { 1777 err = bind_op_prepare(vm, tile, pt_update_ops, 1778 op->remap.next); 1779 pt_update_ops->wait_vm_bookkeep = true; 1780 } 1781 break; 1782 case DRM_GPUVA_OP_UNMAP: 1783 err = unbind_op_prepare(tile, pt_update_ops, 1784 gpuva_to_vma(op->base.unmap.va)); 1785 break; 1786 case DRM_GPUVA_OP_PREFETCH: 1787 err = bind_op_prepare(vm, tile, pt_update_ops, 1788 gpuva_to_vma(op->base.prefetch.va)); 1789 pt_update_ops->wait_vm_kernel = true; 1790 break; 1791 default: 1792 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1793 } 1794 1795 return err; 1796 } 1797 1798 static void 1799 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops) 1800 { 1801 init_llist_head(&pt_update_ops->deferred); 1802 pt_update_ops->start = ~0x0ull; 1803 pt_update_ops->last = 0x0ull; 1804 } 1805 1806 /** 1807 * xe_pt_update_ops_prepare() - Prepare PT update operations 1808 * @tile: Tile of PT update operations 1809 * @vops: VMA operationa 1810 * 1811 * Prepare PT update operations which includes updating internal PT state, 1812 * allocate memory for page tables, populate page table being pruned in, and 1813 * create PT update operations for leaf insertion / removal. 1814 * 1815 * Return: 0 on success, negative error code on error. 1816 */ 1817 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops) 1818 { 1819 struct xe_vm_pgtable_update_ops *pt_update_ops = 1820 &vops->pt_update_ops[tile->id]; 1821 struct xe_vma_op *op; 1822 int shift = tile->media_gt ? 1 : 0; 1823 int err; 1824 1825 lockdep_assert_held(&vops->vm->lock); 1826 xe_vm_assert_held(vops->vm); 1827 1828 xe_pt_update_ops_init(pt_update_ops); 1829 1830 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm), 1831 tile_to_xe(tile)->info.tile_count << shift); 1832 if (err) 1833 return err; 1834 1835 list_for_each_entry(op, &vops->list, link) { 1836 err = op_prepare(vops->vm, tile, pt_update_ops, op); 1837 1838 if (err) 1839 return err; 1840 } 1841 1842 xe_tile_assert(tile, pt_update_ops->current_op <= 1843 pt_update_ops->num_ops); 1844 1845 #ifdef TEST_VM_OPS_ERROR 1846 if (vops->inject_error && 1847 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE) 1848 return -ENOSPC; 1849 #endif 1850 1851 return 0; 1852 } 1853 1854 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 1855 struct xe_vm_pgtable_update_ops *pt_update_ops, 1856 struct xe_vma *vma, struct dma_fence *fence, 1857 struct dma_fence *fence2) 1858 { 1859 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 1860 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1861 pt_update_ops->wait_vm_bookkeep ? 1862 DMA_RESV_USAGE_KERNEL : 1863 DMA_RESV_USAGE_BOOKKEEP); 1864 if (fence2) 1865 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 1866 pt_update_ops->wait_vm_bookkeep ? 1867 DMA_RESV_USAGE_KERNEL : 1868 DMA_RESV_USAGE_BOOKKEEP); 1869 } 1870 vma->tile_present |= BIT(tile->id); 1871 vma->tile_staged &= ~BIT(tile->id); 1872 if (xe_vma_is_userptr(vma)) { 1873 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1874 to_userptr_vma(vma)->userptr.initial_bind = true; 1875 } 1876 1877 /* 1878 * Kick rebind worker if this bind triggers preempt fences and not in 1879 * the rebind worker 1880 */ 1881 if (pt_update_ops->wait_vm_bookkeep && 1882 xe_vm_in_preempt_fence_mode(vm) && 1883 !current->mm) 1884 xe_vm_queue_rebind_worker(vm); 1885 } 1886 1887 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 1888 struct xe_vm_pgtable_update_ops *pt_update_ops, 1889 struct xe_vma *vma, struct dma_fence *fence, 1890 struct dma_fence *fence2) 1891 { 1892 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 1893 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1894 pt_update_ops->wait_vm_bookkeep ? 1895 DMA_RESV_USAGE_KERNEL : 1896 DMA_RESV_USAGE_BOOKKEEP); 1897 if (fence2) 1898 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 1899 pt_update_ops->wait_vm_bookkeep ? 1900 DMA_RESV_USAGE_KERNEL : 1901 DMA_RESV_USAGE_BOOKKEEP); 1902 } 1903 vma->tile_present &= ~BIT(tile->id); 1904 if (!vma->tile_present) { 1905 list_del_init(&vma->combined_links.rebind); 1906 if (xe_vma_is_userptr(vma)) { 1907 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1908 1909 spin_lock(&vm->userptr.invalidated_lock); 1910 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 1911 spin_unlock(&vm->userptr.invalidated_lock); 1912 } 1913 } 1914 } 1915 1916 static void op_commit(struct xe_vm *vm, 1917 struct xe_tile *tile, 1918 struct xe_vm_pgtable_update_ops *pt_update_ops, 1919 struct xe_vma_op *op, struct dma_fence *fence, 1920 struct dma_fence *fence2) 1921 { 1922 xe_vm_assert_held(vm); 1923 1924 switch (op->base.op) { 1925 case DRM_GPUVA_OP_MAP: 1926 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1927 break; 1928 1929 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence, 1930 fence2); 1931 break; 1932 case DRM_GPUVA_OP_REMAP: 1933 unbind_op_commit(vm, tile, pt_update_ops, 1934 gpuva_to_vma(op->base.remap.unmap->va), fence, 1935 fence2); 1936 1937 if (op->remap.prev) 1938 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev, 1939 fence, fence2); 1940 if (op->remap.next) 1941 bind_op_commit(vm, tile, pt_update_ops, op->remap.next, 1942 fence, fence2); 1943 break; 1944 case DRM_GPUVA_OP_UNMAP: 1945 unbind_op_commit(vm, tile, pt_update_ops, 1946 gpuva_to_vma(op->base.unmap.va), fence, fence2); 1947 break; 1948 case DRM_GPUVA_OP_PREFETCH: 1949 bind_op_commit(vm, tile, pt_update_ops, 1950 gpuva_to_vma(op->base.prefetch.va), fence, fence2); 1951 break; 1952 default: 1953 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1954 } 1955 } 1956 1957 static const struct xe_migrate_pt_update_ops migrate_ops = { 1958 .populate = xe_vm_populate_pgtable, 1959 .clear = xe_migrate_clear_pgtable_callback, 1960 .pre_commit = xe_pt_pre_commit, 1961 }; 1962 1963 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = { 1964 .populate = xe_vm_populate_pgtable, 1965 .clear = xe_migrate_clear_pgtable_callback, 1966 .pre_commit = xe_pt_userptr_pre_commit, 1967 }; 1968 1969 /** 1970 * xe_pt_update_ops_run() - Run PT update operations 1971 * @tile: Tile of PT update operations 1972 * @vops: VMA operationa 1973 * 1974 * Run PT update operations which includes committing internal PT state changes, 1975 * creating job for PT update operations for leaf insertion / removal, and 1976 * installing job fence in various places. 1977 * 1978 * Return: fence on success, negative ERR_PTR on error. 1979 */ 1980 struct dma_fence * 1981 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops) 1982 { 1983 struct xe_vm *vm = vops->vm; 1984 struct xe_vm_pgtable_update_ops *pt_update_ops = 1985 &vops->pt_update_ops[tile->id]; 1986 struct dma_fence *fence; 1987 struct invalidation_fence *ifence = NULL, *mfence = NULL; 1988 struct dma_fence **fences = NULL; 1989 struct dma_fence_array *cf = NULL; 1990 struct xe_range_fence *rfence; 1991 struct xe_vma_op *op; 1992 int err = 0, i; 1993 struct xe_migrate_pt_update update = { 1994 .ops = pt_update_ops->needs_userptr_lock ? 1995 &userptr_migrate_ops : 1996 &migrate_ops, 1997 .vops = vops, 1998 .tile_id = tile->id, 1999 }; 2000 2001 lockdep_assert_held(&vm->lock); 2002 xe_vm_assert_held(vm); 2003 2004 if (!pt_update_ops->current_op) { 2005 xe_tile_assert(tile, xe_vm_in_fault_mode(vm)); 2006 2007 return dma_fence_get_stub(); 2008 } 2009 2010 #ifdef TEST_VM_OPS_ERROR 2011 if (vops->inject_error && 2012 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN) 2013 return ERR_PTR(-ENOSPC); 2014 #endif 2015 2016 if (pt_update_ops->needs_invalidation) { 2017 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2018 if (!ifence) { 2019 err = -ENOMEM; 2020 goto kill_vm_tile1; 2021 } 2022 if (tile->media_gt) { 2023 mfence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2024 if (!mfence) { 2025 err = -ENOMEM; 2026 goto free_ifence; 2027 } 2028 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL); 2029 if (!fences) { 2030 err = -ENOMEM; 2031 goto free_ifence; 2032 } 2033 cf = dma_fence_array_alloc(2); 2034 if (!cf) { 2035 err = -ENOMEM; 2036 goto free_ifence; 2037 } 2038 } 2039 } 2040 2041 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 2042 if (!rfence) { 2043 err = -ENOMEM; 2044 goto free_ifence; 2045 } 2046 2047 fence = xe_migrate_update_pgtables(tile->migrate, &update); 2048 if (IS_ERR(fence)) { 2049 err = PTR_ERR(fence); 2050 goto free_rfence; 2051 } 2052 2053 /* Point of no return - VM killed if failure after this */ 2054 for (i = 0; i < pt_update_ops->current_op; ++i) { 2055 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2056 2057 xe_pt_commit(pt_op->vma, pt_op->entries, 2058 pt_op->num_entries, &pt_update_ops->deferred); 2059 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */ 2060 } 2061 2062 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence, 2063 &xe_range_fence_kfree_ops, 2064 pt_update_ops->start, 2065 pt_update_ops->last, fence)) 2066 dma_fence_wait(fence, false); 2067 2068 /* tlb invalidation must be done before signaling rebind */ 2069 if (ifence) { 2070 if (mfence) 2071 dma_fence_get(fence); 2072 invalidation_fence_init(tile->primary_gt, ifence, fence, 2073 pt_update_ops->start, 2074 pt_update_ops->last, vm->usm.asid); 2075 if (mfence) { 2076 invalidation_fence_init(tile->media_gt, mfence, fence, 2077 pt_update_ops->start, 2078 pt_update_ops->last, vm->usm.asid); 2079 fences[0] = &ifence->base.base; 2080 fences[1] = &mfence->base.base; 2081 dma_fence_array_init(cf, 2, fences, 2082 vm->composite_fence_ctx, 2083 vm->composite_fence_seqno++, 2084 false); 2085 fence = &cf->base; 2086 } else { 2087 fence = &ifence->base.base; 2088 } 2089 } 2090 2091 if (!mfence) { 2092 dma_resv_add_fence(xe_vm_resv(vm), fence, 2093 pt_update_ops->wait_vm_bookkeep ? 2094 DMA_RESV_USAGE_KERNEL : 2095 DMA_RESV_USAGE_BOOKKEEP); 2096 2097 list_for_each_entry(op, &vops->list, link) 2098 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL); 2099 } else { 2100 dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base, 2101 pt_update_ops->wait_vm_bookkeep ? 2102 DMA_RESV_USAGE_KERNEL : 2103 DMA_RESV_USAGE_BOOKKEEP); 2104 2105 dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base, 2106 pt_update_ops->wait_vm_bookkeep ? 2107 DMA_RESV_USAGE_KERNEL : 2108 DMA_RESV_USAGE_BOOKKEEP); 2109 2110 list_for_each_entry(op, &vops->list, link) 2111 op_commit(vops->vm, tile, pt_update_ops, op, 2112 &ifence->base.base, &mfence->base.base); 2113 } 2114 2115 if (pt_update_ops->needs_userptr_lock) 2116 up_read(&vm->userptr.notifier_lock); 2117 2118 return fence; 2119 2120 free_rfence: 2121 kfree(rfence); 2122 free_ifence: 2123 kfree(cf); 2124 kfree(fences); 2125 kfree(mfence); 2126 kfree(ifence); 2127 kill_vm_tile1: 2128 if (err != -EAGAIN && tile->id) 2129 xe_vm_kill(vops->vm, false); 2130 2131 return ERR_PTR(err); 2132 } 2133 2134 /** 2135 * xe_pt_update_ops_fini() - Finish PT update operations 2136 * @tile: Tile of PT update operations 2137 * @vops: VMA operations 2138 * 2139 * Finish PT update operations by committing to destroy page table memory 2140 */ 2141 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops) 2142 { 2143 struct xe_vm_pgtable_update_ops *pt_update_ops = 2144 &vops->pt_update_ops[tile->id]; 2145 int i; 2146 2147 lockdep_assert_held(&vops->vm->lock); 2148 xe_vm_assert_held(vops->vm); 2149 2150 for (i = 0; i < pt_update_ops->current_op; ++i) { 2151 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2152 2153 xe_pt_free_bind(pt_op->entries, pt_op->num_entries); 2154 } 2155 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred); 2156 } 2157 2158 /** 2159 * xe_pt_update_ops_abort() - Abort PT update operations 2160 * @tile: Tile of PT update operations 2161 * @vops: VMA operationa 2162 * 2163 * Abort PT update operations by unwinding internal PT state 2164 */ 2165 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops) 2166 { 2167 struct xe_vm_pgtable_update_ops *pt_update_ops = 2168 &vops->pt_update_ops[tile->id]; 2169 int i; 2170 2171 lockdep_assert_held(&vops->vm->lock); 2172 xe_vm_assert_held(vops->vm); 2173 2174 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) { 2175 struct xe_vm_pgtable_update_op *pt_op = 2176 &pt_update_ops->ops[i]; 2177 2178 if (!pt_op->vma || i >= pt_update_ops->current_op) 2179 continue; 2180 2181 if (pt_op->bind) 2182 xe_pt_abort_bind(pt_op->vma, pt_op->entries, 2183 pt_op->num_entries, 2184 pt_op->rebind); 2185 else 2186 xe_pt_abort_unbind(pt_op->vma, pt_op->entries, 2187 pt_op->num_entries); 2188 } 2189 2190 xe_pt_update_ops_fini(tile, vops); 2191 } 2192