1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <linux/dma-fence-array.h> 7 8 #include "xe_pt.h" 9 10 #include "regs/xe_gtt_defs.h" 11 #include "xe_bo.h" 12 #include "xe_device.h" 13 #include "xe_drm_client.h" 14 #include "xe_exec_queue.h" 15 #include "xe_gt.h" 16 #include "xe_gt_tlb_invalidation.h" 17 #include "xe_migrate.h" 18 #include "xe_pt_types.h" 19 #include "xe_pt_walk.h" 20 #include "xe_res_cursor.h" 21 #include "xe_sched_job.h" 22 #include "xe_sync.h" 23 #include "xe_svm.h" 24 #include "xe_trace.h" 25 #include "xe_ttm_stolen_mgr.h" 26 #include "xe_vm.h" 27 28 struct xe_pt_dir { 29 struct xe_pt pt; 30 /** @children: Array of page-table child nodes */ 31 struct xe_ptw *children[XE_PDES]; 32 /** @staging: Array of page-table staging nodes */ 33 struct xe_ptw *staging[XE_PDES]; 34 }; 35 36 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 37 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 38 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 39 #else 40 #define xe_pt_set_addr(__xe_pt, __addr) 41 #define xe_pt_addr(__xe_pt) 0ull 42 #endif 43 44 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 45 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 46 47 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 48 49 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 50 { 51 return container_of(pt, struct xe_pt_dir, pt); 52 } 53 54 static struct xe_pt * 55 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index) 56 { 57 return container_of(pt_dir->staging[index], struct xe_pt, base); 58 } 59 60 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 61 unsigned int level) 62 { 63 struct xe_device *xe = tile_to_xe(tile); 64 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 65 u8 id = tile->id; 66 67 if (!xe_vm_has_scratch(vm)) 68 return 0; 69 70 if (level > MAX_HUGEPTE_LEVEL) 71 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 72 0, pat_index); 73 74 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 75 XE_PTE_NULL; 76 } 77 78 static void xe_pt_free(struct xe_pt *pt) 79 { 80 if (pt->level) 81 kfree(as_xe_pt_dir(pt)); 82 else 83 kfree(pt); 84 } 85 86 /** 87 * xe_pt_create() - Create a page-table. 88 * @vm: The vm to create for. 89 * @tile: The tile to create for. 90 * @level: The page-table level. 91 * 92 * Allocate and initialize a single struct xe_pt metadata structure. Also 93 * create the corresponding page-table bo, but don't initialize it. If the 94 * level is grater than zero, then it's assumed to be a directory page- 95 * table and the directory structure is also allocated and initialized to 96 * NULL pointers. 97 * 98 * Return: A valid struct xe_pt pointer on success, Pointer error code on 99 * error. 100 */ 101 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 102 unsigned int level) 103 { 104 struct xe_pt *pt; 105 struct xe_bo *bo; 106 u32 bo_flags; 107 int err; 108 109 if (level) { 110 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 111 112 pt = (dir) ? &dir->pt : NULL; 113 } else { 114 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 115 } 116 if (!pt) 117 return ERR_PTR(-ENOMEM); 118 119 bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | 120 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 121 XE_BO_FLAG_NO_RESV_EVICT | XE_BO_FLAG_PAGETABLE; 122 if (vm->xef) /* userspace */ 123 bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE; 124 125 pt->level = level; 126 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 127 ttm_bo_type_kernel, 128 bo_flags); 129 if (IS_ERR(bo)) { 130 err = PTR_ERR(bo); 131 goto err_kfree; 132 } 133 pt->bo = bo; 134 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 135 pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL; 136 137 if (vm->xef) 138 xe_drm_client_add_bo(vm->xef->client, pt->bo); 139 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 140 141 return pt; 142 143 err_kfree: 144 xe_pt_free(pt); 145 return ERR_PTR(err); 146 } 147 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO); 148 149 /** 150 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 151 * entries. 152 * @tile: The tile the scratch pagetable of which to use. 153 * @vm: The vm we populate for. 154 * @pt: The pagetable the bo of which to initialize. 155 * 156 * Populate the page-table bo of @pt with entries pointing into the tile's 157 * scratch page-table tree if any. Otherwise populate with zeros. 158 */ 159 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 160 struct xe_pt *pt) 161 { 162 struct iosys_map *map = &pt->bo->vmap; 163 u64 empty; 164 int i; 165 166 if (!xe_vm_has_scratch(vm)) { 167 /* 168 * FIXME: Some memory is allocated already allocated to zero? 169 * Find out which memory that is and avoid this memset... 170 */ 171 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 172 } else { 173 empty = __xe_pt_empty_pte(tile, vm, pt->level); 174 for (i = 0; i < XE_PDES; i++) 175 xe_pt_write(vm->xe, map, i, empty); 176 } 177 } 178 179 /** 180 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 181 * a page-table at a certain level. 182 * @level: The level. 183 * 184 * Return: The ilog2 value of the size of the address range of a page-table 185 * at level @level. 186 */ 187 unsigned int xe_pt_shift(unsigned int level) 188 { 189 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 190 } 191 192 /** 193 * xe_pt_destroy() - Destroy a page-table tree. 194 * @pt: The root of the page-table tree to destroy. 195 * @flags: vm flags. Currently unused. 196 * @deferred: List head of lockless list for deferred putting. NULL for 197 * immediate putting. 198 * 199 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 200 * and finally frees @pt. TODO: Can we remove the @flags argument? 201 */ 202 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 203 { 204 int i; 205 206 if (!pt) 207 return; 208 209 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 210 xe_bo_unpin(pt->bo); 211 xe_bo_put_deferred(pt->bo, deferred); 212 213 if (pt->level > 0 && pt->num_live) { 214 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 215 216 for (i = 0; i < XE_PDES; i++) { 217 if (xe_pt_entry_staging(pt_dir, i)) 218 xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags, 219 deferred); 220 } 221 } 222 xe_pt_free(pt); 223 } 224 225 /** 226 * xe_pt_clear() - Clear a page-table. 227 * @xe: xe device. 228 * @pt: The page-table. 229 * 230 * Clears page-table by setting to zero. 231 */ 232 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt) 233 { 234 struct iosys_map *map = &pt->bo->vmap; 235 236 xe_map_memset(xe, map, 0, 0, SZ_4K); 237 } 238 239 /** 240 * DOC: Pagetable building 241 * 242 * Below we use the term "page-table" for both page-directories, containing 243 * pointers to lower level page-directories or page-tables, and level 0 244 * page-tables that contain only page-table-entries pointing to memory pages. 245 * 246 * When inserting an address range in an already existing page-table tree 247 * there will typically be a set of page-tables that are shared with other 248 * address ranges, and a set that are private to this address range. 249 * The set of shared page-tables can be at most two per level, 250 * and those can't be updated immediately because the entries of those 251 * page-tables may still be in use by the gpu for other mappings. Therefore 252 * when inserting entries into those, we instead stage those insertions by 253 * adding insertion data into struct xe_vm_pgtable_update structures. This 254 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 255 * added in a separate commit step. CPU-data is committed while still under the 256 * vm lock, the object lock and for userptr, the notifier lock in read mode. 257 * The GPU async data is committed either by the GPU or CPU after fulfilling 258 * relevant dependencies. 259 * For non-shared page-tables (and, in fact, for shared ones that aren't 260 * existing at the time of staging), we add the data in-place without the 261 * special update structures. This private part of the page-table tree will 262 * remain disconnected from the vm page-table tree until data is committed to 263 * the shared page tables of the vm tree in the commit phase. 264 */ 265 266 struct xe_pt_update { 267 /** @update: The update structure we're building for this parent. */ 268 struct xe_vm_pgtable_update *update; 269 /** @parent: The parent. Used to detect a parent change. */ 270 struct xe_pt *parent; 271 /** @preexisting: Whether the parent was pre-existing or allocated */ 272 bool preexisting; 273 }; 274 275 /** 276 * struct xe_pt_stage_bind_walk - Walk state for the stage_bind walk. 277 */ 278 struct xe_pt_stage_bind_walk { 279 /** @base: The base class. */ 280 struct xe_pt_walk base; 281 282 /* Input parameters for the walk */ 283 /** @vm: The vm we're building for. */ 284 struct xe_vm *vm; 285 /** @tile: The tile we're building for. */ 286 struct xe_tile *tile; 287 /** @default_vram_pte: PTE flag only template for VRAM. No address is associated */ 288 u64 default_vram_pte; 289 /** @default_system_pte: PTE flag only template for System. No address is associated */ 290 u64 default_system_pte; 291 /** @dma_offset: DMA offset to add to the PTE. */ 292 u64 dma_offset; 293 /** 294 * @needs_64K: This address range enforces 64K alignment and 295 * granularity on VRAM. 296 */ 297 bool needs_64K; 298 /** @clear_pt: clear page table entries during the bind walk */ 299 bool clear_pt; 300 /** 301 * @vma: VMA being mapped 302 */ 303 struct xe_vma *vma; 304 305 /* Also input, but is updated during the walk*/ 306 /** @curs: The DMA address cursor. */ 307 struct xe_res_cursor *curs; 308 /** @va_curs_start: The Virtual address corresponding to @curs->start */ 309 u64 va_curs_start; 310 311 /* Output */ 312 /** @wupd: Walk output data for page-table updates. */ 313 struct xe_walk_update { 314 /** @wupd.entries: Caller provided storage. */ 315 struct xe_vm_pgtable_update *entries; 316 /** @wupd.num_used_entries: Number of update @entries used. */ 317 unsigned int num_used_entries; 318 /** @wupd.updates: Tracks the update entry at a given level */ 319 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 320 } wupd; 321 322 /* Walk state */ 323 /** 324 * @l0_end_addr: The end address of the current l0 leaf. Used for 325 * 64K granularity detection. 326 */ 327 u64 l0_end_addr; 328 /** @addr_64K: The start address of the current 64K chunk. */ 329 u64 addr_64K; 330 /** @found_64K: Whether @add_64K actually points to a 64K chunk. */ 331 bool found_64K; 332 }; 333 334 static int 335 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 336 pgoff_t offset, bool alloc_entries) 337 { 338 struct xe_pt_update *upd = &wupd->updates[parent->level]; 339 struct xe_vm_pgtable_update *entry; 340 341 /* 342 * For *each level*, we could only have one active 343 * struct xt_pt_update at any one time. Once we move on to a 344 * new parent and page-directory, the old one is complete, and 345 * updates are either already stored in the build tree or in 346 * @wupd->entries 347 */ 348 if (likely(upd->parent == parent)) 349 return 0; 350 351 upd->parent = parent; 352 upd->preexisting = true; 353 354 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 355 return -EINVAL; 356 357 entry = wupd->entries + wupd->num_used_entries++; 358 upd->update = entry; 359 entry->ofs = offset; 360 entry->pt_bo = parent->bo; 361 entry->pt = parent; 362 entry->flags = 0; 363 entry->qwords = 0; 364 entry->pt_bo->update_index = -1; 365 366 if (alloc_entries) { 367 entry->pt_entries = kmalloc_array(XE_PDES, 368 sizeof(*entry->pt_entries), 369 GFP_KERNEL); 370 if (!entry->pt_entries) 371 return -ENOMEM; 372 } 373 374 return 0; 375 } 376 377 /* 378 * NOTE: This is a very frequently called function so we allow ourselves 379 * to annotate (using branch prediction hints) the fastpath of updating a 380 * non-pre-existing pagetable with leaf ptes. 381 */ 382 static int 383 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 384 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 385 { 386 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 387 struct xe_pt_update *child_upd = xe_child ? 388 &xe_walk->wupd.updates[xe_child->level] : NULL; 389 int ret; 390 391 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 392 if (unlikely(ret)) 393 return ret; 394 395 /* 396 * Register this new pagetable so that it won't be recognized as 397 * a shared pagetable by a subsequent insertion. 398 */ 399 if (unlikely(child_upd)) { 400 child_upd->update = NULL; 401 child_upd->parent = xe_child; 402 child_upd->preexisting = false; 403 } 404 405 if (likely(!upd->preexisting)) { 406 /* Continue building a non-connected subtree. */ 407 struct iosys_map *map = &parent->bo->vmap; 408 409 if (unlikely(xe_child)) { 410 parent->base.children[offset] = &xe_child->base; 411 parent->base.staging[offset] = &xe_child->base; 412 } 413 414 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 415 parent->num_live++; 416 } else { 417 /* Shared pt. Stage update. */ 418 unsigned int idx; 419 struct xe_vm_pgtable_update *entry = upd->update; 420 421 idx = offset - entry->ofs; 422 entry->pt_entries[idx].pt = xe_child; 423 entry->pt_entries[idx].pte = pte; 424 entry->qwords++; 425 } 426 427 return 0; 428 } 429 430 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 431 struct xe_pt_stage_bind_walk *xe_walk) 432 { 433 u64 size, dma; 434 435 if (level > MAX_HUGEPTE_LEVEL) 436 return false; 437 438 /* Does the virtual range requested cover a huge pte? */ 439 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 440 return false; 441 442 /* Does the DMA segment cover the whole pte? */ 443 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 444 return false; 445 446 /* null VMA's do not have dma addresses */ 447 if (xe_vma_is_null(xe_walk->vma)) 448 return true; 449 450 /* if we are clearing page table, no dma addresses*/ 451 if (xe_walk->clear_pt) 452 return true; 453 454 /* Is the DMA address huge PTE size aligned? */ 455 size = next - addr; 456 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 457 458 return IS_ALIGNED(dma, size); 459 } 460 461 /* 462 * Scan the requested mapping to check whether it can be done entirely 463 * with 64K PTEs. 464 */ 465 static bool 466 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 467 { 468 struct xe_res_cursor curs = *xe_walk->curs; 469 470 if (!IS_ALIGNED(addr, SZ_64K)) 471 return false; 472 473 if (next > xe_walk->l0_end_addr) 474 return false; 475 476 /* null VMA's do not have dma addresses */ 477 if (xe_vma_is_null(xe_walk->vma)) 478 return true; 479 480 xe_res_next(&curs, addr - xe_walk->va_curs_start); 481 for (; addr < next; addr += SZ_64K) { 482 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 483 return false; 484 485 xe_res_next(&curs, SZ_64K); 486 } 487 488 return addr == next; 489 } 490 491 /* 492 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 493 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 494 * device to the PTE. 495 * This function determines whether the address is part of such a 496 * segment. For VRAM in normal pagetables, this is strictly necessary on 497 * some devices. 498 */ 499 static bool 500 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 501 { 502 /* Address is within an already found 64k region */ 503 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 504 return true; 505 506 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 507 xe_walk->addr_64K = addr; 508 509 return xe_walk->found_64K; 510 } 511 512 static int 513 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 514 unsigned int level, u64 addr, u64 next, 515 struct xe_ptw **child, 516 enum page_walk_action *action, 517 struct xe_pt_walk *walk) 518 { 519 struct xe_pt_stage_bind_walk *xe_walk = 520 container_of(walk, typeof(*xe_walk), base); 521 u16 pat_index = xe_walk->vma->pat_index; 522 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 523 struct xe_vm *vm = xe_walk->vm; 524 struct xe_pt *xe_child; 525 bool covers; 526 int ret = 0; 527 u64 pte; 528 529 /* Is this a leaf entry ?*/ 530 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 531 struct xe_res_cursor *curs = xe_walk->curs; 532 bool is_null = xe_vma_is_null(xe_walk->vma); 533 bool is_vram = is_null ? false : xe_res_is_vram(curs); 534 535 XE_WARN_ON(xe_walk->va_curs_start != addr); 536 537 if (xe_walk->clear_pt) { 538 pte = 0; 539 } else { 540 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 541 xe_res_dma(curs) + 542 xe_walk->dma_offset, 543 xe_walk->vma, 544 pat_index, level); 545 if (!is_null) 546 pte |= is_vram ? xe_walk->default_vram_pte : 547 xe_walk->default_system_pte; 548 549 /* 550 * Set the XE_PTE_PS64 hint if possible, otherwise if 551 * this device *requires* 64K PTE size for VRAM, fail. 552 */ 553 if (level == 0 && !xe_parent->is_compact) { 554 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 555 xe_walk->vma->gpuva.flags |= 556 XE_VMA_PTE_64K; 557 pte |= XE_PTE_PS64; 558 } else if (XE_WARN_ON(xe_walk->needs_64K && 559 is_vram)) { 560 return -EINVAL; 561 } 562 } 563 } 564 565 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 566 if (unlikely(ret)) 567 return ret; 568 569 if (!is_null && !xe_walk->clear_pt) 570 xe_res_next(curs, next - addr); 571 xe_walk->va_curs_start = next; 572 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 573 *action = ACTION_CONTINUE; 574 575 return ret; 576 } 577 578 /* 579 * Descending to lower level. Determine if we need to allocate a 580 * new page table or -directory, which we do if there is no 581 * previous one or there is one we can completely replace. 582 */ 583 if (level == 1) { 584 walk->shifts = xe_normal_pt_shifts; 585 xe_walk->l0_end_addr = next; 586 } 587 588 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 589 if (covers || !*child) { 590 u64 flags = 0; 591 592 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 593 if (IS_ERR(xe_child)) 594 return PTR_ERR(xe_child); 595 596 xe_pt_set_addr(xe_child, 597 round_down(addr, 1ull << walk->shifts[level])); 598 599 if (!covers) 600 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 601 602 *child = &xe_child->base; 603 604 /* 605 * Prefer the compact pagetable layout for L0 if possible. Only 606 * possible if VMA covers entire 2MB region as compact 64k and 607 * 4k pages cannot be mixed within a 2MB region. 608 * TODO: Suballocate the pt bo to avoid wasting a lot of 609 * memory. 610 */ 611 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 612 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 613 walk->shifts = xe_compact_pt_shifts; 614 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 615 flags |= XE_PDE_64K; 616 xe_child->is_compact = true; 617 } 618 619 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; 620 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 621 pte); 622 } 623 624 *action = ACTION_SUBTREE; 625 return ret; 626 } 627 628 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 629 .pt_entry = xe_pt_stage_bind_entry, 630 }; 631 632 /* 633 * Default atomic expectations for different allocation scenarios are as follows: 634 * 635 * 1. Traditional API: When the VM is not in LR mode: 636 * - Device atomics are expected to function with all allocations. 637 * 638 * 2. Compute/SVM API: When the VM is in LR mode: 639 * - Device atomics are the default behavior when the bo is placed in a single region. 640 * - In all other cases device atomics will be disabled with AE=0 until an application 641 * request differently using a ioctl like madvise. 642 */ 643 static bool xe_atomic_for_vram(struct xe_vm *vm) 644 { 645 return true; 646 } 647 648 static bool xe_atomic_for_system(struct xe_vm *vm, struct xe_bo *bo) 649 { 650 struct xe_device *xe = vm->xe; 651 652 if (!xe->info.has_device_atomics_on_smem) 653 return false; 654 655 /* 656 * If a SMEM+LMEM allocation is backed by SMEM, a device 657 * atomics will cause a gpu page fault and which then 658 * gets migrated to LMEM, bind such allocations with 659 * device atomics enabled. 660 * 661 * TODO: Revisit this. Perhaps add something like a 662 * fault_on_atomics_in_system UAPI flag. 663 * Note that this also prohibits GPU atomics in LR mode for 664 * userptr and system memory on DGFX. 665 */ 666 return (!IS_DGFX(xe) || (!xe_vm_in_lr_mode(vm) || 667 (bo && xe_bo_has_single_placement(bo)))); 668 } 669 670 /** 671 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 672 * range. 673 * @tile: The tile we're building for. 674 * @vma: The vma indicating the address range. 675 * @range: The range indicating the address range. 676 * @entries: Storage for the update entries used for connecting the tree to 677 * the main tree at commit time. 678 * @num_entries: On output contains the number of @entries used. 679 * @clear_pt: Clear the page table entries. 680 * 681 * This function builds a disconnected page-table tree for a given address 682 * range. The tree is connected to the main vm tree for the gpu using 683 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 684 * The function builds xe_vm_pgtable_update structures for already existing 685 * shared page-tables, and non-existing shared and non-shared page-tables 686 * are built and populated directly. 687 * 688 * Return 0 on success, negative error code on error. 689 */ 690 static int 691 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 692 struct xe_svm_range *range, 693 struct xe_vm_pgtable_update *entries, 694 u32 *num_entries, bool clear_pt) 695 { 696 struct xe_device *xe = tile_to_xe(tile); 697 struct xe_bo *bo = xe_vma_bo(vma); 698 struct xe_res_cursor curs; 699 struct xe_vm *vm = xe_vma_vm(vma); 700 struct xe_pt_stage_bind_walk xe_walk = { 701 .base = { 702 .ops = &xe_pt_stage_bind_ops, 703 .shifts = xe_normal_pt_shifts, 704 .max_level = XE_PT_HIGHEST_LEVEL, 705 .staging = true, 706 }, 707 .vm = vm, 708 .tile = tile, 709 .curs = &curs, 710 .va_curs_start = range ? range->base.itree.start : 711 xe_vma_start(vma), 712 .vma = vma, 713 .wupd.entries = entries, 714 .clear_pt = clear_pt, 715 }; 716 struct xe_pt *pt = vm->pt_root[tile->id]; 717 int ret; 718 719 if (range) { 720 /* Move this entire thing to xe_svm.c? */ 721 xe_svm_notifier_lock(vm); 722 if (!xe_svm_range_pages_valid(range)) { 723 xe_svm_range_debug(range, "BIND PREPARE - RETRY"); 724 xe_svm_notifier_unlock(vm); 725 return -EAGAIN; 726 } 727 if (xe_svm_range_has_dma_mapping(range)) { 728 xe_res_first_dma(range->base.dma_addr, 0, 729 range->base.itree.last + 1 - range->base.itree.start, 730 &curs); 731 xe_svm_range_debug(range, "BIND PREPARE - MIXED"); 732 } else { 733 xe_assert(xe, false); 734 } 735 /* 736 * Note, when unlocking the resource cursor dma addresses may become 737 * stale, but the bind will be aborted anyway at commit time. 738 */ 739 xe_svm_notifier_unlock(vm); 740 } 741 742 xe_walk.needs_64K = (vm->flags & XE_VM_FLAG_64K); 743 if (clear_pt) 744 goto walk_pt; 745 746 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { 747 xe_walk.default_vram_pte = xe_atomic_for_vram(vm) ? XE_USM_PPGTT_PTE_AE : 0; 748 xe_walk.default_system_pte = xe_atomic_for_system(vm, bo) ? 749 XE_USM_PPGTT_PTE_AE : 0; 750 } 751 752 xe_walk.default_vram_pte |= XE_PPGTT_PTE_DM; 753 xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0; 754 if (!range) 755 xe_bo_assert_held(bo); 756 757 if (!xe_vma_is_null(vma) && !range) { 758 if (xe_vma_is_userptr(vma)) 759 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, 760 xe_vma_size(vma), &curs); 761 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 762 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 763 xe_vma_size(vma), &curs); 764 else 765 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 766 xe_vma_size(vma), &curs); 767 } else if (!range) { 768 curs.size = xe_vma_size(vma); 769 } 770 771 walk_pt: 772 ret = xe_pt_walk_range(&pt->base, pt->level, 773 range ? range->base.itree.start : xe_vma_start(vma), 774 range ? range->base.itree.last + 1 : xe_vma_end(vma), 775 &xe_walk.base); 776 777 *num_entries = xe_walk.wupd.num_used_entries; 778 return ret; 779 } 780 781 /** 782 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 783 * shared pagetable. 784 * @addr: The start address within the non-shared pagetable. 785 * @end: The end address within the non-shared pagetable. 786 * @level: The level of the non-shared pagetable. 787 * @walk: Walk info. The function adjusts the walk action. 788 * @action: next action to perform (see enum page_walk_action) 789 * @offset: Ignored on input, First non-shared entry on output. 790 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 791 * 792 * A non-shared page-table has some entries that belong to the address range 793 * and others that don't. This function determines the entries that belong 794 * fully to the address range. Depending on level, some entries may 795 * partially belong to the address range (that can't happen at level 0). 796 * The function detects that and adjust those offsets to not include those 797 * partial entries. Iff it does detect partial entries, we know that there must 798 * be shared page tables also at lower levels, so it adjusts the walk action 799 * accordingly. 800 * 801 * Return: true if there were non-shared entries, false otherwise. 802 */ 803 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 804 struct xe_pt_walk *walk, 805 enum page_walk_action *action, 806 pgoff_t *offset, pgoff_t *end_offset) 807 { 808 u64 size = 1ull << walk->shifts[level]; 809 810 *offset = xe_pt_offset(addr, level, walk); 811 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 812 813 if (!level) 814 return true; 815 816 /* 817 * If addr or next are not size aligned, there are shared pts at lower 818 * level, so in that case traverse down the subtree 819 */ 820 *action = ACTION_CONTINUE; 821 if (!IS_ALIGNED(addr, size)) { 822 *action = ACTION_SUBTREE; 823 (*offset)++; 824 } 825 826 if (!IS_ALIGNED(end, size)) { 827 *action = ACTION_SUBTREE; 828 (*end_offset)--; 829 } 830 831 return *end_offset > *offset; 832 } 833 834 struct xe_pt_zap_ptes_walk { 835 /** @base: The walk base-class */ 836 struct xe_pt_walk base; 837 838 /* Input parameters for the walk */ 839 /** @tile: The tile we're building for */ 840 struct xe_tile *tile; 841 842 /* Output */ 843 /** @needs_invalidate: Whether we need to invalidate TLB*/ 844 bool needs_invalidate; 845 }; 846 847 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 848 unsigned int level, u64 addr, u64 next, 849 struct xe_ptw **child, 850 enum page_walk_action *action, 851 struct xe_pt_walk *walk) 852 { 853 struct xe_pt_zap_ptes_walk *xe_walk = 854 container_of(walk, typeof(*xe_walk), base); 855 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 856 pgoff_t end_offset; 857 858 XE_WARN_ON(!*child); 859 XE_WARN_ON(!level); 860 861 /* 862 * Note that we're called from an entry callback, and we're dealing 863 * with the child of that entry rather than the parent, so need to 864 * adjust level down. 865 */ 866 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 867 &end_offset)) { 868 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 869 offset * sizeof(u64), 0, 870 (end_offset - offset) * sizeof(u64)); 871 xe_walk->needs_invalidate = true; 872 } 873 874 return 0; 875 } 876 877 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 878 .pt_entry = xe_pt_zap_ptes_entry, 879 }; 880 881 /** 882 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 883 * @tile: The tile we're zapping for. 884 * @vma: GPU VMA detailing address range. 885 * 886 * Eviction and Userptr invalidation needs to be able to zap the 887 * gpu ptes of a given address range in pagefaulting mode. 888 * In order to be able to do that, that function needs access to the shared 889 * page-table entrieaso it can either clear the leaf PTEs or 890 * clear the pointers to lower-level page-tables. The caller is required 891 * to hold the necessary locks to ensure neither the page-table connectivity 892 * nor the page-table entries of the range is updated from under us. 893 * 894 * Return: Whether ptes were actually updated and a TLB invalidation is 895 * required. 896 */ 897 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 898 { 899 struct xe_pt_zap_ptes_walk xe_walk = { 900 .base = { 901 .ops = &xe_pt_zap_ptes_ops, 902 .shifts = xe_normal_pt_shifts, 903 .max_level = XE_PT_HIGHEST_LEVEL, 904 }, 905 .tile = tile, 906 }; 907 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 908 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); 909 910 if (xe_vma_bo(vma)) 911 xe_bo_assert_held(xe_vma_bo(vma)); 912 else if (xe_vma_is_userptr(vma)) 913 lockdep_assert_held(&xe_vma_vm(vma)->userptr.notifier_lock); 914 915 if (!(pt_mask & BIT(tile->id))) 916 return false; 917 918 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 919 xe_vma_end(vma), &xe_walk.base); 920 921 return xe_walk.needs_invalidate; 922 } 923 924 /** 925 * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range 926 * @tile: The tile we're zapping for. 927 * @vm: The VM we're zapping for. 928 * @range: The SVM range we're zapping for. 929 * 930 * SVM invalidation needs to be able to zap the gpu ptes of a given address 931 * range. In order to be able to do that, that function needs access to the 932 * shared page-table entries so it can either clear the leaf PTEs or 933 * clear the pointers to lower-level page-tables. The caller is required 934 * to hold the SVM notifier lock. 935 * 936 * Return: Whether ptes were actually updated and a TLB invalidation is 937 * required. 938 */ 939 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm, 940 struct xe_svm_range *range) 941 { 942 struct xe_pt_zap_ptes_walk xe_walk = { 943 .base = { 944 .ops = &xe_pt_zap_ptes_ops, 945 .shifts = xe_normal_pt_shifts, 946 .max_level = XE_PT_HIGHEST_LEVEL, 947 }, 948 .tile = tile, 949 }; 950 struct xe_pt *pt = vm->pt_root[tile->id]; 951 u8 pt_mask = (range->tile_present & ~range->tile_invalidated); 952 953 xe_svm_assert_in_notifier(vm); 954 955 if (!(pt_mask & BIT(tile->id))) 956 return false; 957 958 (void)xe_pt_walk_shared(&pt->base, pt->level, range->base.itree.start, 959 range->base.itree.last + 1, &xe_walk.base); 960 961 return xe_walk.needs_invalidate; 962 } 963 964 static void 965 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 966 struct iosys_map *map, void *data, 967 u32 qword_ofs, u32 num_qwords, 968 const struct xe_vm_pgtable_update *update) 969 { 970 struct xe_pt_entry *ptes = update->pt_entries; 971 u64 *ptr = data; 972 u32 i; 973 974 for (i = 0; i < num_qwords; i++) { 975 if (map) 976 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 977 sizeof(u64), u64, ptes[i].pte); 978 else 979 ptr[i] = ptes[i].pte; 980 } 981 } 982 983 static void xe_pt_cancel_bind(struct xe_vma *vma, 984 struct xe_vm_pgtable_update *entries, 985 u32 num_entries) 986 { 987 u32 i, j; 988 989 for (i = 0; i < num_entries; i++) { 990 struct xe_pt *pt = entries[i].pt; 991 992 if (!pt) 993 continue; 994 995 if (pt->level) { 996 for (j = 0; j < entries[i].qwords; j++) 997 xe_pt_destroy(entries[i].pt_entries[j].pt, 998 xe_vma_vm(vma)->flags, NULL); 999 } 1000 1001 kfree(entries[i].pt_entries); 1002 entries[i].pt_entries = NULL; 1003 entries[i].qwords = 0; 1004 } 1005 } 1006 1007 #define XE_INVALID_VMA ((struct xe_vma *)(0xdeaddeadull)) 1008 1009 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma) 1010 { 1011 struct xe_vm *vm; 1012 1013 if (vma == XE_INVALID_VMA) 1014 return; 1015 1016 vm = xe_vma_vm(vma); 1017 lockdep_assert_held(&vm->lock); 1018 1019 if (!xe_vma_has_no_bo(vma)) 1020 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 1021 1022 xe_vm_assert_held(vm); 1023 } 1024 1025 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 1026 { 1027 struct xe_vm *vm; 1028 1029 if (vma == XE_INVALID_VMA) 1030 return; 1031 1032 vm = xe_vma_vm(vma); 1033 xe_pt_commit_prepare_locks_assert(vma); 1034 1035 if (xe_vma_is_userptr(vma)) 1036 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1037 } 1038 1039 static void xe_pt_commit(struct xe_vma *vma, 1040 struct xe_vm_pgtable_update *entries, 1041 u32 num_entries, struct llist_head *deferred) 1042 { 1043 u32 i, j; 1044 1045 xe_pt_commit_locks_assert(vma); 1046 1047 for (i = 0; i < num_entries; i++) { 1048 struct xe_pt *pt = entries[i].pt; 1049 struct xe_pt_dir *pt_dir; 1050 1051 if (!pt->level) 1052 continue; 1053 1054 pt_dir = as_xe_pt_dir(pt); 1055 for (j = 0; j < entries[i].qwords; j++) { 1056 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1057 int j_ = j + entries[i].ofs; 1058 1059 pt_dir->children[j_] = pt_dir->staging[j_]; 1060 xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 : 1061 xe_vma_vm(vma)->flags, deferred); 1062 } 1063 } 1064 } 1065 1066 static void xe_pt_abort_bind(struct xe_vma *vma, 1067 struct xe_vm_pgtable_update *entries, 1068 u32 num_entries, bool rebind) 1069 { 1070 int i, j; 1071 1072 xe_pt_commit_prepare_locks_assert(vma); 1073 1074 for (i = num_entries - 1; i >= 0; --i) { 1075 struct xe_pt *pt = entries[i].pt; 1076 struct xe_pt_dir *pt_dir; 1077 1078 if (!rebind) 1079 pt->num_live -= entries[i].qwords; 1080 1081 if (!pt->level) 1082 continue; 1083 1084 pt_dir = as_xe_pt_dir(pt); 1085 for (j = 0; j < entries[i].qwords; j++) { 1086 u32 j_ = j + entries[i].ofs; 1087 struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_); 1088 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1089 1090 pt_dir->staging[j_] = oldpte ? &oldpte->base : 0; 1091 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL); 1092 } 1093 } 1094 } 1095 1096 static void xe_pt_commit_prepare_bind(struct xe_vma *vma, 1097 struct xe_vm_pgtable_update *entries, 1098 u32 num_entries, bool rebind) 1099 { 1100 u32 i, j; 1101 1102 xe_pt_commit_prepare_locks_assert(vma); 1103 1104 for (i = 0; i < num_entries; i++) { 1105 struct xe_pt *pt = entries[i].pt; 1106 struct xe_pt_dir *pt_dir; 1107 1108 if (!rebind) 1109 pt->num_live += entries[i].qwords; 1110 1111 if (!pt->level) 1112 continue; 1113 1114 pt_dir = as_xe_pt_dir(pt); 1115 for (j = 0; j < entries[i].qwords; j++) { 1116 u32 j_ = j + entries[i].ofs; 1117 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 1118 struct xe_pt *oldpte = NULL; 1119 1120 if (xe_pt_entry_staging(pt_dir, j_)) 1121 oldpte = xe_pt_entry_staging(pt_dir, j_); 1122 1123 pt_dir->staging[j_] = &newpte->base; 1124 entries[i].pt_entries[j].pt = oldpte; 1125 } 1126 } 1127 } 1128 1129 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries, 1130 u32 num_entries) 1131 { 1132 u32 i; 1133 1134 for (i = 0; i < num_entries; i++) 1135 kfree(entries[i].pt_entries); 1136 } 1137 1138 static int 1139 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 1140 struct xe_svm_range *range, 1141 struct xe_vm_pgtable_update *entries, 1142 u32 *num_entries, bool invalidate_on_bind) 1143 { 1144 int err; 1145 1146 *num_entries = 0; 1147 err = xe_pt_stage_bind(tile, vma, range, entries, num_entries, 1148 invalidate_on_bind); 1149 if (!err) 1150 xe_tile_assert(tile, *num_entries); 1151 1152 return err; 1153 } 1154 1155 static void xe_vm_dbg_print_entries(struct xe_device *xe, 1156 const struct xe_vm_pgtable_update *entries, 1157 unsigned int num_entries, bool bind) 1158 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1159 { 1160 unsigned int i; 1161 1162 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind", 1163 num_entries); 1164 for (i = 0; i < num_entries; i++) { 1165 const struct xe_vm_pgtable_update *entry = &entries[i]; 1166 struct xe_pt *xe_pt = entry->pt; 1167 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1168 u64 end; 1169 u64 start; 1170 1171 xe_assert(xe, !entry->pt->is_compact); 1172 start = entry->ofs * page_size; 1173 end = start + page_size * entry->qwords; 1174 vm_dbg(&xe->drm, 1175 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1176 i, xe_pt->level, entry->ofs, entry->qwords, 1177 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1178 } 1179 } 1180 #else 1181 {} 1182 #endif 1183 1184 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs) 1185 { 1186 int i; 1187 1188 for (i = 0; i < num_syncs; i++) { 1189 struct dma_fence *fence = syncs[i].fence; 1190 1191 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1192 &fence->flags)) 1193 return false; 1194 } 1195 1196 return true; 1197 } 1198 1199 static int job_test_add_deps(struct xe_sched_job *job, 1200 struct dma_resv *resv, 1201 enum dma_resv_usage usage) 1202 { 1203 if (!job) { 1204 if (!dma_resv_test_signaled(resv, usage)) 1205 return -ETIME; 1206 1207 return 0; 1208 } 1209 1210 return xe_sched_job_add_deps(job, resv, usage); 1211 } 1212 1213 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job) 1214 { 1215 struct xe_bo *bo = xe_vma_bo(vma); 1216 1217 xe_bo_assert_held(bo); 1218 1219 if (bo && !bo->vm) 1220 return job_test_add_deps(job, bo->ttm.base.resv, 1221 DMA_RESV_USAGE_KERNEL); 1222 1223 return 0; 1224 } 1225 1226 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op, 1227 struct xe_sched_job *job) 1228 { 1229 int err = 0; 1230 1231 /* 1232 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a 1233 * NOP if VMA is_cpu_addr_mirror 1234 */ 1235 1236 switch (op->base.op) { 1237 case DRM_GPUVA_OP_MAP: 1238 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1239 break; 1240 1241 err = vma_add_deps(op->map.vma, job); 1242 break; 1243 case DRM_GPUVA_OP_REMAP: 1244 if (op->remap.prev) 1245 err = vma_add_deps(op->remap.prev, job); 1246 if (!err && op->remap.next) 1247 err = vma_add_deps(op->remap.next, job); 1248 break; 1249 case DRM_GPUVA_OP_UNMAP: 1250 break; 1251 case DRM_GPUVA_OP_PREFETCH: 1252 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job); 1253 break; 1254 case DRM_GPUVA_OP_DRIVER: 1255 break; 1256 default: 1257 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1258 } 1259 1260 return err; 1261 } 1262 1263 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 1264 struct xe_vm *vm, 1265 struct xe_vma_ops *vops, 1266 struct xe_vm_pgtable_update_ops *pt_update_ops, 1267 struct xe_range_fence_tree *rftree) 1268 { 1269 struct xe_range_fence *rtfence; 1270 struct dma_fence *fence; 1271 struct xe_vma_op *op; 1272 int err = 0, i; 1273 1274 xe_vm_assert_held(vm); 1275 1276 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs)) 1277 return -ETIME; 1278 1279 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q)) 1280 return -ETIME; 1281 1282 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) { 1283 err = job_test_add_deps(job, xe_vm_resv(vm), 1284 pt_update_ops->wait_vm_bookkeep ? 1285 DMA_RESV_USAGE_BOOKKEEP : 1286 DMA_RESV_USAGE_KERNEL); 1287 if (err) 1288 return err; 1289 } 1290 1291 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start, 1292 pt_update_ops->last); 1293 while (rtfence) { 1294 fence = rtfence->fence; 1295 1296 if (!dma_fence_is_signaled(fence)) { 1297 /* 1298 * Is this a CPU update? GPU is busy updating, so return 1299 * an error 1300 */ 1301 if (!job) 1302 return -ETIME; 1303 1304 dma_fence_get(fence); 1305 err = drm_sched_job_add_dependency(&job->drm, fence); 1306 if (err) 1307 return err; 1308 } 1309 1310 rtfence = xe_range_fence_tree_next(rtfence, 1311 pt_update_ops->start, 1312 pt_update_ops->last); 1313 } 1314 1315 list_for_each_entry(op, &vops->list, link) { 1316 err = op_add_deps(vm, op, job); 1317 if (err) 1318 return err; 1319 } 1320 1321 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) { 1322 if (job) 1323 err = xe_sched_job_last_fence_add_dep(job, vm); 1324 else 1325 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm); 1326 } 1327 1328 for (i = 0; job && !err && i < vops->num_syncs; i++) 1329 err = xe_sync_entry_add_deps(&vops->syncs[i], job); 1330 1331 return err; 1332 } 1333 1334 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1335 { 1336 struct xe_vma_ops *vops = pt_update->vops; 1337 struct xe_vm *vm = vops->vm; 1338 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id]; 1339 struct xe_vm_pgtable_update_ops *pt_update_ops = 1340 &vops->pt_update_ops[pt_update->tile_id]; 1341 1342 return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops, 1343 pt_update_ops, rftree); 1344 } 1345 1346 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1347 1348 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1349 { 1350 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 1351 static u32 count; 1352 1353 if (count++ % divisor == divisor - 1) { 1354 uvma->userptr.divisor = divisor << 1; 1355 return true; 1356 } 1357 1358 return false; 1359 } 1360 1361 #else 1362 1363 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1364 { 1365 return false; 1366 } 1367 1368 #endif 1369 1370 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma, 1371 struct xe_vm_pgtable_update_ops *pt_update) 1372 { 1373 struct xe_userptr_vma *uvma; 1374 unsigned long notifier_seq; 1375 1376 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1377 1378 if (!xe_vma_is_userptr(vma)) 1379 return 0; 1380 1381 uvma = to_userptr_vma(vma); 1382 if (xe_pt_userptr_inject_eagain(uvma)) 1383 xe_vma_userptr_force_invalidate(uvma); 1384 1385 notifier_seq = uvma->userptr.notifier_seq; 1386 1387 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1388 notifier_seq)) 1389 return 0; 1390 1391 if (xe_vm_in_fault_mode(vm)) 1392 return -EAGAIN; 1393 1394 /* 1395 * Just continue the operation since exec or rebind worker 1396 * will take care of rebinding. 1397 */ 1398 return 0; 1399 } 1400 1401 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op, 1402 struct xe_vm_pgtable_update_ops *pt_update) 1403 { 1404 int err = 0; 1405 1406 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1407 1408 switch (op->base.op) { 1409 case DRM_GPUVA_OP_MAP: 1410 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1411 break; 1412 1413 err = vma_check_userptr(vm, op->map.vma, pt_update); 1414 break; 1415 case DRM_GPUVA_OP_REMAP: 1416 if (op->remap.prev) 1417 err = vma_check_userptr(vm, op->remap.prev, pt_update); 1418 if (!err && op->remap.next) 1419 err = vma_check_userptr(vm, op->remap.next, pt_update); 1420 break; 1421 case DRM_GPUVA_OP_UNMAP: 1422 break; 1423 case DRM_GPUVA_OP_PREFETCH: 1424 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), 1425 pt_update); 1426 break; 1427 default: 1428 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1429 } 1430 1431 return err; 1432 } 1433 1434 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1435 { 1436 struct xe_vm *vm = pt_update->vops->vm; 1437 struct xe_vma_ops *vops = pt_update->vops; 1438 struct xe_vm_pgtable_update_ops *pt_update_ops = 1439 &vops->pt_update_ops[pt_update->tile_id]; 1440 struct xe_vma_op *op; 1441 int err; 1442 1443 err = xe_pt_pre_commit(pt_update); 1444 if (err) 1445 return err; 1446 1447 down_read(&vm->userptr.notifier_lock); 1448 1449 list_for_each_entry(op, &vops->list, link) { 1450 err = op_check_userptr(vm, op, pt_update_ops); 1451 if (err) { 1452 up_read(&vm->userptr.notifier_lock); 1453 break; 1454 } 1455 } 1456 1457 return err; 1458 } 1459 1460 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM) 1461 static int xe_pt_svm_pre_commit(struct xe_migrate_pt_update *pt_update) 1462 { 1463 struct xe_vm *vm = pt_update->vops->vm; 1464 struct xe_vma_ops *vops = pt_update->vops; 1465 struct xe_vma_op *op; 1466 unsigned long i; 1467 int err; 1468 1469 err = xe_pt_pre_commit(pt_update); 1470 if (err) 1471 return err; 1472 1473 xe_svm_notifier_lock(vm); 1474 1475 list_for_each_entry(op, &vops->list, link) { 1476 struct xe_svm_range *range = NULL; 1477 1478 if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) 1479 continue; 1480 1481 if (op->base.op == DRM_GPUVA_OP_PREFETCH) { 1482 xe_assert(vm->xe, 1483 xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))); 1484 xa_for_each(&op->prefetch_range.range, i, range) { 1485 xe_svm_range_debug(range, "PRE-COMMIT"); 1486 1487 if (!xe_svm_range_pages_valid(range)) { 1488 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1489 xe_svm_notifier_unlock(vm); 1490 return -ENODATA; 1491 } 1492 } 1493 } else { 1494 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 1495 xe_assert(vm->xe, op->subop == XE_VMA_SUBOP_MAP_RANGE); 1496 range = op->map_range.range; 1497 1498 xe_svm_range_debug(range, "PRE-COMMIT"); 1499 1500 if (!xe_svm_range_pages_valid(range)) { 1501 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1502 xe_svm_notifier_unlock(vm); 1503 return -EAGAIN; 1504 } 1505 } 1506 } 1507 1508 return 0; 1509 } 1510 #endif 1511 1512 struct invalidation_fence { 1513 struct xe_gt_tlb_invalidation_fence base; 1514 struct xe_gt *gt; 1515 struct dma_fence *fence; 1516 struct dma_fence_cb cb; 1517 struct work_struct work; 1518 u64 start; 1519 u64 end; 1520 u32 asid; 1521 }; 1522 1523 static void invalidation_fence_cb(struct dma_fence *fence, 1524 struct dma_fence_cb *cb) 1525 { 1526 struct invalidation_fence *ifence = 1527 container_of(cb, struct invalidation_fence, cb); 1528 struct xe_device *xe = gt_to_xe(ifence->gt); 1529 1530 trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base); 1531 if (!ifence->fence->error) { 1532 queue_work(system_wq, &ifence->work); 1533 } else { 1534 ifence->base.base.error = ifence->fence->error; 1535 xe_gt_tlb_invalidation_fence_signal(&ifence->base); 1536 } 1537 dma_fence_put(ifence->fence); 1538 } 1539 1540 static void invalidation_fence_work_func(struct work_struct *w) 1541 { 1542 struct invalidation_fence *ifence = 1543 container_of(w, struct invalidation_fence, work); 1544 struct xe_device *xe = gt_to_xe(ifence->gt); 1545 1546 trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base); 1547 xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start, 1548 ifence->end, ifence->asid); 1549 } 1550 1551 static void invalidation_fence_init(struct xe_gt *gt, 1552 struct invalidation_fence *ifence, 1553 struct dma_fence *fence, 1554 u64 start, u64 end, u32 asid) 1555 { 1556 int ret; 1557 1558 trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base); 1559 1560 xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false); 1561 1562 ifence->fence = fence; 1563 ifence->gt = gt; 1564 ifence->start = start; 1565 ifence->end = end; 1566 ifence->asid = asid; 1567 1568 INIT_WORK(&ifence->work, invalidation_fence_work_func); 1569 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); 1570 if (ret == -ENOENT) { 1571 dma_fence_put(ifence->fence); /* Usually dropped in CB */ 1572 invalidation_fence_work_func(&ifence->work); 1573 } else if (ret) { 1574 dma_fence_put(&ifence->base.base); /* Caller ref */ 1575 dma_fence_put(&ifence->base.base); /* Creation ref */ 1576 } 1577 1578 xe_gt_assert(gt, !ret || ret == -ENOENT); 1579 } 1580 1581 struct xe_pt_stage_unbind_walk { 1582 /** @base: The pagewalk base-class. */ 1583 struct xe_pt_walk base; 1584 1585 /* Input parameters for the walk */ 1586 /** @tile: The tile we're unbinding from. */ 1587 struct xe_tile *tile; 1588 1589 /** 1590 * @modified_start: Walk range start, modified to include any 1591 * shared pagetables that we're the only user of and can thus 1592 * treat as private. 1593 */ 1594 u64 modified_start; 1595 /** @modified_end: Walk range start, modified like @modified_start. */ 1596 u64 modified_end; 1597 1598 /* Output */ 1599 /* @wupd: Structure to track the page-table updates we're building */ 1600 struct xe_walk_update wupd; 1601 }; 1602 1603 /* 1604 * Check whether this range is the only one populating this pagetable, 1605 * and in that case, update the walk range checks so that higher levels don't 1606 * view us as a shared pagetable. 1607 */ 1608 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1609 const struct xe_pt *child, 1610 enum page_walk_action *action, 1611 struct xe_pt_walk *walk) 1612 { 1613 struct xe_pt_stage_unbind_walk *xe_walk = 1614 container_of(walk, typeof(*xe_walk), base); 1615 unsigned int shift = walk->shifts[level]; 1616 u64 size = 1ull << shift; 1617 1618 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1619 ((next - addr) >> shift) == child->num_live) { 1620 u64 size = 1ull << walk->shifts[level + 1]; 1621 1622 *action = ACTION_CONTINUE; 1623 1624 if (xe_walk->modified_start >= addr) 1625 xe_walk->modified_start = round_down(addr, size); 1626 if (xe_walk->modified_end <= next) 1627 xe_walk->modified_end = round_up(next, size); 1628 1629 return true; 1630 } 1631 1632 return false; 1633 } 1634 1635 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1636 unsigned int level, u64 addr, u64 next, 1637 struct xe_ptw **child, 1638 enum page_walk_action *action, 1639 struct xe_pt_walk *walk) 1640 { 1641 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1642 1643 XE_WARN_ON(!*child); 1644 XE_WARN_ON(!level); 1645 1646 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1647 1648 return 0; 1649 } 1650 1651 static int 1652 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1653 unsigned int level, u64 addr, u64 next, 1654 struct xe_ptw **child, 1655 enum page_walk_action *action, 1656 struct xe_pt_walk *walk) 1657 { 1658 struct xe_pt_stage_unbind_walk *xe_walk = 1659 container_of(walk, typeof(*xe_walk), base); 1660 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1661 pgoff_t end_offset; 1662 u64 size = 1ull << walk->shifts[--level]; 1663 int err; 1664 1665 if (!IS_ALIGNED(addr, size)) 1666 addr = xe_walk->modified_start; 1667 if (!IS_ALIGNED(next, size)) 1668 next = xe_walk->modified_end; 1669 1670 /* Parent == *child is the root pt. Don't kill it. */ 1671 if (parent != *child && 1672 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1673 return 0; 1674 1675 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1676 &end_offset)) 1677 return 0; 1678 1679 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true); 1680 if (err) 1681 return err; 1682 1683 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1684 1685 return 0; 1686 } 1687 1688 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1689 .pt_entry = xe_pt_stage_unbind_entry, 1690 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1691 }; 1692 1693 /** 1694 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1695 * operation 1696 * @tile: The tile we're unbinding for. 1697 * @vm: The vm 1698 * @vma: The vma we're unbinding. 1699 * @range: The range we're unbinding. 1700 * @entries: Caller-provided storage for the update structures. 1701 * 1702 * Builds page-table update structures for an unbind operation. The function 1703 * will attempt to remove all page-tables that we're the only user 1704 * of, and for that to work, the unbind operation must be committed in the 1705 * same critical section that blocks racing binds to the same page-table tree. 1706 * 1707 * Return: The number of entries used. 1708 */ 1709 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, 1710 struct xe_vm *vm, 1711 struct xe_vma *vma, 1712 struct xe_svm_range *range, 1713 struct xe_vm_pgtable_update *entries) 1714 { 1715 u64 start = range ? range->base.itree.start : xe_vma_start(vma); 1716 u64 end = range ? range->base.itree.last + 1 : xe_vma_end(vma); 1717 struct xe_pt_stage_unbind_walk xe_walk = { 1718 .base = { 1719 .ops = &xe_pt_stage_unbind_ops, 1720 .shifts = xe_normal_pt_shifts, 1721 .max_level = XE_PT_HIGHEST_LEVEL, 1722 .staging = true, 1723 }, 1724 .tile = tile, 1725 .modified_start = start, 1726 .modified_end = end, 1727 .wupd.entries = entries, 1728 }; 1729 struct xe_pt *pt = vm->pt_root[tile->id]; 1730 1731 (void)xe_pt_walk_shared(&pt->base, pt->level, start, end, 1732 &xe_walk.base); 1733 1734 return xe_walk.wupd.num_used_entries; 1735 } 1736 1737 static void 1738 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1739 struct xe_tile *tile, struct iosys_map *map, 1740 void *ptr, u32 qword_ofs, u32 num_qwords, 1741 const struct xe_vm_pgtable_update *update) 1742 { 1743 struct xe_vm *vm = pt_update->vops->vm; 1744 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level); 1745 int i; 1746 1747 if (map && map->is_iomem) 1748 for (i = 0; i < num_qwords; ++i) 1749 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1750 sizeof(u64), u64, empty); 1751 else if (map) 1752 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1753 num_qwords); 1754 else 1755 memset64(ptr, empty, num_qwords); 1756 } 1757 1758 static void xe_pt_abort_unbind(struct xe_vma *vma, 1759 struct xe_vm_pgtable_update *entries, 1760 u32 num_entries) 1761 { 1762 int i, j; 1763 1764 xe_pt_commit_prepare_locks_assert(vma); 1765 1766 for (i = num_entries - 1; i >= 0; --i) { 1767 struct xe_vm_pgtable_update *entry = &entries[i]; 1768 struct xe_pt *pt = entry->pt; 1769 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1770 1771 pt->num_live += entry->qwords; 1772 1773 if (!pt->level) 1774 continue; 1775 1776 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) 1777 pt_dir->staging[j] = 1778 entries[i].pt_entries[j - entry->ofs].pt ? 1779 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL; 1780 } 1781 } 1782 1783 static void 1784 xe_pt_commit_prepare_unbind(struct xe_vma *vma, 1785 struct xe_vm_pgtable_update *entries, 1786 u32 num_entries) 1787 { 1788 int i, j; 1789 1790 xe_pt_commit_prepare_locks_assert(vma); 1791 1792 for (i = 0; i < num_entries; ++i) { 1793 struct xe_vm_pgtable_update *entry = &entries[i]; 1794 struct xe_pt *pt = entry->pt; 1795 struct xe_pt_dir *pt_dir; 1796 1797 pt->num_live -= entry->qwords; 1798 if (!pt->level) 1799 continue; 1800 1801 pt_dir = as_xe_pt_dir(pt); 1802 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) { 1803 entry->pt_entries[j - entry->ofs].pt = 1804 xe_pt_entry_staging(pt_dir, j); 1805 pt_dir->staging[j] = NULL; 1806 } 1807 } 1808 } 1809 1810 static void 1811 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops, 1812 u64 start, u64 end) 1813 { 1814 u64 last; 1815 u32 current_op = pt_update_ops->current_op; 1816 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1817 int i, level = 0; 1818 1819 for (i = 0; i < pt_op->num_entries; i++) { 1820 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i]; 1821 1822 if (entry->pt->level > level) 1823 level = entry->pt->level; 1824 } 1825 1826 /* Greedy (non-optimal) calculation but simple */ 1827 start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level)); 1828 last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1; 1829 1830 if (start < pt_update_ops->start) 1831 pt_update_ops->start = start; 1832 if (last > pt_update_ops->last) 1833 pt_update_ops->last = last; 1834 } 1835 1836 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma) 1837 { 1838 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0; 1839 1840 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1841 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1842 xe->info.tile_count << shift); 1843 1844 return 0; 1845 } 1846 1847 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile, 1848 struct xe_vm_pgtable_update_ops *pt_update_ops, 1849 struct xe_vma *vma, bool invalidate_on_bind) 1850 { 1851 u32 current_op = pt_update_ops->current_op; 1852 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1853 int err; 1854 1855 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1856 xe_bo_assert_held(xe_vma_bo(vma)); 1857 1858 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1859 "Preparing bind, with range [%llx...%llx)\n", 1860 xe_vma_start(vma), xe_vma_end(vma) - 1); 1861 1862 pt_op->vma = NULL; 1863 pt_op->bind = true; 1864 pt_op->rebind = BIT(tile->id) & vma->tile_present; 1865 1866 err = vma_reserve_fences(tile_to_xe(tile), vma); 1867 if (err) 1868 return err; 1869 1870 err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries, 1871 &pt_op->num_entries, invalidate_on_bind); 1872 if (!err) { 1873 xe_tile_assert(tile, pt_op->num_entries <= 1874 ARRAY_SIZE(pt_op->entries)); 1875 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1876 pt_op->num_entries, true); 1877 1878 xe_pt_update_ops_rfence_interval(pt_update_ops, 1879 xe_vma_start(vma), 1880 xe_vma_end(vma)); 1881 ++pt_update_ops->current_op; 1882 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1883 1884 /* 1885 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1886 * cached PTEs point to freed memory. On LR vms this is done 1887 * automatically when the context is re-enabled by the rebind worker, 1888 * or in fault mode it was invalidated on PTE zapping. 1889 * 1890 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1891 * PTE is already cached in the TLB so it needs to be invalidated. 1892 * On !LR VMs this is done in the ring ops preceding a batch, but on 1893 * LR, in particular on user-space batch buffer chaining, it needs to 1894 * be done here. 1895 */ 1896 if ((!pt_op->rebind && xe_vm_has_scratch(vm) && 1897 xe_vm_in_lr_mode(vm))) 1898 pt_update_ops->needs_invalidation = true; 1899 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm)) 1900 /* We bump also if batch_invalidate_tlb is true */ 1901 vm->tlb_flush_seqno++; 1902 1903 vma->tile_staged |= BIT(tile->id); 1904 pt_op->vma = vma; 1905 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1906 pt_op->num_entries, pt_op->rebind); 1907 } else { 1908 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1909 } 1910 1911 return err; 1912 } 1913 1914 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile, 1915 struct xe_vm_pgtable_update_ops *pt_update_ops, 1916 struct xe_vma *vma, struct xe_svm_range *range) 1917 { 1918 u32 current_op = pt_update_ops->current_op; 1919 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1920 int err; 1921 1922 xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma)); 1923 1924 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1925 "Preparing bind, with range [%lx...%lx)\n", 1926 range->base.itree.start, range->base.itree.last); 1927 1928 pt_op->vma = NULL; 1929 pt_op->bind = true; 1930 pt_op->rebind = BIT(tile->id) & range->tile_present; 1931 1932 err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries, 1933 &pt_op->num_entries, false); 1934 if (!err) { 1935 xe_tile_assert(tile, pt_op->num_entries <= 1936 ARRAY_SIZE(pt_op->entries)); 1937 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1938 pt_op->num_entries, true); 1939 1940 xe_pt_update_ops_rfence_interval(pt_update_ops, 1941 range->base.itree.start, 1942 range->base.itree.last + 1); 1943 ++pt_update_ops->current_op; 1944 pt_update_ops->needs_svm_lock = true; 1945 1946 pt_op->vma = vma; 1947 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1948 pt_op->num_entries, pt_op->rebind); 1949 } else { 1950 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1951 } 1952 1953 return err; 1954 } 1955 1956 static int unbind_op_prepare(struct xe_tile *tile, 1957 struct xe_vm_pgtable_update_ops *pt_update_ops, 1958 struct xe_vma *vma) 1959 { 1960 u32 current_op = pt_update_ops->current_op; 1961 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1962 int err; 1963 1964 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id))) 1965 return 0; 1966 1967 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1968 xe_bo_assert_held(xe_vma_bo(vma)); 1969 1970 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1971 "Preparing unbind, with range [%llx...%llx)\n", 1972 xe_vma_start(vma), xe_vma_end(vma) - 1); 1973 1974 pt_op->vma = vma; 1975 pt_op->bind = false; 1976 pt_op->rebind = false; 1977 1978 err = vma_reserve_fences(tile_to_xe(tile), vma); 1979 if (err) 1980 return err; 1981 1982 pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma), 1983 vma, NULL, pt_op->entries); 1984 1985 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1986 pt_op->num_entries, false); 1987 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma), 1988 xe_vma_end(vma)); 1989 ++pt_update_ops->current_op; 1990 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1991 pt_update_ops->needs_invalidation = true; 1992 1993 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries); 1994 1995 return 0; 1996 } 1997 1998 static bool 1999 xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op *pt_op, 2000 struct xe_svm_range *range) 2001 { 2002 struct xe_vm_pgtable_update *update = pt_op->entries; 2003 2004 XE_WARN_ON(!pt_op->num_entries); 2005 2006 /* 2007 * We can't skip the invalidation if we are removing PTEs that span more 2008 * than the range, do some checks to ensure we are removing PTEs that 2009 * are invalid. 2010 */ 2011 2012 if (pt_op->num_entries > 1) 2013 return false; 2014 2015 if (update->pt->level == 0) 2016 return true; 2017 2018 if (update->pt->level == 1) 2019 return xe_svm_range_size(range) >= SZ_2M; 2020 2021 return false; 2022 } 2023 2024 static int unbind_range_prepare(struct xe_vm *vm, 2025 struct xe_tile *tile, 2026 struct xe_vm_pgtable_update_ops *pt_update_ops, 2027 struct xe_svm_range *range) 2028 { 2029 u32 current_op = pt_update_ops->current_op; 2030 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 2031 2032 if (!(range->tile_present & BIT(tile->id))) 2033 return 0; 2034 2035 vm_dbg(&vm->xe->drm, 2036 "Preparing unbind, with range [%lx...%lx)\n", 2037 range->base.itree.start, range->base.itree.last); 2038 2039 pt_op->vma = XE_INVALID_VMA; 2040 pt_op->bind = false; 2041 pt_op->rebind = false; 2042 2043 pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range, 2044 pt_op->entries); 2045 2046 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 2047 pt_op->num_entries, false); 2048 xe_pt_update_ops_rfence_interval(pt_update_ops, range->base.itree.start, 2049 range->base.itree.last + 1); 2050 ++pt_update_ops->current_op; 2051 pt_update_ops->needs_svm_lock = true; 2052 pt_update_ops->needs_invalidation |= xe_vm_has_scratch(vm) || 2053 xe_vm_has_valid_gpu_mapping(tile, range->tile_present, 2054 range->tile_invalidated) || 2055 !xe_pt_op_check_range_skip_invalidation(pt_op, range); 2056 2057 xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries, 2058 pt_op->num_entries); 2059 2060 return 0; 2061 } 2062 2063 static int op_prepare(struct xe_vm *vm, 2064 struct xe_tile *tile, 2065 struct xe_vm_pgtable_update_ops *pt_update_ops, 2066 struct xe_vma_op *op) 2067 { 2068 int err = 0; 2069 2070 xe_vm_assert_held(vm); 2071 2072 switch (op->base.op) { 2073 case DRM_GPUVA_OP_MAP: 2074 if ((!op->map.immediate && xe_vm_in_fault_mode(vm) && 2075 !op->map.invalidate_on_bind) || 2076 op->map.is_cpu_addr_mirror) 2077 break; 2078 2079 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma, 2080 op->map.invalidate_on_bind); 2081 pt_update_ops->wait_vm_kernel = true; 2082 break; 2083 case DRM_GPUVA_OP_REMAP: 2084 { 2085 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2086 2087 if (xe_vma_is_cpu_addr_mirror(old)) 2088 break; 2089 2090 err = unbind_op_prepare(tile, pt_update_ops, old); 2091 2092 if (!err && op->remap.prev) { 2093 err = bind_op_prepare(vm, tile, pt_update_ops, 2094 op->remap.prev, false); 2095 pt_update_ops->wait_vm_bookkeep = true; 2096 } 2097 if (!err && op->remap.next) { 2098 err = bind_op_prepare(vm, tile, pt_update_ops, 2099 op->remap.next, false); 2100 pt_update_ops->wait_vm_bookkeep = true; 2101 } 2102 break; 2103 } 2104 case DRM_GPUVA_OP_UNMAP: 2105 { 2106 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2107 2108 if (xe_vma_is_cpu_addr_mirror(vma)) 2109 break; 2110 2111 err = unbind_op_prepare(tile, pt_update_ops, vma); 2112 break; 2113 } 2114 case DRM_GPUVA_OP_PREFETCH: 2115 { 2116 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2117 2118 if (xe_vma_is_cpu_addr_mirror(vma)) { 2119 struct xe_svm_range *range; 2120 unsigned long i; 2121 2122 xa_for_each(&op->prefetch_range.range, i, range) { 2123 err = bind_range_prepare(vm, tile, pt_update_ops, 2124 vma, range); 2125 if (err) 2126 return err; 2127 } 2128 } else { 2129 err = bind_op_prepare(vm, tile, pt_update_ops, vma, false); 2130 pt_update_ops->wait_vm_kernel = true; 2131 } 2132 break; 2133 } 2134 case DRM_GPUVA_OP_DRIVER: 2135 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 2136 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 2137 2138 err = bind_range_prepare(vm, tile, pt_update_ops, 2139 op->map_range.vma, 2140 op->map_range.range); 2141 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) { 2142 err = unbind_range_prepare(vm, tile, pt_update_ops, 2143 op->unmap_range.range); 2144 } 2145 break; 2146 default: 2147 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2148 } 2149 2150 return err; 2151 } 2152 2153 static void 2154 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops) 2155 { 2156 init_llist_head(&pt_update_ops->deferred); 2157 pt_update_ops->start = ~0x0ull; 2158 pt_update_ops->last = 0x0ull; 2159 } 2160 2161 /** 2162 * xe_pt_update_ops_prepare() - Prepare PT update operations 2163 * @tile: Tile of PT update operations 2164 * @vops: VMA operationa 2165 * 2166 * Prepare PT update operations which includes updating internal PT state, 2167 * allocate memory for page tables, populate page table being pruned in, and 2168 * create PT update operations for leaf insertion / removal. 2169 * 2170 * Return: 0 on success, negative error code on error. 2171 */ 2172 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops) 2173 { 2174 struct xe_vm_pgtable_update_ops *pt_update_ops = 2175 &vops->pt_update_ops[tile->id]; 2176 struct xe_vma_op *op; 2177 int shift = tile->media_gt ? 1 : 0; 2178 int err; 2179 2180 lockdep_assert_held(&vops->vm->lock); 2181 xe_vm_assert_held(vops->vm); 2182 2183 xe_pt_update_ops_init(pt_update_ops); 2184 2185 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm), 2186 tile_to_xe(tile)->info.tile_count << shift); 2187 if (err) 2188 return err; 2189 2190 list_for_each_entry(op, &vops->list, link) { 2191 err = op_prepare(vops->vm, tile, pt_update_ops, op); 2192 2193 if (err) 2194 return err; 2195 } 2196 2197 xe_tile_assert(tile, pt_update_ops->current_op <= 2198 pt_update_ops->num_ops); 2199 2200 #ifdef TEST_VM_OPS_ERROR 2201 if (vops->inject_error && 2202 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE) 2203 return -ENOSPC; 2204 #endif 2205 2206 return 0; 2207 } 2208 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO); 2209 2210 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2211 struct xe_vm_pgtable_update_ops *pt_update_ops, 2212 struct xe_vma *vma, struct dma_fence *fence, 2213 struct dma_fence *fence2, bool invalidate_on_bind) 2214 { 2215 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2216 2217 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2218 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2219 pt_update_ops->wait_vm_bookkeep ? 2220 DMA_RESV_USAGE_KERNEL : 2221 DMA_RESV_USAGE_BOOKKEEP); 2222 if (fence2) 2223 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2224 pt_update_ops->wait_vm_bookkeep ? 2225 DMA_RESV_USAGE_KERNEL : 2226 DMA_RESV_USAGE_BOOKKEEP); 2227 } 2228 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2229 WRITE_ONCE(vma->tile_present, vma->tile_present | BIT(tile->id)); 2230 if (invalidate_on_bind) 2231 WRITE_ONCE(vma->tile_invalidated, 2232 vma->tile_invalidated | BIT(tile->id)); 2233 else 2234 WRITE_ONCE(vma->tile_invalidated, 2235 vma->tile_invalidated & ~BIT(tile->id)); 2236 vma->tile_staged &= ~BIT(tile->id); 2237 if (xe_vma_is_userptr(vma)) { 2238 lockdep_assert_held_read(&vm->userptr.notifier_lock); 2239 to_userptr_vma(vma)->userptr.initial_bind = true; 2240 } 2241 2242 /* 2243 * Kick rebind worker if this bind triggers preempt fences and not in 2244 * the rebind worker 2245 */ 2246 if (pt_update_ops->wait_vm_bookkeep && 2247 xe_vm_in_preempt_fence_mode(vm) && 2248 !current->mm) 2249 xe_vm_queue_rebind_worker(vm); 2250 } 2251 2252 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2253 struct xe_vm_pgtable_update_ops *pt_update_ops, 2254 struct xe_vma *vma, struct dma_fence *fence, 2255 struct dma_fence *fence2) 2256 { 2257 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2258 2259 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2260 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2261 pt_update_ops->wait_vm_bookkeep ? 2262 DMA_RESV_USAGE_KERNEL : 2263 DMA_RESV_USAGE_BOOKKEEP); 2264 if (fence2) 2265 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2266 pt_update_ops->wait_vm_bookkeep ? 2267 DMA_RESV_USAGE_KERNEL : 2268 DMA_RESV_USAGE_BOOKKEEP); 2269 } 2270 vma->tile_present &= ~BIT(tile->id); 2271 if (!vma->tile_present) { 2272 list_del_init(&vma->combined_links.rebind); 2273 if (xe_vma_is_userptr(vma)) { 2274 lockdep_assert_held_read(&vm->userptr.notifier_lock); 2275 2276 spin_lock(&vm->userptr.invalidated_lock); 2277 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 2278 spin_unlock(&vm->userptr.invalidated_lock); 2279 } 2280 } 2281 } 2282 2283 static void range_present_and_invalidated_tile(struct xe_vm *vm, 2284 struct xe_svm_range *range, 2285 u8 tile_id) 2286 { 2287 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2288 2289 lockdep_assert_held(&vm->svm.gpusvm.notifier_lock); 2290 2291 WRITE_ONCE(range->tile_present, range->tile_present | BIT(tile_id)); 2292 WRITE_ONCE(range->tile_invalidated, range->tile_invalidated & ~BIT(tile_id)); 2293 } 2294 2295 static void op_commit(struct xe_vm *vm, 2296 struct xe_tile *tile, 2297 struct xe_vm_pgtable_update_ops *pt_update_ops, 2298 struct xe_vma_op *op, struct dma_fence *fence, 2299 struct dma_fence *fence2) 2300 { 2301 xe_vm_assert_held(vm); 2302 2303 switch (op->base.op) { 2304 case DRM_GPUVA_OP_MAP: 2305 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) || 2306 op->map.is_cpu_addr_mirror) 2307 break; 2308 2309 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence, 2310 fence2, op->map.invalidate_on_bind); 2311 break; 2312 case DRM_GPUVA_OP_REMAP: 2313 { 2314 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2315 2316 if (xe_vma_is_cpu_addr_mirror(old)) 2317 break; 2318 2319 unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2); 2320 2321 if (op->remap.prev) 2322 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev, 2323 fence, fence2, false); 2324 if (op->remap.next) 2325 bind_op_commit(vm, tile, pt_update_ops, op->remap.next, 2326 fence, fence2, false); 2327 break; 2328 } 2329 case DRM_GPUVA_OP_UNMAP: 2330 { 2331 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2332 2333 if (!xe_vma_is_cpu_addr_mirror(vma)) 2334 unbind_op_commit(vm, tile, pt_update_ops, vma, fence, 2335 fence2); 2336 break; 2337 } 2338 case DRM_GPUVA_OP_PREFETCH: 2339 { 2340 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2341 2342 if (xe_vma_is_cpu_addr_mirror(vma)) { 2343 struct xe_svm_range *range = NULL; 2344 unsigned long i; 2345 2346 xa_for_each(&op->prefetch_range.range, i, range) 2347 range_present_and_invalidated_tile(vm, range, tile->id); 2348 } else { 2349 bind_op_commit(vm, tile, pt_update_ops, vma, fence, 2350 fence2, false); 2351 } 2352 break; 2353 } 2354 case DRM_GPUVA_OP_DRIVER: 2355 { 2356 /* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2357 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) 2358 range_present_and_invalidated_tile(vm, op->map_range.range, tile->id); 2359 else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) 2360 WRITE_ONCE(op->unmap_range.range->tile_present, 2361 op->unmap_range.range->tile_present & 2362 ~BIT(tile->id)); 2363 2364 break; 2365 } 2366 default: 2367 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2368 } 2369 } 2370 2371 static const struct xe_migrate_pt_update_ops migrate_ops = { 2372 .populate = xe_vm_populate_pgtable, 2373 .clear = xe_migrate_clear_pgtable_callback, 2374 .pre_commit = xe_pt_pre_commit, 2375 }; 2376 2377 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = { 2378 .populate = xe_vm_populate_pgtable, 2379 .clear = xe_migrate_clear_pgtable_callback, 2380 .pre_commit = xe_pt_userptr_pre_commit, 2381 }; 2382 2383 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM) 2384 static const struct xe_migrate_pt_update_ops svm_migrate_ops = { 2385 .populate = xe_vm_populate_pgtable, 2386 .clear = xe_migrate_clear_pgtable_callback, 2387 .pre_commit = xe_pt_svm_pre_commit, 2388 }; 2389 #else 2390 static const struct xe_migrate_pt_update_ops svm_migrate_ops; 2391 #endif 2392 2393 /** 2394 * xe_pt_update_ops_run() - Run PT update operations 2395 * @tile: Tile of PT update operations 2396 * @vops: VMA operationa 2397 * 2398 * Run PT update operations which includes committing internal PT state changes, 2399 * creating job for PT update operations for leaf insertion / removal, and 2400 * installing job fence in various places. 2401 * 2402 * Return: fence on success, negative ERR_PTR on error. 2403 */ 2404 struct dma_fence * 2405 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops) 2406 { 2407 struct xe_vm *vm = vops->vm; 2408 struct xe_vm_pgtable_update_ops *pt_update_ops = 2409 &vops->pt_update_ops[tile->id]; 2410 struct dma_fence *fence; 2411 struct invalidation_fence *ifence = NULL, *mfence = NULL; 2412 struct dma_fence **fences = NULL; 2413 struct dma_fence_array *cf = NULL; 2414 struct xe_range_fence *rfence; 2415 struct xe_vma_op *op; 2416 int err = 0, i; 2417 struct xe_migrate_pt_update update = { 2418 .ops = pt_update_ops->needs_svm_lock ? 2419 &svm_migrate_ops : 2420 pt_update_ops->needs_userptr_lock ? 2421 &userptr_migrate_ops : 2422 &migrate_ops, 2423 .vops = vops, 2424 .tile_id = tile->id, 2425 }; 2426 2427 lockdep_assert_held(&vm->lock); 2428 xe_vm_assert_held(vm); 2429 2430 if (!pt_update_ops->current_op) { 2431 xe_tile_assert(tile, xe_vm_in_fault_mode(vm)); 2432 2433 return dma_fence_get_stub(); 2434 } 2435 2436 #ifdef TEST_VM_OPS_ERROR 2437 if (vops->inject_error && 2438 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN) 2439 return ERR_PTR(-ENOSPC); 2440 #endif 2441 2442 if (pt_update_ops->needs_invalidation) { 2443 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2444 if (!ifence) { 2445 err = -ENOMEM; 2446 goto kill_vm_tile1; 2447 } 2448 if (tile->media_gt) { 2449 mfence = kzalloc(sizeof(*ifence), GFP_KERNEL); 2450 if (!mfence) { 2451 err = -ENOMEM; 2452 goto free_ifence; 2453 } 2454 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL); 2455 if (!fences) { 2456 err = -ENOMEM; 2457 goto free_ifence; 2458 } 2459 cf = dma_fence_array_alloc(2); 2460 if (!cf) { 2461 err = -ENOMEM; 2462 goto free_ifence; 2463 } 2464 } 2465 } 2466 2467 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 2468 if (!rfence) { 2469 err = -ENOMEM; 2470 goto free_ifence; 2471 } 2472 2473 fence = xe_migrate_update_pgtables(tile->migrate, &update); 2474 if (IS_ERR(fence)) { 2475 err = PTR_ERR(fence); 2476 goto free_rfence; 2477 } 2478 2479 /* Point of no return - VM killed if failure after this */ 2480 for (i = 0; i < pt_update_ops->current_op; ++i) { 2481 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2482 2483 xe_pt_commit(pt_op->vma, pt_op->entries, 2484 pt_op->num_entries, &pt_update_ops->deferred); 2485 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */ 2486 } 2487 2488 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence, 2489 &xe_range_fence_kfree_ops, 2490 pt_update_ops->start, 2491 pt_update_ops->last, fence)) 2492 dma_fence_wait(fence, false); 2493 2494 /* tlb invalidation must be done before signaling rebind */ 2495 if (ifence) { 2496 if (mfence) 2497 dma_fence_get(fence); 2498 invalidation_fence_init(tile->primary_gt, ifence, fence, 2499 pt_update_ops->start, 2500 pt_update_ops->last, vm->usm.asid); 2501 if (mfence) { 2502 invalidation_fence_init(tile->media_gt, mfence, fence, 2503 pt_update_ops->start, 2504 pt_update_ops->last, vm->usm.asid); 2505 fences[0] = &ifence->base.base; 2506 fences[1] = &mfence->base.base; 2507 dma_fence_array_init(cf, 2, fences, 2508 vm->composite_fence_ctx, 2509 vm->composite_fence_seqno++, 2510 false); 2511 fence = &cf->base; 2512 } else { 2513 fence = &ifence->base.base; 2514 } 2515 } 2516 2517 if (!mfence) { 2518 dma_resv_add_fence(xe_vm_resv(vm), fence, 2519 pt_update_ops->wait_vm_bookkeep ? 2520 DMA_RESV_USAGE_KERNEL : 2521 DMA_RESV_USAGE_BOOKKEEP); 2522 2523 list_for_each_entry(op, &vops->list, link) 2524 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL); 2525 } else { 2526 dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base, 2527 pt_update_ops->wait_vm_bookkeep ? 2528 DMA_RESV_USAGE_KERNEL : 2529 DMA_RESV_USAGE_BOOKKEEP); 2530 2531 dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base, 2532 pt_update_ops->wait_vm_bookkeep ? 2533 DMA_RESV_USAGE_KERNEL : 2534 DMA_RESV_USAGE_BOOKKEEP); 2535 2536 list_for_each_entry(op, &vops->list, link) 2537 op_commit(vops->vm, tile, pt_update_ops, op, 2538 &ifence->base.base, &mfence->base.base); 2539 } 2540 2541 if (pt_update_ops->needs_svm_lock) 2542 xe_svm_notifier_unlock(vm); 2543 if (pt_update_ops->needs_userptr_lock) 2544 up_read(&vm->userptr.notifier_lock); 2545 2546 return fence; 2547 2548 free_rfence: 2549 kfree(rfence); 2550 free_ifence: 2551 kfree(cf); 2552 kfree(fences); 2553 kfree(mfence); 2554 kfree(ifence); 2555 kill_vm_tile1: 2556 if (err != -EAGAIN && err != -ENODATA && tile->id) 2557 xe_vm_kill(vops->vm, false); 2558 2559 return ERR_PTR(err); 2560 } 2561 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO); 2562 2563 /** 2564 * xe_pt_update_ops_fini() - Finish PT update operations 2565 * @tile: Tile of PT update operations 2566 * @vops: VMA operations 2567 * 2568 * Finish PT update operations by committing to destroy page table memory 2569 */ 2570 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops) 2571 { 2572 struct xe_vm_pgtable_update_ops *pt_update_ops = 2573 &vops->pt_update_ops[tile->id]; 2574 int i; 2575 2576 lockdep_assert_held(&vops->vm->lock); 2577 xe_vm_assert_held(vops->vm); 2578 2579 for (i = 0; i < pt_update_ops->current_op; ++i) { 2580 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2581 2582 xe_pt_free_bind(pt_op->entries, pt_op->num_entries); 2583 } 2584 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred); 2585 } 2586 2587 /** 2588 * xe_pt_update_ops_abort() - Abort PT update operations 2589 * @tile: Tile of PT update operations 2590 * @vops: VMA operationa 2591 * 2592 * Abort PT update operations by unwinding internal PT state 2593 */ 2594 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops) 2595 { 2596 struct xe_vm_pgtable_update_ops *pt_update_ops = 2597 &vops->pt_update_ops[tile->id]; 2598 int i; 2599 2600 lockdep_assert_held(&vops->vm->lock); 2601 xe_vm_assert_held(vops->vm); 2602 2603 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) { 2604 struct xe_vm_pgtable_update_op *pt_op = 2605 &pt_update_ops->ops[i]; 2606 2607 if (!pt_op->vma || i >= pt_update_ops->current_op) 2608 continue; 2609 2610 if (pt_op->bind) 2611 xe_pt_abort_bind(pt_op->vma, pt_op->entries, 2612 pt_op->num_entries, 2613 pt_op->rebind); 2614 else 2615 xe_pt_abort_unbind(pt_op->vma, pt_op->entries, 2616 pt_op->num_entries); 2617 } 2618 2619 xe_pt_update_ops_fini(tile, vops); 2620 } 2621