1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <linux/dma-fence-array.h> 7 8 #include "xe_pt.h" 9 10 #include "regs/xe_gtt_defs.h" 11 #include "xe_bo.h" 12 #include "xe_device.h" 13 #include "xe_drm_client.h" 14 #include "xe_exec_queue.h" 15 #include "xe_gt.h" 16 #include "xe_migrate.h" 17 #include "xe_pt_types.h" 18 #include "xe_pt_walk.h" 19 #include "xe_res_cursor.h" 20 #include "xe_sched_job.h" 21 #include "xe_svm.h" 22 #include "xe_sync.h" 23 #include "xe_tlb_inval_job.h" 24 #include "xe_trace.h" 25 #include "xe_ttm_stolen_mgr.h" 26 #include "xe_userptr.h" 27 #include "xe_vm.h" 28 29 struct xe_pt_dir { 30 struct xe_pt pt; 31 /** @children: Array of page-table child nodes */ 32 struct xe_ptw *children[XE_PDES]; 33 /** @staging: Array of page-table staging nodes */ 34 struct xe_ptw *staging[XE_PDES]; 35 }; 36 37 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 38 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 39 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 40 #else 41 #define xe_pt_set_addr(__xe_pt, __addr) 42 #define xe_pt_addr(__xe_pt) 0ull 43 #endif 44 45 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 46 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 47 48 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 49 50 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 51 { 52 return container_of(pt, struct xe_pt_dir, pt); 53 } 54 55 static struct xe_pt * 56 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index) 57 { 58 return container_of(pt_dir->staging[index], struct xe_pt, base); 59 } 60 61 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 62 unsigned int level) 63 { 64 struct xe_device *xe = tile_to_xe(tile); 65 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 66 u8 id = tile->id; 67 68 if (!xe_vm_has_scratch(vm)) 69 return 0; 70 71 if (level > MAX_HUGEPTE_LEVEL) 72 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 73 0); 74 75 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 76 XE_PTE_NULL; 77 } 78 79 static void xe_pt_free(struct xe_pt *pt) 80 { 81 if (pt->level) 82 kfree(as_xe_pt_dir(pt)); 83 else 84 kfree(pt); 85 } 86 87 /** 88 * xe_pt_create() - Create a page-table. 89 * @vm: The vm to create for. 90 * @tile: The tile to create for. 91 * @level: The page-table level. 92 * @exec: The drm_exec object used to lock the vm. 93 * 94 * Allocate and initialize a single struct xe_pt metadata structure. Also 95 * create the corresponding page-table bo, but don't initialize it. If the 96 * level is grater than zero, then it's assumed to be a directory page- 97 * table and the directory structure is also allocated and initialized to 98 * NULL pointers. 99 * 100 * Return: A valid struct xe_pt pointer on success, Pointer error code on 101 * error. 102 */ 103 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 104 unsigned int level, struct drm_exec *exec) 105 { 106 struct xe_pt *pt; 107 struct xe_bo *bo; 108 u32 bo_flags; 109 int err; 110 111 if (level) { 112 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 113 114 pt = (dir) ? &dir->pt : NULL; 115 } else { 116 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 117 } 118 if (!pt) 119 return ERR_PTR(-ENOMEM); 120 121 bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | 122 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 123 XE_BO_FLAG_NO_RESV_EVICT | XE_BO_FLAG_PAGETABLE; 124 if (vm->xef) /* userspace */ 125 bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE; 126 127 pt->level = level; 128 129 drm_WARN_ON(&vm->xe->drm, IS_ERR_OR_NULL(exec)); 130 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 131 ttm_bo_type_kernel, 132 bo_flags, exec); 133 if (IS_ERR(bo)) { 134 err = PTR_ERR(bo); 135 goto err_kfree; 136 } 137 pt->bo = bo; 138 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 139 pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL; 140 141 if (vm->xef) 142 xe_drm_client_add_bo(vm->xef->client, pt->bo); 143 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 144 145 return pt; 146 147 err_kfree: 148 xe_pt_free(pt); 149 return ERR_PTR(err); 150 } 151 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO); 152 153 /** 154 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 155 * entries. 156 * @tile: The tile the scratch pagetable of which to use. 157 * @vm: The vm we populate for. 158 * @pt: The pagetable the bo of which to initialize. 159 * 160 * Populate the page-table bo of @pt with entries pointing into the tile's 161 * scratch page-table tree if any. Otherwise populate with zeros. 162 */ 163 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 164 struct xe_pt *pt) 165 { 166 struct iosys_map *map = &pt->bo->vmap; 167 u64 empty; 168 int i; 169 170 if (!xe_vm_has_scratch(vm)) { 171 /* 172 * FIXME: Some memory is allocated already allocated to zero? 173 * Find out which memory that is and avoid this memset... 174 */ 175 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 176 } else { 177 empty = __xe_pt_empty_pte(tile, vm, pt->level); 178 for (i = 0; i < XE_PDES; i++) 179 xe_pt_write(vm->xe, map, i, empty); 180 } 181 } 182 183 /** 184 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 185 * a page-table at a certain level. 186 * @level: The level. 187 * 188 * Return: The ilog2 value of the size of the address range of a page-table 189 * at level @level. 190 */ 191 unsigned int xe_pt_shift(unsigned int level) 192 { 193 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 194 } 195 196 /** 197 * xe_pt_destroy() - Destroy a page-table tree. 198 * @pt: The root of the page-table tree to destroy. 199 * @flags: vm flags. Currently unused. 200 * @deferred: List head of lockless list for deferred putting. NULL for 201 * immediate putting. 202 * 203 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 204 * and finally frees @pt. TODO: Can we remove the @flags argument? 205 */ 206 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 207 { 208 int i; 209 210 if (!pt) 211 return; 212 213 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 214 xe_bo_unpin(pt->bo); 215 xe_bo_put_deferred(pt->bo, deferred); 216 217 if (pt->level > 0 && pt->num_live) { 218 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 219 220 for (i = 0; i < XE_PDES; i++) { 221 if (xe_pt_entry_staging(pt_dir, i)) 222 xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags, 223 deferred); 224 } 225 } 226 xe_pt_free(pt); 227 } 228 229 /** 230 * xe_pt_clear() - Clear a page-table. 231 * @xe: xe device. 232 * @pt: The page-table. 233 * 234 * Clears page-table by setting to zero. 235 */ 236 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt) 237 { 238 struct iosys_map *map = &pt->bo->vmap; 239 240 xe_map_memset(xe, map, 0, 0, SZ_4K); 241 } 242 243 /** 244 * DOC: Pagetable building 245 * 246 * Below we use the term "page-table" for both page-directories, containing 247 * pointers to lower level page-directories or page-tables, and level 0 248 * page-tables that contain only page-table-entries pointing to memory pages. 249 * 250 * When inserting an address range in an already existing page-table tree 251 * there will typically be a set of page-tables that are shared with other 252 * address ranges, and a set that are private to this address range. 253 * The set of shared page-tables can be at most two per level, 254 * and those can't be updated immediately because the entries of those 255 * page-tables may still be in use by the gpu for other mappings. Therefore 256 * when inserting entries into those, we instead stage those insertions by 257 * adding insertion data into struct xe_vm_pgtable_update structures. This 258 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 259 * added in a separate commit step. CPU-data is committed while still under the 260 * vm lock, the object lock and for userptr, the notifier lock in read mode. 261 * The GPU async data is committed either by the GPU or CPU after fulfilling 262 * relevant dependencies. 263 * For non-shared page-tables (and, in fact, for shared ones that aren't 264 * existing at the time of staging), we add the data in-place without the 265 * special update structures. This private part of the page-table tree will 266 * remain disconnected from the vm page-table tree until data is committed to 267 * the shared page tables of the vm tree in the commit phase. 268 */ 269 270 struct xe_pt_update { 271 /** @update: The update structure we're building for this parent. */ 272 struct xe_vm_pgtable_update *update; 273 /** @parent: The parent. Used to detect a parent change. */ 274 struct xe_pt *parent; 275 /** @preexisting: Whether the parent was pre-existing or allocated */ 276 bool preexisting; 277 }; 278 279 /** 280 * struct xe_pt_stage_bind_walk - Walk state for the stage_bind walk. 281 */ 282 struct xe_pt_stage_bind_walk { 283 /** @base: The base class. */ 284 struct xe_pt_walk base; 285 286 /* Input parameters for the walk */ 287 /** @vm: The vm we're building for. */ 288 struct xe_vm *vm; 289 /** @tile: The tile we're building for. */ 290 struct xe_tile *tile; 291 /** @default_vram_pte: PTE flag only template for VRAM. No address is associated */ 292 u64 default_vram_pte; 293 /** @default_system_pte: PTE flag only template for System. No address is associated */ 294 u64 default_system_pte; 295 /** @dma_offset: DMA offset to add to the PTE. */ 296 u64 dma_offset; 297 /** 298 * @needs_64K: This address range enforces 64K alignment and 299 * granularity on VRAM. 300 */ 301 bool needs_64K; 302 /** @clear_pt: clear page table entries during the bind walk */ 303 bool clear_pt; 304 /** 305 * @vma: VMA being mapped 306 */ 307 struct xe_vma *vma; 308 309 /* Also input, but is updated during the walk*/ 310 /** @curs: The DMA address cursor. */ 311 struct xe_res_cursor *curs; 312 /** @va_curs_start: The Virtual address corresponding to @curs->start */ 313 u64 va_curs_start; 314 315 /* Output */ 316 /** @wupd: Walk output data for page-table updates. */ 317 struct xe_walk_update { 318 /** @wupd.entries: Caller provided storage. */ 319 struct xe_vm_pgtable_update *entries; 320 /** @wupd.num_used_entries: Number of update @entries used. */ 321 unsigned int num_used_entries; 322 /** @wupd.updates: Tracks the update entry at a given level */ 323 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 324 } wupd; 325 326 /* Walk state */ 327 /** 328 * @l0_end_addr: The end address of the current l0 leaf. Used for 329 * 64K granularity detection. 330 */ 331 u64 l0_end_addr; 332 /** @addr_64K: The start address of the current 64K chunk. */ 333 u64 addr_64K; 334 /** @found_64K: Whether @add_64K actually points to a 64K chunk. */ 335 bool found_64K; 336 }; 337 338 static int 339 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 340 pgoff_t offset, bool alloc_entries) 341 { 342 struct xe_pt_update *upd = &wupd->updates[parent->level]; 343 struct xe_vm_pgtable_update *entry; 344 345 /* 346 * For *each level*, we could only have one active 347 * struct xt_pt_update at any one time. Once we move on to a 348 * new parent and page-directory, the old one is complete, and 349 * updates are either already stored in the build tree or in 350 * @wupd->entries 351 */ 352 if (likely(upd->parent == parent)) 353 return 0; 354 355 upd->parent = parent; 356 upd->preexisting = true; 357 358 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 359 return -EINVAL; 360 361 entry = wupd->entries + wupd->num_used_entries++; 362 upd->update = entry; 363 entry->ofs = offset; 364 entry->pt_bo = parent->bo; 365 entry->pt = parent; 366 entry->flags = 0; 367 entry->qwords = 0; 368 entry->pt_bo->update_index = -1; 369 370 if (alloc_entries) { 371 entry->pt_entries = kmalloc_array(XE_PDES, 372 sizeof(*entry->pt_entries), 373 GFP_KERNEL); 374 if (!entry->pt_entries) 375 return -ENOMEM; 376 } 377 378 return 0; 379 } 380 381 /* 382 * NOTE: This is a very frequently called function so we allow ourselves 383 * to annotate (using branch prediction hints) the fastpath of updating a 384 * non-pre-existing pagetable with leaf ptes. 385 */ 386 static int 387 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 388 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 389 { 390 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 391 struct xe_pt_update *child_upd = xe_child ? 392 &xe_walk->wupd.updates[xe_child->level] : NULL; 393 int ret; 394 395 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 396 if (unlikely(ret)) 397 return ret; 398 399 /* 400 * Register this new pagetable so that it won't be recognized as 401 * a shared pagetable by a subsequent insertion. 402 */ 403 if (unlikely(child_upd)) { 404 child_upd->update = NULL; 405 child_upd->parent = xe_child; 406 child_upd->preexisting = false; 407 } 408 409 if (likely(!upd->preexisting)) { 410 /* Continue building a non-connected subtree. */ 411 struct iosys_map *map = &parent->bo->vmap; 412 413 if (unlikely(xe_child)) { 414 parent->base.children[offset] = &xe_child->base; 415 parent->base.staging[offset] = &xe_child->base; 416 } 417 418 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 419 parent->num_live++; 420 } else { 421 /* Shared pt. Stage update. */ 422 unsigned int idx; 423 struct xe_vm_pgtable_update *entry = upd->update; 424 425 idx = offset - entry->ofs; 426 entry->pt_entries[idx].pt = xe_child; 427 entry->pt_entries[idx].pte = pte; 428 entry->qwords++; 429 } 430 431 return 0; 432 } 433 434 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 435 struct xe_pt_stage_bind_walk *xe_walk) 436 { 437 u64 size, dma; 438 439 if (level > MAX_HUGEPTE_LEVEL) 440 return false; 441 442 /* Does the virtual range requested cover a huge pte? */ 443 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 444 return false; 445 446 /* Does the DMA segment cover the whole pte? */ 447 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 448 return false; 449 450 /* null VMA's do not have dma addresses */ 451 if (xe_vma_is_null(xe_walk->vma)) 452 return true; 453 454 /* if we are clearing page table, no dma addresses*/ 455 if (xe_walk->clear_pt) 456 return true; 457 458 /* Is the DMA address huge PTE size aligned? */ 459 size = next - addr; 460 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 461 462 return IS_ALIGNED(dma, size); 463 } 464 465 /* 466 * Scan the requested mapping to check whether it can be done entirely 467 * with 64K PTEs. 468 */ 469 static bool 470 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 471 { 472 struct xe_res_cursor curs = *xe_walk->curs; 473 474 if (!IS_ALIGNED(addr, SZ_64K)) 475 return false; 476 477 if (next > xe_walk->l0_end_addr) 478 return false; 479 480 /* null VMA's do not have dma addresses */ 481 if (xe_vma_is_null(xe_walk->vma)) 482 return true; 483 484 xe_res_next(&curs, addr - xe_walk->va_curs_start); 485 for (; addr < next; addr += SZ_64K) { 486 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 487 return false; 488 489 xe_res_next(&curs, SZ_64K); 490 } 491 492 return addr == next; 493 } 494 495 /* 496 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 497 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 498 * device to the PTE. 499 * This function determines whether the address is part of such a 500 * segment. For VRAM in normal pagetables, this is strictly necessary on 501 * some devices. 502 */ 503 static bool 504 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 505 { 506 /* Address is within an already found 64k region */ 507 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 508 return true; 509 510 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 511 xe_walk->addr_64K = addr; 512 513 return xe_walk->found_64K; 514 } 515 516 static int 517 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 518 unsigned int level, u64 addr, u64 next, 519 struct xe_ptw **child, 520 enum page_walk_action *action, 521 struct xe_pt_walk *walk) 522 { 523 struct xe_pt_stage_bind_walk *xe_walk = 524 container_of(walk, typeof(*xe_walk), base); 525 u16 pat_index = xe_walk->vma->attr.pat_index; 526 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 527 struct xe_vm *vm = xe_walk->vm; 528 struct xe_pt *xe_child; 529 bool covers; 530 int ret = 0; 531 u64 pte; 532 533 /* Is this a leaf entry ?*/ 534 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 535 struct xe_res_cursor *curs = xe_walk->curs; 536 bool is_null = xe_vma_is_null(xe_walk->vma); 537 bool is_vram = is_null ? false : xe_res_is_vram(curs); 538 539 XE_WARN_ON(xe_walk->va_curs_start != addr); 540 541 if (xe_walk->clear_pt) { 542 pte = 0; 543 } else { 544 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 545 xe_res_dma(curs) + 546 xe_walk->dma_offset, 547 xe_walk->vma, 548 pat_index, level); 549 if (!is_null) 550 pte |= is_vram ? xe_walk->default_vram_pte : 551 xe_walk->default_system_pte; 552 553 /* 554 * Set the XE_PTE_PS64 hint if possible, otherwise if 555 * this device *requires* 64K PTE size for VRAM, fail. 556 */ 557 if (level == 0 && !xe_parent->is_compact) { 558 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 559 xe_walk->vma->gpuva.flags |= 560 XE_VMA_PTE_64K; 561 pte |= XE_PTE_PS64; 562 } else if (XE_WARN_ON(xe_walk->needs_64K && 563 is_vram)) { 564 return -EINVAL; 565 } 566 } 567 } 568 569 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 570 if (unlikely(ret)) 571 return ret; 572 573 if (!is_null && !xe_walk->clear_pt) 574 xe_res_next(curs, next - addr); 575 xe_walk->va_curs_start = next; 576 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 577 *action = ACTION_CONTINUE; 578 579 return ret; 580 } 581 582 /* 583 * Descending to lower level. Determine if we need to allocate a 584 * new page table or -directory, which we do if there is no 585 * previous one or there is one we can completely replace. 586 */ 587 if (level == 1) { 588 walk->shifts = xe_normal_pt_shifts; 589 xe_walk->l0_end_addr = next; 590 } 591 592 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 593 if (covers || !*child) { 594 u64 flags = 0; 595 596 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1, 597 xe_vm_validation_exec(vm)); 598 if (IS_ERR(xe_child)) 599 return PTR_ERR(xe_child); 600 601 xe_pt_set_addr(xe_child, 602 round_down(addr, 1ull << walk->shifts[level])); 603 604 if (!covers) 605 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 606 607 *child = &xe_child->base; 608 609 /* 610 * Prefer the compact pagetable layout for L0 if possible. Only 611 * possible if VMA covers entire 2MB region as compact 64k and 612 * 4k pages cannot be mixed within a 2MB region. 613 * TODO: Suballocate the pt bo to avoid wasting a lot of 614 * memory. 615 */ 616 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 617 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 618 walk->shifts = xe_compact_pt_shifts; 619 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 620 flags |= XE_PDE_64K; 621 xe_child->is_compact = true; 622 } 623 624 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0) | flags; 625 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 626 pte); 627 } 628 629 *action = ACTION_SUBTREE; 630 return ret; 631 } 632 633 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 634 .pt_entry = xe_pt_stage_bind_entry, 635 }; 636 637 /* 638 * Default atomic expectations for different allocation scenarios are as follows: 639 * 640 * 1. Traditional API: When the VM is not in LR mode: 641 * - Device atomics are expected to function with all allocations. 642 * 643 * 2. Compute/SVM API: When the VM is in LR mode: 644 * - Device atomics are the default behavior when the bo is placed in a single region. 645 * - In all other cases device atomics will be disabled with AE=0 until an application 646 * request differently using a ioctl like madvise. 647 */ 648 static bool xe_atomic_for_vram(struct xe_vm *vm, struct xe_vma *vma) 649 { 650 if (vma->attr.atomic_access == DRM_XE_ATOMIC_CPU) 651 return false; 652 653 return true; 654 } 655 656 static bool xe_atomic_for_system(struct xe_vm *vm, struct xe_vma *vma) 657 { 658 struct xe_device *xe = vm->xe; 659 struct xe_bo *bo = xe_vma_bo(vma); 660 661 if (!xe->info.has_device_atomics_on_smem || 662 vma->attr.atomic_access == DRM_XE_ATOMIC_CPU) 663 return false; 664 665 if (vma->attr.atomic_access == DRM_XE_ATOMIC_DEVICE) 666 return true; 667 668 /* 669 * If a SMEM+LMEM allocation is backed by SMEM, a device 670 * atomics will cause a gpu page fault and which then 671 * gets migrated to LMEM, bind such allocations with 672 * device atomics enabled. 673 */ 674 return (!IS_DGFX(xe) || (!xe_vm_in_lr_mode(vm) || 675 (bo && xe_bo_has_single_placement(bo)))); 676 } 677 678 /** 679 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 680 * range. 681 * @tile: The tile we're building for. 682 * @vma: The vma indicating the address range. 683 * @range: The range indicating the address range. 684 * @entries: Storage for the update entries used for connecting the tree to 685 * the main tree at commit time. 686 * @num_entries: On output contains the number of @entries used. 687 * @clear_pt: Clear the page table entries. 688 * 689 * This function builds a disconnected page-table tree for a given address 690 * range. The tree is connected to the main vm tree for the gpu using 691 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 692 * The function builds xe_vm_pgtable_update structures for already existing 693 * shared page-tables, and non-existing shared and non-shared page-tables 694 * are built and populated directly. 695 * 696 * Return 0 on success, negative error code on error. 697 */ 698 static int 699 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 700 struct xe_svm_range *range, 701 struct xe_vm_pgtable_update *entries, 702 u32 *num_entries, bool clear_pt) 703 { 704 struct xe_device *xe = tile_to_xe(tile); 705 struct xe_bo *bo = xe_vma_bo(vma); 706 struct xe_res_cursor curs; 707 struct xe_vm *vm = xe_vma_vm(vma); 708 struct xe_pt_stage_bind_walk xe_walk = { 709 .base = { 710 .ops = &xe_pt_stage_bind_ops, 711 .shifts = xe_normal_pt_shifts, 712 .max_level = XE_PT_HIGHEST_LEVEL, 713 .staging = true, 714 }, 715 .vm = vm, 716 .tile = tile, 717 .curs = &curs, 718 .va_curs_start = range ? range->base.itree.start : 719 xe_vma_start(vma), 720 .vma = vma, 721 .wupd.entries = entries, 722 .clear_pt = clear_pt, 723 }; 724 struct xe_pt *pt = vm->pt_root[tile->id]; 725 int ret; 726 727 if (range) { 728 /* Move this entire thing to xe_svm.c? */ 729 xe_svm_notifier_lock(vm); 730 if (!xe_svm_range_pages_valid(range)) { 731 xe_svm_range_debug(range, "BIND PREPARE - RETRY"); 732 xe_svm_notifier_unlock(vm); 733 return -EAGAIN; 734 } 735 if (xe_svm_range_has_dma_mapping(range)) { 736 xe_res_first_dma(range->base.pages.dma_addr, 0, 737 range->base.itree.last + 1 - range->base.itree.start, 738 &curs); 739 xe_svm_range_debug(range, "BIND PREPARE - MIXED"); 740 } else { 741 xe_assert(xe, false); 742 } 743 /* 744 * Note, when unlocking the resource cursor dma addresses may become 745 * stale, but the bind will be aborted anyway at commit time. 746 */ 747 xe_svm_notifier_unlock(vm); 748 } 749 750 xe_walk.needs_64K = (vm->flags & XE_VM_FLAG_64K); 751 if (clear_pt) 752 goto walk_pt; 753 754 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { 755 xe_walk.default_vram_pte = xe_atomic_for_vram(vm, vma) ? XE_USM_PPGTT_PTE_AE : 0; 756 xe_walk.default_system_pte = xe_atomic_for_system(vm, vma) ? 757 XE_USM_PPGTT_PTE_AE : 0; 758 } 759 760 xe_walk.default_vram_pte |= XE_PPGTT_PTE_DM; 761 xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0; 762 if (!range) 763 xe_bo_assert_held(bo); 764 765 if (!xe_vma_is_null(vma) && !range) { 766 if (xe_vma_is_userptr(vma)) 767 xe_res_first_dma(to_userptr_vma(vma)->userptr.pages.dma_addr, 0, 768 xe_vma_size(vma), &curs); 769 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 770 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 771 xe_vma_size(vma), &curs); 772 else 773 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 774 xe_vma_size(vma), &curs); 775 } else if (!range) { 776 curs.size = xe_vma_size(vma); 777 } 778 779 walk_pt: 780 ret = xe_pt_walk_range(&pt->base, pt->level, 781 range ? range->base.itree.start : xe_vma_start(vma), 782 range ? range->base.itree.last + 1 : xe_vma_end(vma), 783 &xe_walk.base); 784 785 *num_entries = xe_walk.wupd.num_used_entries; 786 return ret; 787 } 788 789 /** 790 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 791 * shared pagetable. 792 * @addr: The start address within the non-shared pagetable. 793 * @end: The end address within the non-shared pagetable. 794 * @level: The level of the non-shared pagetable. 795 * @walk: Walk info. The function adjusts the walk action. 796 * @action: next action to perform (see enum page_walk_action) 797 * @offset: Ignored on input, First non-shared entry on output. 798 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 799 * 800 * A non-shared page-table has some entries that belong to the address range 801 * and others that don't. This function determines the entries that belong 802 * fully to the address range. Depending on level, some entries may 803 * partially belong to the address range (that can't happen at level 0). 804 * The function detects that and adjust those offsets to not include those 805 * partial entries. Iff it does detect partial entries, we know that there must 806 * be shared page tables also at lower levels, so it adjusts the walk action 807 * accordingly. 808 * 809 * Return: true if there were non-shared entries, false otherwise. 810 */ 811 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 812 struct xe_pt_walk *walk, 813 enum page_walk_action *action, 814 pgoff_t *offset, pgoff_t *end_offset) 815 { 816 u64 size = 1ull << walk->shifts[level]; 817 818 *offset = xe_pt_offset(addr, level, walk); 819 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 820 821 if (!level) 822 return true; 823 824 /* 825 * If addr or next are not size aligned, there are shared pts at lower 826 * level, so in that case traverse down the subtree 827 */ 828 *action = ACTION_CONTINUE; 829 if (!IS_ALIGNED(addr, size)) { 830 *action = ACTION_SUBTREE; 831 (*offset)++; 832 } 833 834 if (!IS_ALIGNED(end, size)) { 835 *action = ACTION_SUBTREE; 836 (*end_offset)--; 837 } 838 839 return *end_offset > *offset; 840 } 841 842 struct xe_pt_zap_ptes_walk { 843 /** @base: The walk base-class */ 844 struct xe_pt_walk base; 845 846 /* Input parameters for the walk */ 847 /** @tile: The tile we're building for */ 848 struct xe_tile *tile; 849 850 /* Output */ 851 /** @needs_invalidate: Whether we need to invalidate TLB*/ 852 bool needs_invalidate; 853 }; 854 855 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 856 unsigned int level, u64 addr, u64 next, 857 struct xe_ptw **child, 858 enum page_walk_action *action, 859 struct xe_pt_walk *walk) 860 { 861 struct xe_pt_zap_ptes_walk *xe_walk = 862 container_of(walk, typeof(*xe_walk), base); 863 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 864 pgoff_t end_offset; 865 866 XE_WARN_ON(!*child); 867 XE_WARN_ON(!level); 868 869 /* 870 * Note that we're called from an entry callback, and we're dealing 871 * with the child of that entry rather than the parent, so need to 872 * adjust level down. 873 */ 874 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 875 &end_offset)) { 876 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 877 offset * sizeof(u64), 0, 878 (end_offset - offset) * sizeof(u64)); 879 xe_walk->needs_invalidate = true; 880 } 881 882 return 0; 883 } 884 885 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 886 .pt_entry = xe_pt_zap_ptes_entry, 887 }; 888 889 /** 890 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 891 * @tile: The tile we're zapping for. 892 * @vma: GPU VMA detailing address range. 893 * 894 * Eviction and Userptr invalidation needs to be able to zap the 895 * gpu ptes of a given address range in pagefaulting mode. 896 * In order to be able to do that, that function needs access to the shared 897 * page-table entrieaso it can either clear the leaf PTEs or 898 * clear the pointers to lower-level page-tables. The caller is required 899 * to hold the necessary locks to ensure neither the page-table connectivity 900 * nor the page-table entries of the range is updated from under us. 901 * 902 * Return: Whether ptes were actually updated and a TLB invalidation is 903 * required. 904 */ 905 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 906 { 907 struct xe_pt_zap_ptes_walk xe_walk = { 908 .base = { 909 .ops = &xe_pt_zap_ptes_ops, 910 .shifts = xe_normal_pt_shifts, 911 .max_level = XE_PT_HIGHEST_LEVEL, 912 }, 913 .tile = tile, 914 }; 915 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 916 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); 917 918 if (xe_vma_bo(vma)) 919 xe_bo_assert_held(xe_vma_bo(vma)); 920 else if (xe_vma_is_userptr(vma)) 921 lockdep_assert_held(&xe_vma_vm(vma)->svm.gpusvm.notifier_lock); 922 923 if (!(pt_mask & BIT(tile->id))) 924 return false; 925 926 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 927 xe_vma_end(vma), &xe_walk.base); 928 929 return xe_walk.needs_invalidate; 930 } 931 932 /** 933 * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range 934 * @tile: The tile we're zapping for. 935 * @vm: The VM we're zapping for. 936 * @range: The SVM range we're zapping for. 937 * 938 * SVM invalidation needs to be able to zap the gpu ptes of a given address 939 * range. In order to be able to do that, that function needs access to the 940 * shared page-table entries so it can either clear the leaf PTEs or 941 * clear the pointers to lower-level page-tables. The caller is required 942 * to hold the SVM notifier lock. 943 * 944 * Return: Whether ptes were actually updated and a TLB invalidation is 945 * required. 946 */ 947 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm, 948 struct xe_svm_range *range) 949 { 950 struct xe_pt_zap_ptes_walk xe_walk = { 951 .base = { 952 .ops = &xe_pt_zap_ptes_ops, 953 .shifts = xe_normal_pt_shifts, 954 .max_level = XE_PT_HIGHEST_LEVEL, 955 }, 956 .tile = tile, 957 }; 958 struct xe_pt *pt = vm->pt_root[tile->id]; 959 u8 pt_mask = (range->tile_present & ~range->tile_invalidated); 960 961 /* 962 * Locking rules: 963 * 964 * - notifier_lock (write): full protection against page table changes 965 * and MMU notifier invalidations. 966 * 967 * - notifier_lock (read) + vm_lock (write): combined protection against 968 * invalidations and concurrent page table modifications. (e.g., madvise) 969 * 970 */ 971 lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 0) || 972 (lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) && 973 lockdep_is_held_type(&vm->lock, 0))); 974 975 if (!(pt_mask & BIT(tile->id))) 976 return false; 977 978 (void)xe_pt_walk_shared(&pt->base, pt->level, range->base.itree.start, 979 range->base.itree.last + 1, &xe_walk.base); 980 981 return xe_walk.needs_invalidate; 982 } 983 984 static void 985 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 986 struct iosys_map *map, void *data, 987 u32 qword_ofs, u32 num_qwords, 988 const struct xe_vm_pgtable_update *update) 989 { 990 struct xe_pt_entry *ptes = update->pt_entries; 991 u64 *ptr = data; 992 u32 i; 993 994 for (i = 0; i < num_qwords; i++) { 995 if (map) 996 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 997 sizeof(u64), u64, ptes[i].pte); 998 else 999 ptr[i] = ptes[i].pte; 1000 } 1001 } 1002 1003 static void xe_pt_cancel_bind(struct xe_vma *vma, 1004 struct xe_vm_pgtable_update *entries, 1005 u32 num_entries) 1006 { 1007 u32 i, j; 1008 1009 for (i = 0; i < num_entries; i++) { 1010 struct xe_pt *pt = entries[i].pt; 1011 1012 if (!pt) 1013 continue; 1014 1015 if (pt->level) { 1016 for (j = 0; j < entries[i].qwords; j++) 1017 xe_pt_destroy(entries[i].pt_entries[j].pt, 1018 xe_vma_vm(vma)->flags, NULL); 1019 } 1020 1021 kfree(entries[i].pt_entries); 1022 entries[i].pt_entries = NULL; 1023 entries[i].qwords = 0; 1024 } 1025 } 1026 1027 #define XE_INVALID_VMA ((struct xe_vma *)(0xdeaddeadull)) 1028 1029 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma) 1030 { 1031 struct xe_vm *vm; 1032 1033 if (vma == XE_INVALID_VMA) 1034 return; 1035 1036 vm = xe_vma_vm(vma); 1037 lockdep_assert_held(&vm->lock); 1038 1039 if (!xe_vma_has_no_bo(vma)) 1040 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 1041 1042 xe_vm_assert_held(vm); 1043 } 1044 1045 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 1046 { 1047 struct xe_vm *vm; 1048 1049 if (vma == XE_INVALID_VMA) 1050 return; 1051 1052 vm = xe_vma_vm(vma); 1053 xe_pt_commit_prepare_locks_assert(vma); 1054 1055 if (xe_vma_is_userptr(vma)) 1056 xe_svm_assert_held_read(vm); 1057 } 1058 1059 static void xe_pt_commit(struct xe_vma *vma, 1060 struct xe_vm_pgtable_update *entries, 1061 u32 num_entries, struct llist_head *deferred) 1062 { 1063 u32 i, j; 1064 1065 xe_pt_commit_locks_assert(vma); 1066 1067 for (i = 0; i < num_entries; i++) { 1068 struct xe_pt *pt = entries[i].pt; 1069 struct xe_pt_dir *pt_dir; 1070 1071 if (!pt->level) 1072 continue; 1073 1074 pt_dir = as_xe_pt_dir(pt); 1075 for (j = 0; j < entries[i].qwords; j++) { 1076 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1077 int j_ = j + entries[i].ofs; 1078 1079 pt_dir->children[j_] = pt_dir->staging[j_]; 1080 xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 : 1081 xe_vma_vm(vma)->flags, deferred); 1082 } 1083 } 1084 } 1085 1086 static void xe_pt_abort_bind(struct xe_vma *vma, 1087 struct xe_vm_pgtable_update *entries, 1088 u32 num_entries, bool rebind) 1089 { 1090 int i, j; 1091 1092 xe_pt_commit_prepare_locks_assert(vma); 1093 1094 for (i = num_entries - 1; i >= 0; --i) { 1095 struct xe_pt *pt = entries[i].pt; 1096 struct xe_pt_dir *pt_dir; 1097 1098 if (!rebind) 1099 pt->num_live -= entries[i].qwords; 1100 1101 if (!pt->level) 1102 continue; 1103 1104 pt_dir = as_xe_pt_dir(pt); 1105 for (j = 0; j < entries[i].qwords; j++) { 1106 u32 j_ = j + entries[i].ofs; 1107 struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_); 1108 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1109 1110 pt_dir->staging[j_] = oldpte ? &oldpte->base : 0; 1111 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL); 1112 } 1113 } 1114 } 1115 1116 static void xe_pt_commit_prepare_bind(struct xe_vma *vma, 1117 struct xe_vm_pgtable_update *entries, 1118 u32 num_entries, bool rebind) 1119 { 1120 u32 i, j; 1121 1122 xe_pt_commit_prepare_locks_assert(vma); 1123 1124 for (i = 0; i < num_entries; i++) { 1125 struct xe_pt *pt = entries[i].pt; 1126 struct xe_pt_dir *pt_dir; 1127 1128 if (!rebind) 1129 pt->num_live += entries[i].qwords; 1130 1131 if (!pt->level) 1132 continue; 1133 1134 pt_dir = as_xe_pt_dir(pt); 1135 for (j = 0; j < entries[i].qwords; j++) { 1136 u32 j_ = j + entries[i].ofs; 1137 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 1138 struct xe_pt *oldpte = NULL; 1139 1140 if (xe_pt_entry_staging(pt_dir, j_)) 1141 oldpte = xe_pt_entry_staging(pt_dir, j_); 1142 1143 pt_dir->staging[j_] = &newpte->base; 1144 entries[i].pt_entries[j].pt = oldpte; 1145 } 1146 } 1147 } 1148 1149 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries, 1150 u32 num_entries) 1151 { 1152 u32 i; 1153 1154 for (i = 0; i < num_entries; i++) 1155 kfree(entries[i].pt_entries); 1156 } 1157 1158 static int 1159 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 1160 struct xe_svm_range *range, 1161 struct xe_vm_pgtable_update *entries, 1162 u32 *num_entries, bool invalidate_on_bind) 1163 { 1164 int err; 1165 1166 *num_entries = 0; 1167 err = xe_pt_stage_bind(tile, vma, range, entries, num_entries, 1168 invalidate_on_bind); 1169 if (!err) 1170 xe_tile_assert(tile, *num_entries); 1171 1172 return err; 1173 } 1174 1175 static void xe_vm_dbg_print_entries(struct xe_device *xe, 1176 const struct xe_vm_pgtable_update *entries, 1177 unsigned int num_entries, bool bind) 1178 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1179 { 1180 unsigned int i; 1181 1182 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind", 1183 num_entries); 1184 for (i = 0; i < num_entries; i++) { 1185 const struct xe_vm_pgtable_update *entry = &entries[i]; 1186 struct xe_pt *xe_pt = entry->pt; 1187 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1188 u64 end; 1189 u64 start; 1190 1191 xe_assert(xe, !entry->pt->is_compact); 1192 start = entry->ofs * page_size; 1193 end = start + page_size * entry->qwords; 1194 vm_dbg(&xe->drm, 1195 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1196 i, xe_pt->level, entry->ofs, entry->qwords, 1197 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1198 } 1199 } 1200 #else 1201 {} 1202 #endif 1203 1204 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs) 1205 { 1206 int i; 1207 1208 for (i = 0; i < num_syncs; i++) { 1209 struct dma_fence *fence = syncs[i].fence; 1210 1211 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1212 &fence->flags)) 1213 return false; 1214 } 1215 1216 return true; 1217 } 1218 1219 static int job_test_add_deps(struct xe_sched_job *job, 1220 struct dma_resv *resv, 1221 enum dma_resv_usage usage) 1222 { 1223 if (!job) { 1224 if (!dma_resv_test_signaled(resv, usage)) 1225 return -ETIME; 1226 1227 return 0; 1228 } 1229 1230 return xe_sched_job_add_deps(job, resv, usage); 1231 } 1232 1233 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job) 1234 { 1235 struct xe_bo *bo = xe_vma_bo(vma); 1236 1237 xe_bo_assert_held(bo); 1238 1239 if (bo && !bo->vm) 1240 return job_test_add_deps(job, bo->ttm.base.resv, 1241 DMA_RESV_USAGE_KERNEL); 1242 1243 return 0; 1244 } 1245 1246 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op, 1247 struct xe_sched_job *job) 1248 { 1249 int err = 0; 1250 1251 /* 1252 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a 1253 * NOP if VMA is_cpu_addr_mirror 1254 */ 1255 1256 switch (op->base.op) { 1257 case DRM_GPUVA_OP_MAP: 1258 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1259 break; 1260 1261 err = vma_add_deps(op->map.vma, job); 1262 break; 1263 case DRM_GPUVA_OP_REMAP: 1264 if (op->remap.prev) 1265 err = vma_add_deps(op->remap.prev, job); 1266 if (!err && op->remap.next) 1267 err = vma_add_deps(op->remap.next, job); 1268 break; 1269 case DRM_GPUVA_OP_UNMAP: 1270 break; 1271 case DRM_GPUVA_OP_PREFETCH: 1272 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job); 1273 break; 1274 case DRM_GPUVA_OP_DRIVER: 1275 break; 1276 default: 1277 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1278 } 1279 1280 return err; 1281 } 1282 1283 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 1284 struct xe_tlb_inval_job *ijob, 1285 struct xe_tlb_inval_job *mjob, 1286 struct xe_vm *vm, 1287 struct xe_vma_ops *vops, 1288 struct xe_vm_pgtable_update_ops *pt_update_ops, 1289 struct xe_range_fence_tree *rftree) 1290 { 1291 struct xe_range_fence *rtfence; 1292 struct dma_fence *fence; 1293 struct xe_vma_op *op; 1294 int err = 0, i; 1295 1296 xe_vm_assert_held(vm); 1297 1298 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs)) 1299 return -ETIME; 1300 1301 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q)) 1302 return -ETIME; 1303 1304 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) { 1305 err = job_test_add_deps(job, xe_vm_resv(vm), 1306 pt_update_ops->wait_vm_bookkeep ? 1307 DMA_RESV_USAGE_BOOKKEEP : 1308 DMA_RESV_USAGE_KERNEL); 1309 if (err) 1310 return err; 1311 } 1312 1313 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start, 1314 pt_update_ops->last); 1315 while (rtfence) { 1316 fence = rtfence->fence; 1317 1318 if (!dma_fence_is_signaled(fence)) { 1319 /* 1320 * Is this a CPU update? GPU is busy updating, so return 1321 * an error 1322 */ 1323 if (!job) 1324 return -ETIME; 1325 1326 dma_fence_get(fence); 1327 err = drm_sched_job_add_dependency(&job->drm, fence); 1328 if (err) 1329 return err; 1330 } 1331 1332 rtfence = xe_range_fence_tree_next(rtfence, 1333 pt_update_ops->start, 1334 pt_update_ops->last); 1335 } 1336 1337 list_for_each_entry(op, &vops->list, link) { 1338 err = op_add_deps(vm, op, job); 1339 if (err) 1340 return err; 1341 } 1342 1343 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) { 1344 if (job) 1345 err = xe_sched_job_last_fence_add_dep(job, vm); 1346 else 1347 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm); 1348 } 1349 1350 for (i = 0; job && !err && i < vops->num_syncs; i++) 1351 err = xe_sync_entry_add_deps(&vops->syncs[i], job); 1352 1353 if (job) { 1354 if (ijob) { 1355 err = xe_tlb_inval_job_alloc_dep(ijob); 1356 if (err) 1357 return err; 1358 } 1359 1360 if (mjob) { 1361 err = xe_tlb_inval_job_alloc_dep(mjob); 1362 if (err) 1363 return err; 1364 } 1365 } 1366 1367 return err; 1368 } 1369 1370 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1371 { 1372 struct xe_vma_ops *vops = pt_update->vops; 1373 struct xe_vm *vm = vops->vm; 1374 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id]; 1375 struct xe_vm_pgtable_update_ops *pt_update_ops = 1376 &vops->pt_update_ops[pt_update->tile_id]; 1377 1378 return xe_pt_vm_dependencies(pt_update->job, pt_update->ijob, 1379 pt_update->mjob, vm, pt_update->vops, 1380 pt_update_ops, rftree); 1381 } 1382 1383 #if IS_ENABLED(CONFIG_DRM_GPUSVM) 1384 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1385 1386 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1387 { 1388 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 1389 static u32 count; 1390 1391 if (count++ % divisor == divisor - 1) { 1392 uvma->userptr.divisor = divisor << 1; 1393 return true; 1394 } 1395 1396 return false; 1397 } 1398 1399 #else 1400 1401 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1402 { 1403 return false; 1404 } 1405 1406 #endif 1407 1408 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma, 1409 struct xe_vm_pgtable_update_ops *pt_update) 1410 { 1411 struct xe_userptr_vma *uvma; 1412 unsigned long notifier_seq; 1413 1414 xe_svm_assert_held_read(vm); 1415 1416 if (!xe_vma_is_userptr(vma)) 1417 return 0; 1418 1419 uvma = to_userptr_vma(vma); 1420 if (xe_pt_userptr_inject_eagain(uvma)) 1421 xe_vma_userptr_force_invalidate(uvma); 1422 1423 notifier_seq = uvma->userptr.pages.notifier_seq; 1424 1425 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1426 notifier_seq)) 1427 return 0; 1428 1429 if (xe_vm_in_fault_mode(vm)) 1430 return -EAGAIN; 1431 1432 /* 1433 * Just continue the operation since exec or rebind worker 1434 * will take care of rebinding. 1435 */ 1436 return 0; 1437 } 1438 1439 static int op_check_svm_userptr(struct xe_vm *vm, struct xe_vma_op *op, 1440 struct xe_vm_pgtable_update_ops *pt_update) 1441 { 1442 int err = 0; 1443 1444 xe_svm_assert_held_read(vm); 1445 1446 switch (op->base.op) { 1447 case DRM_GPUVA_OP_MAP: 1448 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1449 break; 1450 1451 err = vma_check_userptr(vm, op->map.vma, pt_update); 1452 break; 1453 case DRM_GPUVA_OP_REMAP: 1454 if (op->remap.prev) 1455 err = vma_check_userptr(vm, op->remap.prev, pt_update); 1456 if (!err && op->remap.next) 1457 err = vma_check_userptr(vm, op->remap.next, pt_update); 1458 break; 1459 case DRM_GPUVA_OP_UNMAP: 1460 break; 1461 case DRM_GPUVA_OP_PREFETCH: 1462 if (xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))) { 1463 struct xe_svm_range *range = op->map_range.range; 1464 unsigned long i; 1465 1466 xe_assert(vm->xe, 1467 xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))); 1468 xa_for_each(&op->prefetch_range.range, i, range) { 1469 xe_svm_range_debug(range, "PRE-COMMIT"); 1470 1471 if (!xe_svm_range_pages_valid(range)) { 1472 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1473 return -ENODATA; 1474 } 1475 } 1476 } else { 1477 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), pt_update); 1478 } 1479 break; 1480 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM) 1481 case DRM_GPUVA_OP_DRIVER: 1482 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 1483 struct xe_svm_range *range = op->map_range.range; 1484 1485 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 1486 1487 xe_svm_range_debug(range, "PRE-COMMIT"); 1488 1489 if (!xe_svm_range_pages_valid(range)) { 1490 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1491 return -EAGAIN; 1492 } 1493 } 1494 break; 1495 #endif 1496 default: 1497 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1498 } 1499 1500 return err; 1501 } 1502 1503 static int xe_pt_svm_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1504 { 1505 struct xe_vm *vm = pt_update->vops->vm; 1506 struct xe_vma_ops *vops = pt_update->vops; 1507 struct xe_vm_pgtable_update_ops *pt_update_ops = 1508 &vops->pt_update_ops[pt_update->tile_id]; 1509 struct xe_vma_op *op; 1510 int err; 1511 1512 err = xe_pt_pre_commit(pt_update); 1513 if (err) 1514 return err; 1515 1516 xe_svm_notifier_lock(vm); 1517 1518 list_for_each_entry(op, &vops->list, link) { 1519 err = op_check_svm_userptr(vm, op, pt_update_ops); 1520 if (err) { 1521 xe_svm_notifier_unlock(vm); 1522 break; 1523 } 1524 } 1525 1526 return err; 1527 } 1528 #endif 1529 1530 struct xe_pt_stage_unbind_walk { 1531 /** @base: The pagewalk base-class. */ 1532 struct xe_pt_walk base; 1533 1534 /* Input parameters for the walk */ 1535 /** @tile: The tile we're unbinding from. */ 1536 struct xe_tile *tile; 1537 1538 /** 1539 * @modified_start: Walk range start, modified to include any 1540 * shared pagetables that we're the only user of and can thus 1541 * treat as private. 1542 */ 1543 u64 modified_start; 1544 /** @modified_end: Walk range start, modified like @modified_start. */ 1545 u64 modified_end; 1546 1547 /* Output */ 1548 /* @wupd: Structure to track the page-table updates we're building */ 1549 struct xe_walk_update wupd; 1550 }; 1551 1552 /* 1553 * Check whether this range is the only one populating this pagetable, 1554 * and in that case, update the walk range checks so that higher levels don't 1555 * view us as a shared pagetable. 1556 */ 1557 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1558 const struct xe_pt *child, 1559 enum page_walk_action *action, 1560 struct xe_pt_walk *walk) 1561 { 1562 struct xe_pt_stage_unbind_walk *xe_walk = 1563 container_of(walk, typeof(*xe_walk), base); 1564 unsigned int shift = walk->shifts[level]; 1565 u64 size = 1ull << shift; 1566 1567 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1568 ((next - addr) >> shift) == child->num_live) { 1569 u64 size = 1ull << walk->shifts[level + 1]; 1570 1571 *action = ACTION_CONTINUE; 1572 1573 if (xe_walk->modified_start >= addr) 1574 xe_walk->modified_start = round_down(addr, size); 1575 if (xe_walk->modified_end <= next) 1576 xe_walk->modified_end = round_up(next, size); 1577 1578 return true; 1579 } 1580 1581 return false; 1582 } 1583 1584 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1585 unsigned int level, u64 addr, u64 next, 1586 struct xe_ptw **child, 1587 enum page_walk_action *action, 1588 struct xe_pt_walk *walk) 1589 { 1590 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1591 1592 XE_WARN_ON(!*child); 1593 XE_WARN_ON(!level); 1594 1595 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1596 1597 return 0; 1598 } 1599 1600 static int 1601 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1602 unsigned int level, u64 addr, u64 next, 1603 struct xe_ptw **child, 1604 enum page_walk_action *action, 1605 struct xe_pt_walk *walk) 1606 { 1607 struct xe_pt_stage_unbind_walk *xe_walk = 1608 container_of(walk, typeof(*xe_walk), base); 1609 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1610 pgoff_t end_offset; 1611 u64 size = 1ull << walk->shifts[--level]; 1612 int err; 1613 1614 if (!IS_ALIGNED(addr, size)) 1615 addr = xe_walk->modified_start; 1616 if (!IS_ALIGNED(next, size)) 1617 next = xe_walk->modified_end; 1618 1619 /* Parent == *child is the root pt. Don't kill it. */ 1620 if (parent != *child && 1621 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1622 return 0; 1623 1624 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1625 &end_offset)) 1626 return 0; 1627 1628 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true); 1629 if (err) 1630 return err; 1631 1632 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1633 1634 return 0; 1635 } 1636 1637 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1638 .pt_entry = xe_pt_stage_unbind_entry, 1639 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1640 }; 1641 1642 /** 1643 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1644 * operation 1645 * @tile: The tile we're unbinding for. 1646 * @vm: The vm 1647 * @vma: The vma we're unbinding. 1648 * @range: The range we're unbinding. 1649 * @entries: Caller-provided storage for the update structures. 1650 * 1651 * Builds page-table update structures for an unbind operation. The function 1652 * will attempt to remove all page-tables that we're the only user 1653 * of, and for that to work, the unbind operation must be committed in the 1654 * same critical section that blocks racing binds to the same page-table tree. 1655 * 1656 * Return: The number of entries used. 1657 */ 1658 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, 1659 struct xe_vm *vm, 1660 struct xe_vma *vma, 1661 struct xe_svm_range *range, 1662 struct xe_vm_pgtable_update *entries) 1663 { 1664 u64 start = range ? range->base.itree.start : xe_vma_start(vma); 1665 u64 end = range ? range->base.itree.last + 1 : xe_vma_end(vma); 1666 struct xe_pt_stage_unbind_walk xe_walk = { 1667 .base = { 1668 .ops = &xe_pt_stage_unbind_ops, 1669 .shifts = xe_normal_pt_shifts, 1670 .max_level = XE_PT_HIGHEST_LEVEL, 1671 .staging = true, 1672 }, 1673 .tile = tile, 1674 .modified_start = start, 1675 .modified_end = end, 1676 .wupd.entries = entries, 1677 }; 1678 struct xe_pt *pt = vm->pt_root[tile->id]; 1679 1680 (void)xe_pt_walk_shared(&pt->base, pt->level, start, end, 1681 &xe_walk.base); 1682 1683 return xe_walk.wupd.num_used_entries; 1684 } 1685 1686 static void 1687 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1688 struct xe_tile *tile, struct iosys_map *map, 1689 void *ptr, u32 qword_ofs, u32 num_qwords, 1690 const struct xe_vm_pgtable_update *update) 1691 { 1692 struct xe_vm *vm = pt_update->vops->vm; 1693 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level); 1694 int i; 1695 1696 if (map && map->is_iomem) 1697 for (i = 0; i < num_qwords; ++i) 1698 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1699 sizeof(u64), u64, empty); 1700 else if (map) 1701 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1702 num_qwords); 1703 else 1704 memset64(ptr, empty, num_qwords); 1705 } 1706 1707 static void xe_pt_abort_unbind(struct xe_vma *vma, 1708 struct xe_vm_pgtable_update *entries, 1709 u32 num_entries) 1710 { 1711 int i, j; 1712 1713 xe_pt_commit_prepare_locks_assert(vma); 1714 1715 for (i = num_entries - 1; i >= 0; --i) { 1716 struct xe_vm_pgtable_update *entry = &entries[i]; 1717 struct xe_pt *pt = entry->pt; 1718 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1719 1720 pt->num_live += entry->qwords; 1721 1722 if (!pt->level) 1723 continue; 1724 1725 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) 1726 pt_dir->staging[j] = 1727 entries[i].pt_entries[j - entry->ofs].pt ? 1728 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL; 1729 } 1730 } 1731 1732 static void 1733 xe_pt_commit_prepare_unbind(struct xe_vma *vma, 1734 struct xe_vm_pgtable_update *entries, 1735 u32 num_entries) 1736 { 1737 int i, j; 1738 1739 xe_pt_commit_prepare_locks_assert(vma); 1740 1741 for (i = 0; i < num_entries; ++i) { 1742 struct xe_vm_pgtable_update *entry = &entries[i]; 1743 struct xe_pt *pt = entry->pt; 1744 struct xe_pt_dir *pt_dir; 1745 1746 pt->num_live -= entry->qwords; 1747 if (!pt->level) 1748 continue; 1749 1750 pt_dir = as_xe_pt_dir(pt); 1751 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) { 1752 entry->pt_entries[j - entry->ofs].pt = 1753 xe_pt_entry_staging(pt_dir, j); 1754 pt_dir->staging[j] = NULL; 1755 } 1756 } 1757 } 1758 1759 static void 1760 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops, 1761 u64 start, u64 end) 1762 { 1763 u64 last; 1764 u32 current_op = pt_update_ops->current_op; 1765 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1766 int i, level = 0; 1767 1768 for (i = 0; i < pt_op->num_entries; i++) { 1769 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i]; 1770 1771 if (entry->pt->level > level) 1772 level = entry->pt->level; 1773 } 1774 1775 /* Greedy (non-optimal) calculation but simple */ 1776 start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level)); 1777 last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1; 1778 1779 if (start < pt_update_ops->start) 1780 pt_update_ops->start = start; 1781 if (last > pt_update_ops->last) 1782 pt_update_ops->last = last; 1783 } 1784 1785 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma) 1786 { 1787 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0; 1788 1789 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1790 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1791 xe->info.tile_count << shift); 1792 1793 return 0; 1794 } 1795 1796 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile, 1797 struct xe_vm_pgtable_update_ops *pt_update_ops, 1798 struct xe_vma *vma, bool invalidate_on_bind) 1799 { 1800 u32 current_op = pt_update_ops->current_op; 1801 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1802 int err; 1803 1804 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1805 xe_bo_assert_held(xe_vma_bo(vma)); 1806 1807 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1808 "Preparing bind, with range [%llx...%llx)\n", 1809 xe_vma_start(vma), xe_vma_end(vma) - 1); 1810 1811 pt_op->vma = NULL; 1812 pt_op->bind = true; 1813 pt_op->rebind = BIT(tile->id) & vma->tile_present; 1814 1815 err = vma_reserve_fences(tile_to_xe(tile), vma); 1816 if (err) 1817 return err; 1818 1819 err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries, 1820 &pt_op->num_entries, invalidate_on_bind); 1821 if (!err) { 1822 xe_tile_assert(tile, pt_op->num_entries <= 1823 ARRAY_SIZE(pt_op->entries)); 1824 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1825 pt_op->num_entries, true); 1826 1827 xe_pt_update_ops_rfence_interval(pt_update_ops, 1828 xe_vma_start(vma), 1829 xe_vma_end(vma)); 1830 ++pt_update_ops->current_op; 1831 pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma); 1832 1833 /* 1834 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1835 * cached PTEs point to freed memory. On LR vms this is done 1836 * automatically when the context is re-enabled by the rebind worker, 1837 * or in fault mode it was invalidated on PTE zapping. 1838 * 1839 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1840 * PTE is already cached in the TLB so it needs to be invalidated. 1841 * On !LR VMs this is done in the ring ops preceding a batch, but on 1842 * LR, in particular on user-space batch buffer chaining, it needs to 1843 * be done here. 1844 */ 1845 if ((!pt_op->rebind && xe_vm_has_scratch(vm) && 1846 xe_vm_in_lr_mode(vm))) 1847 pt_update_ops->needs_invalidation = true; 1848 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm)) 1849 /* We bump also if batch_invalidate_tlb is true */ 1850 vm->tlb_flush_seqno++; 1851 1852 vma->tile_staged |= BIT(tile->id); 1853 pt_op->vma = vma; 1854 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1855 pt_op->num_entries, pt_op->rebind); 1856 } else { 1857 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1858 } 1859 1860 return err; 1861 } 1862 1863 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile, 1864 struct xe_vm_pgtable_update_ops *pt_update_ops, 1865 struct xe_vma *vma, struct xe_svm_range *range) 1866 { 1867 u32 current_op = pt_update_ops->current_op; 1868 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1869 int err; 1870 1871 xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma)); 1872 1873 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1874 "Preparing bind, with range [%lx...%lx)\n", 1875 range->base.itree.start, range->base.itree.last); 1876 1877 pt_op->vma = NULL; 1878 pt_op->bind = true; 1879 pt_op->rebind = BIT(tile->id) & range->tile_present; 1880 1881 err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries, 1882 &pt_op->num_entries, false); 1883 if (!err) { 1884 xe_tile_assert(tile, pt_op->num_entries <= 1885 ARRAY_SIZE(pt_op->entries)); 1886 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1887 pt_op->num_entries, true); 1888 1889 xe_pt_update_ops_rfence_interval(pt_update_ops, 1890 range->base.itree.start, 1891 range->base.itree.last + 1); 1892 ++pt_update_ops->current_op; 1893 pt_update_ops->needs_svm_lock = true; 1894 1895 pt_op->vma = vma; 1896 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1897 pt_op->num_entries, pt_op->rebind); 1898 } else { 1899 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1900 } 1901 1902 return err; 1903 } 1904 1905 static int unbind_op_prepare(struct xe_tile *tile, 1906 struct xe_vm_pgtable_update_ops *pt_update_ops, 1907 struct xe_vma *vma) 1908 { 1909 u32 current_op = pt_update_ops->current_op; 1910 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1911 int err; 1912 1913 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id))) 1914 return 0; 1915 1916 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1917 xe_bo_assert_held(xe_vma_bo(vma)); 1918 1919 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1920 "Preparing unbind, with range [%llx...%llx)\n", 1921 xe_vma_start(vma), xe_vma_end(vma) - 1); 1922 1923 pt_op->vma = vma; 1924 pt_op->bind = false; 1925 pt_op->rebind = false; 1926 1927 err = vma_reserve_fences(tile_to_xe(tile), vma); 1928 if (err) 1929 return err; 1930 1931 pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma), 1932 vma, NULL, pt_op->entries); 1933 1934 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1935 pt_op->num_entries, false); 1936 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma), 1937 xe_vma_end(vma)); 1938 ++pt_update_ops->current_op; 1939 pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma); 1940 pt_update_ops->needs_invalidation = true; 1941 1942 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries); 1943 1944 return 0; 1945 } 1946 1947 static bool 1948 xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op *pt_op, 1949 struct xe_svm_range *range) 1950 { 1951 struct xe_vm_pgtable_update *update = pt_op->entries; 1952 1953 XE_WARN_ON(!pt_op->num_entries); 1954 1955 /* 1956 * We can't skip the invalidation if we are removing PTEs that span more 1957 * than the range, do some checks to ensure we are removing PTEs that 1958 * are invalid. 1959 */ 1960 1961 if (pt_op->num_entries > 1) 1962 return false; 1963 1964 if (update->pt->level == 0) 1965 return true; 1966 1967 if (update->pt->level == 1) 1968 return xe_svm_range_size(range) >= SZ_2M; 1969 1970 return false; 1971 } 1972 1973 static int unbind_range_prepare(struct xe_vm *vm, 1974 struct xe_tile *tile, 1975 struct xe_vm_pgtable_update_ops *pt_update_ops, 1976 struct xe_svm_range *range) 1977 { 1978 u32 current_op = pt_update_ops->current_op; 1979 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1980 1981 if (!(range->tile_present & BIT(tile->id))) 1982 return 0; 1983 1984 vm_dbg(&vm->xe->drm, 1985 "Preparing unbind, with range [%lx...%lx)\n", 1986 range->base.itree.start, range->base.itree.last); 1987 1988 pt_op->vma = XE_INVALID_VMA; 1989 pt_op->bind = false; 1990 pt_op->rebind = false; 1991 1992 pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range, 1993 pt_op->entries); 1994 1995 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1996 pt_op->num_entries, false); 1997 xe_pt_update_ops_rfence_interval(pt_update_ops, range->base.itree.start, 1998 range->base.itree.last + 1); 1999 ++pt_update_ops->current_op; 2000 pt_update_ops->needs_svm_lock = true; 2001 pt_update_ops->needs_invalidation |= xe_vm_has_scratch(vm) || 2002 xe_vm_has_valid_gpu_mapping(tile, range->tile_present, 2003 range->tile_invalidated) || 2004 !xe_pt_op_check_range_skip_invalidation(pt_op, range); 2005 2006 xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries, 2007 pt_op->num_entries); 2008 2009 return 0; 2010 } 2011 2012 static int op_prepare(struct xe_vm *vm, 2013 struct xe_tile *tile, 2014 struct xe_vm_pgtable_update_ops *pt_update_ops, 2015 struct xe_vma_op *op) 2016 { 2017 int err = 0; 2018 2019 xe_vm_assert_held(vm); 2020 2021 switch (op->base.op) { 2022 case DRM_GPUVA_OP_MAP: 2023 if ((!op->map.immediate && xe_vm_in_fault_mode(vm) && 2024 !op->map.invalidate_on_bind) || 2025 op->map.is_cpu_addr_mirror) 2026 break; 2027 2028 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma, 2029 op->map.invalidate_on_bind); 2030 pt_update_ops->wait_vm_kernel = true; 2031 break; 2032 case DRM_GPUVA_OP_REMAP: 2033 { 2034 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2035 2036 if (xe_vma_is_cpu_addr_mirror(old)) 2037 break; 2038 2039 err = unbind_op_prepare(tile, pt_update_ops, old); 2040 2041 if (!err && op->remap.prev) { 2042 err = bind_op_prepare(vm, tile, pt_update_ops, 2043 op->remap.prev, false); 2044 pt_update_ops->wait_vm_bookkeep = true; 2045 } 2046 if (!err && op->remap.next) { 2047 err = bind_op_prepare(vm, tile, pt_update_ops, 2048 op->remap.next, false); 2049 pt_update_ops->wait_vm_bookkeep = true; 2050 } 2051 break; 2052 } 2053 case DRM_GPUVA_OP_UNMAP: 2054 { 2055 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2056 2057 if (xe_vma_is_cpu_addr_mirror(vma)) 2058 break; 2059 2060 err = unbind_op_prepare(tile, pt_update_ops, vma); 2061 break; 2062 } 2063 case DRM_GPUVA_OP_PREFETCH: 2064 { 2065 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2066 2067 if (xe_vma_is_cpu_addr_mirror(vma)) { 2068 struct xe_svm_range *range; 2069 unsigned long i; 2070 2071 xa_for_each(&op->prefetch_range.range, i, range) { 2072 err = bind_range_prepare(vm, tile, pt_update_ops, 2073 vma, range); 2074 if (err) 2075 return err; 2076 } 2077 } else { 2078 err = bind_op_prepare(vm, tile, pt_update_ops, vma, false); 2079 pt_update_ops->wait_vm_kernel = true; 2080 } 2081 break; 2082 } 2083 case DRM_GPUVA_OP_DRIVER: 2084 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 2085 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 2086 2087 err = bind_range_prepare(vm, tile, pt_update_ops, 2088 op->map_range.vma, 2089 op->map_range.range); 2090 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) { 2091 err = unbind_range_prepare(vm, tile, pt_update_ops, 2092 op->unmap_range.range); 2093 } 2094 break; 2095 default: 2096 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2097 } 2098 2099 return err; 2100 } 2101 2102 static void 2103 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops) 2104 { 2105 init_llist_head(&pt_update_ops->deferred); 2106 pt_update_ops->start = ~0x0ull; 2107 pt_update_ops->last = 0x0ull; 2108 } 2109 2110 /** 2111 * xe_pt_update_ops_prepare() - Prepare PT update operations 2112 * @tile: Tile of PT update operations 2113 * @vops: VMA operationa 2114 * 2115 * Prepare PT update operations which includes updating internal PT state, 2116 * allocate memory for page tables, populate page table being pruned in, and 2117 * create PT update operations for leaf insertion / removal. 2118 * 2119 * Return: 0 on success, negative error code on error. 2120 */ 2121 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops) 2122 { 2123 struct xe_vm_pgtable_update_ops *pt_update_ops = 2124 &vops->pt_update_ops[tile->id]; 2125 struct xe_vma_op *op; 2126 int shift = tile->media_gt ? 1 : 0; 2127 int err; 2128 2129 lockdep_assert_held(&vops->vm->lock); 2130 xe_vm_assert_held(vops->vm); 2131 2132 xe_pt_update_ops_init(pt_update_ops); 2133 2134 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm), 2135 tile_to_xe(tile)->info.tile_count << shift); 2136 if (err) 2137 return err; 2138 2139 list_for_each_entry(op, &vops->list, link) { 2140 err = op_prepare(vops->vm, tile, pt_update_ops, op); 2141 2142 if (err) 2143 return err; 2144 } 2145 2146 xe_tile_assert(tile, pt_update_ops->current_op <= 2147 pt_update_ops->num_ops); 2148 2149 #ifdef TEST_VM_OPS_ERROR 2150 if (vops->inject_error && 2151 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE) 2152 return -ENOSPC; 2153 #endif 2154 2155 return 0; 2156 } 2157 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO); 2158 2159 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2160 struct xe_vm_pgtable_update_ops *pt_update_ops, 2161 struct xe_vma *vma, struct dma_fence *fence, 2162 struct dma_fence *fence2, bool invalidate_on_bind) 2163 { 2164 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2165 2166 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2167 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2168 pt_update_ops->wait_vm_bookkeep ? 2169 DMA_RESV_USAGE_KERNEL : 2170 DMA_RESV_USAGE_BOOKKEEP); 2171 if (fence2) 2172 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2173 pt_update_ops->wait_vm_bookkeep ? 2174 DMA_RESV_USAGE_KERNEL : 2175 DMA_RESV_USAGE_BOOKKEEP); 2176 } 2177 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2178 WRITE_ONCE(vma->tile_present, vma->tile_present | BIT(tile->id)); 2179 if (invalidate_on_bind) 2180 WRITE_ONCE(vma->tile_invalidated, 2181 vma->tile_invalidated | BIT(tile->id)); 2182 else 2183 WRITE_ONCE(vma->tile_invalidated, 2184 vma->tile_invalidated & ~BIT(tile->id)); 2185 vma->tile_staged &= ~BIT(tile->id); 2186 if (xe_vma_is_userptr(vma)) { 2187 xe_svm_assert_held_read(vm); 2188 to_userptr_vma(vma)->userptr.initial_bind = true; 2189 } 2190 2191 /* 2192 * Kick rebind worker if this bind triggers preempt fences and not in 2193 * the rebind worker 2194 */ 2195 if (pt_update_ops->wait_vm_bookkeep && 2196 xe_vm_in_preempt_fence_mode(vm) && 2197 !current->mm) 2198 xe_vm_queue_rebind_worker(vm); 2199 } 2200 2201 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2202 struct xe_vm_pgtable_update_ops *pt_update_ops, 2203 struct xe_vma *vma, struct dma_fence *fence, 2204 struct dma_fence *fence2) 2205 { 2206 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2207 2208 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2209 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2210 pt_update_ops->wait_vm_bookkeep ? 2211 DMA_RESV_USAGE_KERNEL : 2212 DMA_RESV_USAGE_BOOKKEEP); 2213 if (fence2) 2214 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2215 pt_update_ops->wait_vm_bookkeep ? 2216 DMA_RESV_USAGE_KERNEL : 2217 DMA_RESV_USAGE_BOOKKEEP); 2218 } 2219 vma->tile_present &= ~BIT(tile->id); 2220 if (!vma->tile_present) { 2221 list_del_init(&vma->combined_links.rebind); 2222 if (xe_vma_is_userptr(vma)) { 2223 xe_svm_assert_held_read(vm); 2224 2225 spin_lock(&vm->userptr.invalidated_lock); 2226 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 2227 spin_unlock(&vm->userptr.invalidated_lock); 2228 } 2229 } 2230 } 2231 2232 static void range_present_and_invalidated_tile(struct xe_vm *vm, 2233 struct xe_svm_range *range, 2234 u8 tile_id) 2235 { 2236 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2237 2238 lockdep_assert_held(&vm->svm.gpusvm.notifier_lock); 2239 2240 WRITE_ONCE(range->tile_present, range->tile_present | BIT(tile_id)); 2241 WRITE_ONCE(range->tile_invalidated, range->tile_invalidated & ~BIT(tile_id)); 2242 } 2243 2244 static void op_commit(struct xe_vm *vm, 2245 struct xe_tile *tile, 2246 struct xe_vm_pgtable_update_ops *pt_update_ops, 2247 struct xe_vma_op *op, struct dma_fence *fence, 2248 struct dma_fence *fence2) 2249 { 2250 xe_vm_assert_held(vm); 2251 2252 switch (op->base.op) { 2253 case DRM_GPUVA_OP_MAP: 2254 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) || 2255 op->map.is_cpu_addr_mirror) 2256 break; 2257 2258 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence, 2259 fence2, op->map.invalidate_on_bind); 2260 break; 2261 case DRM_GPUVA_OP_REMAP: 2262 { 2263 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2264 2265 if (xe_vma_is_cpu_addr_mirror(old)) 2266 break; 2267 2268 unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2); 2269 2270 if (op->remap.prev) 2271 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev, 2272 fence, fence2, false); 2273 if (op->remap.next) 2274 bind_op_commit(vm, tile, pt_update_ops, op->remap.next, 2275 fence, fence2, false); 2276 break; 2277 } 2278 case DRM_GPUVA_OP_UNMAP: 2279 { 2280 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2281 2282 if (!xe_vma_is_cpu_addr_mirror(vma)) 2283 unbind_op_commit(vm, tile, pt_update_ops, vma, fence, 2284 fence2); 2285 break; 2286 } 2287 case DRM_GPUVA_OP_PREFETCH: 2288 { 2289 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2290 2291 if (xe_vma_is_cpu_addr_mirror(vma)) { 2292 struct xe_svm_range *range = NULL; 2293 unsigned long i; 2294 2295 xa_for_each(&op->prefetch_range.range, i, range) 2296 range_present_and_invalidated_tile(vm, range, tile->id); 2297 } else { 2298 bind_op_commit(vm, tile, pt_update_ops, vma, fence, 2299 fence2, false); 2300 } 2301 break; 2302 } 2303 case DRM_GPUVA_OP_DRIVER: 2304 { 2305 /* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2306 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) 2307 range_present_and_invalidated_tile(vm, op->map_range.range, tile->id); 2308 else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) 2309 WRITE_ONCE(op->unmap_range.range->tile_present, 2310 op->unmap_range.range->tile_present & 2311 ~BIT(tile->id)); 2312 2313 break; 2314 } 2315 default: 2316 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2317 } 2318 } 2319 2320 static const struct xe_migrate_pt_update_ops migrate_ops = { 2321 .populate = xe_vm_populate_pgtable, 2322 .clear = xe_migrate_clear_pgtable_callback, 2323 .pre_commit = xe_pt_pre_commit, 2324 }; 2325 2326 #if IS_ENABLED(CONFIG_DRM_GPUSVM) 2327 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops = { 2328 .populate = xe_vm_populate_pgtable, 2329 .clear = xe_migrate_clear_pgtable_callback, 2330 .pre_commit = xe_pt_svm_userptr_pre_commit, 2331 }; 2332 #else 2333 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops; 2334 #endif 2335 2336 static struct xe_dep_scheduler *to_dep_scheduler(struct xe_exec_queue *q, 2337 struct xe_gt *gt) 2338 { 2339 if (xe_gt_is_media_type(gt)) 2340 return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT].dep_scheduler; 2341 2342 return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT].dep_scheduler; 2343 } 2344 2345 /** 2346 * xe_pt_update_ops_run() - Run PT update operations 2347 * @tile: Tile of PT update operations 2348 * @vops: VMA operationa 2349 * 2350 * Run PT update operations which includes committing internal PT state changes, 2351 * creating job for PT update operations for leaf insertion / removal, and 2352 * installing job fence in various places. 2353 * 2354 * Return: fence on success, negative ERR_PTR on error. 2355 */ 2356 struct dma_fence * 2357 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops) 2358 { 2359 struct xe_vm *vm = vops->vm; 2360 struct xe_vm_pgtable_update_ops *pt_update_ops = 2361 &vops->pt_update_ops[tile->id]; 2362 struct dma_fence *fence, *ifence, *mfence; 2363 struct xe_tlb_inval_job *ijob = NULL, *mjob = NULL; 2364 struct dma_fence **fences = NULL; 2365 struct dma_fence_array *cf = NULL; 2366 struct xe_range_fence *rfence; 2367 struct xe_vma_op *op; 2368 int err = 0, i; 2369 struct xe_migrate_pt_update update = { 2370 .ops = pt_update_ops->needs_svm_lock ? 2371 &svm_userptr_migrate_ops : 2372 &migrate_ops, 2373 .vops = vops, 2374 .tile_id = tile->id, 2375 }; 2376 2377 lockdep_assert_held(&vm->lock); 2378 xe_vm_assert_held(vm); 2379 2380 if (!pt_update_ops->current_op) { 2381 xe_tile_assert(tile, xe_vm_in_fault_mode(vm)); 2382 2383 return dma_fence_get_stub(); 2384 } 2385 2386 #ifdef TEST_VM_OPS_ERROR 2387 if (vops->inject_error && 2388 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN) 2389 return ERR_PTR(-ENOSPC); 2390 #endif 2391 2392 if (pt_update_ops->needs_invalidation) { 2393 struct xe_exec_queue *q = pt_update_ops->q; 2394 struct xe_dep_scheduler *dep_scheduler = 2395 to_dep_scheduler(q, tile->primary_gt); 2396 2397 ijob = xe_tlb_inval_job_create(q, &tile->primary_gt->tlb_inval, 2398 dep_scheduler, 2399 pt_update_ops->start, 2400 pt_update_ops->last, 2401 vm->usm.asid); 2402 if (IS_ERR(ijob)) { 2403 err = PTR_ERR(ijob); 2404 goto kill_vm_tile1; 2405 } 2406 update.ijob = ijob; 2407 2408 if (tile->media_gt) { 2409 dep_scheduler = to_dep_scheduler(q, tile->media_gt); 2410 2411 mjob = xe_tlb_inval_job_create(q, 2412 &tile->media_gt->tlb_inval, 2413 dep_scheduler, 2414 pt_update_ops->start, 2415 pt_update_ops->last, 2416 vm->usm.asid); 2417 if (IS_ERR(mjob)) { 2418 err = PTR_ERR(mjob); 2419 goto free_ijob; 2420 } 2421 update.mjob = mjob; 2422 2423 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL); 2424 if (!fences) { 2425 err = -ENOMEM; 2426 goto free_ijob; 2427 } 2428 cf = dma_fence_array_alloc(2); 2429 if (!cf) { 2430 err = -ENOMEM; 2431 goto free_ijob; 2432 } 2433 } 2434 } 2435 2436 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 2437 if (!rfence) { 2438 err = -ENOMEM; 2439 goto free_ijob; 2440 } 2441 2442 fence = xe_migrate_update_pgtables(tile->migrate, &update); 2443 if (IS_ERR(fence)) { 2444 err = PTR_ERR(fence); 2445 goto free_rfence; 2446 } 2447 2448 /* Point of no return - VM killed if failure after this */ 2449 for (i = 0; i < pt_update_ops->current_op; ++i) { 2450 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2451 2452 xe_pt_commit(pt_op->vma, pt_op->entries, 2453 pt_op->num_entries, &pt_update_ops->deferred); 2454 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */ 2455 } 2456 2457 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence, 2458 &xe_range_fence_kfree_ops, 2459 pt_update_ops->start, 2460 pt_update_ops->last, fence)) 2461 dma_fence_wait(fence, false); 2462 2463 /* tlb invalidation must be done before signaling unbind/rebind */ 2464 if (ijob) { 2465 struct dma_fence *__fence; 2466 2467 ifence = xe_tlb_inval_job_push(ijob, tile->migrate, fence); 2468 __fence = ifence; 2469 2470 if (mjob) { 2471 fences[0] = ifence; 2472 mfence = xe_tlb_inval_job_push(mjob, tile->migrate, 2473 fence); 2474 fences[1] = mfence; 2475 2476 dma_fence_array_init(cf, 2, fences, 2477 vm->composite_fence_ctx, 2478 vm->composite_fence_seqno++, 2479 false); 2480 __fence = &cf->base; 2481 } 2482 2483 dma_fence_put(fence); 2484 fence = __fence; 2485 } 2486 2487 if (!mjob) { 2488 dma_resv_add_fence(xe_vm_resv(vm), fence, 2489 pt_update_ops->wait_vm_bookkeep ? 2490 DMA_RESV_USAGE_KERNEL : 2491 DMA_RESV_USAGE_BOOKKEEP); 2492 2493 list_for_each_entry(op, &vops->list, link) 2494 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL); 2495 } else { 2496 dma_resv_add_fence(xe_vm_resv(vm), ifence, 2497 pt_update_ops->wait_vm_bookkeep ? 2498 DMA_RESV_USAGE_KERNEL : 2499 DMA_RESV_USAGE_BOOKKEEP); 2500 2501 dma_resv_add_fence(xe_vm_resv(vm), mfence, 2502 pt_update_ops->wait_vm_bookkeep ? 2503 DMA_RESV_USAGE_KERNEL : 2504 DMA_RESV_USAGE_BOOKKEEP); 2505 2506 list_for_each_entry(op, &vops->list, link) 2507 op_commit(vops->vm, tile, pt_update_ops, op, ifence, 2508 mfence); 2509 } 2510 2511 if (pt_update_ops->needs_svm_lock) 2512 xe_svm_notifier_unlock(vm); 2513 2514 xe_tlb_inval_job_put(mjob); 2515 xe_tlb_inval_job_put(ijob); 2516 2517 return fence; 2518 2519 free_rfence: 2520 kfree(rfence); 2521 free_ijob: 2522 kfree(cf); 2523 kfree(fences); 2524 xe_tlb_inval_job_put(mjob); 2525 xe_tlb_inval_job_put(ijob); 2526 kill_vm_tile1: 2527 if (err != -EAGAIN && err != -ENODATA && tile->id) 2528 xe_vm_kill(vops->vm, false); 2529 2530 return ERR_PTR(err); 2531 } 2532 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO); 2533 2534 /** 2535 * xe_pt_update_ops_fini() - Finish PT update operations 2536 * @tile: Tile of PT update operations 2537 * @vops: VMA operations 2538 * 2539 * Finish PT update operations by committing to destroy page table memory 2540 */ 2541 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops) 2542 { 2543 struct xe_vm_pgtable_update_ops *pt_update_ops = 2544 &vops->pt_update_ops[tile->id]; 2545 int i; 2546 2547 lockdep_assert_held(&vops->vm->lock); 2548 xe_vm_assert_held(vops->vm); 2549 2550 for (i = 0; i < pt_update_ops->current_op; ++i) { 2551 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2552 2553 xe_pt_free_bind(pt_op->entries, pt_op->num_entries); 2554 } 2555 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred); 2556 } 2557 2558 /** 2559 * xe_pt_update_ops_abort() - Abort PT update operations 2560 * @tile: Tile of PT update operations 2561 * @vops: VMA operationa 2562 * 2563 * Abort PT update operations by unwinding internal PT state 2564 */ 2565 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops) 2566 { 2567 struct xe_vm_pgtable_update_ops *pt_update_ops = 2568 &vops->pt_update_ops[tile->id]; 2569 int i; 2570 2571 lockdep_assert_held(&vops->vm->lock); 2572 xe_vm_assert_held(vops->vm); 2573 2574 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) { 2575 struct xe_vm_pgtable_update_op *pt_op = 2576 &pt_update_ops->ops[i]; 2577 2578 if (!pt_op->vma || i >= pt_update_ops->current_op) 2579 continue; 2580 2581 if (pt_op->bind) 2582 xe_pt_abort_bind(pt_op->vma, pt_op->entries, 2583 pt_op->num_entries, 2584 pt_op->rebind); 2585 else 2586 xe_pt_abort_unbind(pt_op->vma, pt_op->entries, 2587 pt_op->num_entries); 2588 } 2589 2590 xe_pt_update_ops_fini(tile, vops); 2591 } 2592