xref: /linux/drivers/gpu/drm/xe/xe_pt.c (revision 47cebb740a83682224654a6583a20efd9f3cfeae)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_pt.h"
7 
8 #include "regs/xe_gtt_defs.h"
9 #include "xe_bo.h"
10 #include "xe_device.h"
11 #include "xe_drm_client.h"
12 #include "xe_exec_queue.h"
13 #include "xe_gt.h"
14 #include "xe_gt_tlb_invalidation.h"
15 #include "xe_migrate.h"
16 #include "xe_pt_types.h"
17 #include "xe_pt_walk.h"
18 #include "xe_res_cursor.h"
19 #include "xe_sched_job.h"
20 #include "xe_sync.h"
21 #include "xe_trace.h"
22 #include "xe_ttm_stolen_mgr.h"
23 #include "xe_vm.h"
24 
25 struct xe_pt_dir {
26 	struct xe_pt pt;
27 	/** @children: Array of page-table child nodes */
28 	struct xe_ptw *children[XE_PDES];
29 };
30 
31 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
32 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
33 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
34 #else
35 #define xe_pt_set_addr(__xe_pt, __addr)
36 #define xe_pt_addr(__xe_pt) 0ull
37 #endif
38 
39 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
40 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
41 
42 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
43 
44 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
45 {
46 	return container_of(pt, struct xe_pt_dir, pt);
47 }
48 
49 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
50 {
51 	return container_of(pt_dir->children[index], struct xe_pt, base);
52 }
53 
54 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
55 			     unsigned int level)
56 {
57 	struct xe_device *xe = tile_to_xe(tile);
58 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
59 	u8 id = tile->id;
60 
61 	if (!xe_vm_has_scratch(vm))
62 		return 0;
63 
64 	if (level > MAX_HUGEPTE_LEVEL)
65 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
66 						 0, pat_index);
67 
68 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
69 		XE_PTE_NULL;
70 }
71 
72 static void xe_pt_free(struct xe_pt *pt)
73 {
74 	if (pt->level)
75 		kfree(as_xe_pt_dir(pt));
76 	else
77 		kfree(pt);
78 }
79 
80 /**
81  * xe_pt_create() - Create a page-table.
82  * @vm: The vm to create for.
83  * @tile: The tile to create for.
84  * @level: The page-table level.
85  *
86  * Allocate and initialize a single struct xe_pt metadata structure. Also
87  * create the corresponding page-table bo, but don't initialize it. If the
88  * level is grater than zero, then it's assumed to be a directory page-
89  * table and the directory structure is also allocated and initialized to
90  * NULL pointers.
91  *
92  * Return: A valid struct xe_pt pointer on success, Pointer error code on
93  * error.
94  */
95 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
96 			   unsigned int level)
97 {
98 	struct xe_pt *pt;
99 	struct xe_bo *bo;
100 	int err;
101 
102 	if (level) {
103 		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
104 
105 		pt = (dir) ? &dir->pt : NULL;
106 	} else {
107 		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
108 	}
109 	if (!pt)
110 		return ERR_PTR(-ENOMEM);
111 
112 	pt->level = level;
113 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
114 				  ttm_bo_type_kernel,
115 				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
116 				  XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
117 				  XE_BO_FLAG_PINNED |
118 				  XE_BO_FLAG_NO_RESV_EVICT |
119 				  XE_BO_FLAG_PAGETABLE);
120 	if (IS_ERR(bo)) {
121 		err = PTR_ERR(bo);
122 		goto err_kfree;
123 	}
124 	pt->bo = bo;
125 	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
126 
127 	if (vm->xef)
128 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
129 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
130 
131 	return pt;
132 
133 err_kfree:
134 	xe_pt_free(pt);
135 	return ERR_PTR(err);
136 }
137 
138 /**
139  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
140  * entries.
141  * @tile: The tile the scratch pagetable of which to use.
142  * @vm: The vm we populate for.
143  * @pt: The pagetable the bo of which to initialize.
144  *
145  * Populate the page-table bo of @pt with entries pointing into the tile's
146  * scratch page-table tree if any. Otherwise populate with zeros.
147  */
148 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
149 			  struct xe_pt *pt)
150 {
151 	struct iosys_map *map = &pt->bo->vmap;
152 	u64 empty;
153 	int i;
154 
155 	if (!xe_vm_has_scratch(vm)) {
156 		/*
157 		 * FIXME: Some memory is allocated already allocated to zero?
158 		 * Find out which memory that is and avoid this memset...
159 		 */
160 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
161 	} else {
162 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
163 		for (i = 0; i < XE_PDES; i++)
164 			xe_pt_write(vm->xe, map, i, empty);
165 	}
166 }
167 
168 /**
169  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
170  * a page-table at a certain level.
171  * @level: The level.
172  *
173  * Return: The ilog2 value of the size of the address range of a page-table
174  * at level @level.
175  */
176 unsigned int xe_pt_shift(unsigned int level)
177 {
178 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
179 }
180 
181 /**
182  * xe_pt_destroy() - Destroy a page-table tree.
183  * @pt: The root of the page-table tree to destroy.
184  * @flags: vm flags. Currently unused.
185  * @deferred: List head of lockless list for deferred putting. NULL for
186  *            immediate putting.
187  *
188  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
189  * and finally frees @pt. TODO: Can we remove the @flags argument?
190  */
191 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
192 {
193 	int i;
194 
195 	if (!pt)
196 		return;
197 
198 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
199 	xe_bo_unpin(pt->bo);
200 	xe_bo_put_deferred(pt->bo, deferred);
201 
202 	if (pt->level > 0 && pt->num_live) {
203 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
204 
205 		for (i = 0; i < XE_PDES; i++) {
206 			if (xe_pt_entry(pt_dir, i))
207 				xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
208 					      deferred);
209 		}
210 	}
211 	xe_pt_free(pt);
212 }
213 
214 /**
215  * DOC: Pagetable building
216  *
217  * Below we use the term "page-table" for both page-directories, containing
218  * pointers to lower level page-directories or page-tables, and level 0
219  * page-tables that contain only page-table-entries pointing to memory pages.
220  *
221  * When inserting an address range in an already existing page-table tree
222  * there will typically be a set of page-tables that are shared with other
223  * address ranges, and a set that are private to this address range.
224  * The set of shared page-tables can be at most two per level,
225  * and those can't be updated immediately because the entries of those
226  * page-tables may still be in use by the gpu for other mappings. Therefore
227  * when inserting entries into those, we instead stage those insertions by
228  * adding insertion data into struct xe_vm_pgtable_update structures. This
229  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
230  * added in a separate commit step. CPU-data is committed while still under the
231  * vm lock, the object lock and for userptr, the notifier lock in read mode.
232  * The GPU async data is committed either by the GPU or CPU after fulfilling
233  * relevant dependencies.
234  * For non-shared page-tables (and, in fact, for shared ones that aren't
235  * existing at the time of staging), we add the data in-place without the
236  * special update structures. This private part of the page-table tree will
237  * remain disconnected from the vm page-table tree until data is committed to
238  * the shared page tables of the vm tree in the commit phase.
239  */
240 
241 struct xe_pt_update {
242 	/** @update: The update structure we're building for this parent. */
243 	struct xe_vm_pgtable_update *update;
244 	/** @parent: The parent. Used to detect a parent change. */
245 	struct xe_pt *parent;
246 	/** @preexisting: Whether the parent was pre-existing or allocated */
247 	bool preexisting;
248 };
249 
250 struct xe_pt_stage_bind_walk {
251 	/** base: The base class. */
252 	struct xe_pt_walk base;
253 
254 	/* Input parameters for the walk */
255 	/** @vm: The vm we're building for. */
256 	struct xe_vm *vm;
257 	/** @tile: The tile we're building for. */
258 	struct xe_tile *tile;
259 	/** @default_pte: PTE flag only template. No address is associated */
260 	u64 default_pte;
261 	/** @dma_offset: DMA offset to add to the PTE. */
262 	u64 dma_offset;
263 	/**
264 	 * @needs_64k: This address range enforces 64K alignment and
265 	 * granularity.
266 	 */
267 	bool needs_64K;
268 	/**
269 	 * @vma: VMA being mapped
270 	 */
271 	struct xe_vma *vma;
272 
273 	/* Also input, but is updated during the walk*/
274 	/** @curs: The DMA address cursor. */
275 	struct xe_res_cursor *curs;
276 	/** @va_curs_start: The Virtual address coresponding to @curs->start */
277 	u64 va_curs_start;
278 
279 	/* Output */
280 	struct xe_walk_update {
281 		/** @wupd.entries: Caller provided storage. */
282 		struct xe_vm_pgtable_update *entries;
283 		/** @wupd.num_used_entries: Number of update @entries used. */
284 		unsigned int num_used_entries;
285 		/** @wupd.updates: Tracks the update entry at a given level */
286 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
287 	} wupd;
288 
289 	/* Walk state */
290 	/**
291 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
292 	 * 64K granularity detection.
293 	 */
294 	u64 l0_end_addr;
295 	/** @addr_64K: The start address of the current 64K chunk. */
296 	u64 addr_64K;
297 	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
298 	bool found_64K;
299 };
300 
301 static int
302 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
303 		 pgoff_t offset, bool alloc_entries)
304 {
305 	struct xe_pt_update *upd = &wupd->updates[parent->level];
306 	struct xe_vm_pgtable_update *entry;
307 
308 	/*
309 	 * For *each level*, we could only have one active
310 	 * struct xt_pt_update at any one time. Once we move on to a
311 	 * new parent and page-directory, the old one is complete, and
312 	 * updates are either already stored in the build tree or in
313 	 * @wupd->entries
314 	 */
315 	if (likely(upd->parent == parent))
316 		return 0;
317 
318 	upd->parent = parent;
319 	upd->preexisting = true;
320 
321 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
322 		return -EINVAL;
323 
324 	entry = wupd->entries + wupd->num_used_entries++;
325 	upd->update = entry;
326 	entry->ofs = offset;
327 	entry->pt_bo = parent->bo;
328 	entry->pt = parent;
329 	entry->flags = 0;
330 	entry->qwords = 0;
331 	entry->pt_bo->update_index = -1;
332 
333 	if (alloc_entries) {
334 		entry->pt_entries = kmalloc_array(XE_PDES,
335 						  sizeof(*entry->pt_entries),
336 						  GFP_KERNEL);
337 		if (!entry->pt_entries)
338 			return -ENOMEM;
339 	}
340 
341 	return 0;
342 }
343 
344 /*
345  * NOTE: This is a very frequently called function so we allow ourselves
346  * to annotate (using branch prediction hints) the fastpath of updating a
347  * non-pre-existing pagetable with leaf ptes.
348  */
349 static int
350 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
351 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
352 {
353 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
354 	struct xe_pt_update *child_upd = xe_child ?
355 		&xe_walk->wupd.updates[xe_child->level] : NULL;
356 	int ret;
357 
358 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
359 	if (unlikely(ret))
360 		return ret;
361 
362 	/*
363 	 * Register this new pagetable so that it won't be recognized as
364 	 * a shared pagetable by a subsequent insertion.
365 	 */
366 	if (unlikely(child_upd)) {
367 		child_upd->update = NULL;
368 		child_upd->parent = xe_child;
369 		child_upd->preexisting = false;
370 	}
371 
372 	if (likely(!upd->preexisting)) {
373 		/* Continue building a non-connected subtree. */
374 		struct iosys_map *map = &parent->bo->vmap;
375 
376 		if (unlikely(xe_child))
377 			parent->base.children[offset] = &xe_child->base;
378 
379 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
380 		parent->num_live++;
381 	} else {
382 		/* Shared pt. Stage update. */
383 		unsigned int idx;
384 		struct xe_vm_pgtable_update *entry = upd->update;
385 
386 		idx = offset - entry->ofs;
387 		entry->pt_entries[idx].pt = xe_child;
388 		entry->pt_entries[idx].pte = pte;
389 		entry->qwords++;
390 	}
391 
392 	return 0;
393 }
394 
395 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
396 				   struct xe_pt_stage_bind_walk *xe_walk)
397 {
398 	u64 size, dma;
399 
400 	if (level > MAX_HUGEPTE_LEVEL)
401 		return false;
402 
403 	/* Does the virtual range requested cover a huge pte? */
404 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
405 		return false;
406 
407 	/* Does the DMA segment cover the whole pte? */
408 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
409 		return false;
410 
411 	/* null VMA's do not have dma addresses */
412 	if (xe_vma_is_null(xe_walk->vma))
413 		return true;
414 
415 	/* Is the DMA address huge PTE size aligned? */
416 	size = next - addr;
417 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
418 
419 	return IS_ALIGNED(dma, size);
420 }
421 
422 /*
423  * Scan the requested mapping to check whether it can be done entirely
424  * with 64K PTEs.
425  */
426 static bool
427 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
428 {
429 	struct xe_res_cursor curs = *xe_walk->curs;
430 
431 	if (!IS_ALIGNED(addr, SZ_64K))
432 		return false;
433 
434 	if (next > xe_walk->l0_end_addr)
435 		return false;
436 
437 	/* null VMA's do not have dma addresses */
438 	if (xe_vma_is_null(xe_walk->vma))
439 		return true;
440 
441 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
442 	for (; addr < next; addr += SZ_64K) {
443 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
444 			return false;
445 
446 		xe_res_next(&curs, SZ_64K);
447 	}
448 
449 	return addr == next;
450 }
451 
452 /*
453  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
454  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
455  * device to the PTE.
456  * This function determines whether the address is part of such a
457  * segment. For VRAM in normal pagetables, this is strictly necessary on
458  * some devices.
459  */
460 static bool
461 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
462 {
463 	/* Address is within an already found 64k region */
464 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
465 		return true;
466 
467 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
468 	xe_walk->addr_64K = addr;
469 
470 	return xe_walk->found_64K;
471 }
472 
473 static int
474 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
475 		       unsigned int level, u64 addr, u64 next,
476 		       struct xe_ptw **child,
477 		       enum page_walk_action *action,
478 		       struct xe_pt_walk *walk)
479 {
480 	struct xe_pt_stage_bind_walk *xe_walk =
481 		container_of(walk, typeof(*xe_walk), base);
482 	u16 pat_index = xe_walk->vma->pat_index;
483 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
484 	struct xe_vm *vm = xe_walk->vm;
485 	struct xe_pt *xe_child;
486 	bool covers;
487 	int ret = 0;
488 	u64 pte;
489 
490 	/* Is this a leaf entry ?*/
491 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
492 		struct xe_res_cursor *curs = xe_walk->curs;
493 		bool is_null = xe_vma_is_null(xe_walk->vma);
494 
495 		XE_WARN_ON(xe_walk->va_curs_start != addr);
496 
497 		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
498 						 xe_res_dma(curs) + xe_walk->dma_offset,
499 						 xe_walk->vma, pat_index, level);
500 		pte |= xe_walk->default_pte;
501 
502 		/*
503 		 * Set the XE_PTE_PS64 hint if possible, otherwise if
504 		 * this device *requires* 64K PTE size for VRAM, fail.
505 		 */
506 		if (level == 0 && !xe_parent->is_compact) {
507 			if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
508 				xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K;
509 				pte |= XE_PTE_PS64;
510 			} else if (XE_WARN_ON(xe_walk->needs_64K)) {
511 				return -EINVAL;
512 			}
513 		}
514 
515 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
516 		if (unlikely(ret))
517 			return ret;
518 
519 		if (!is_null)
520 			xe_res_next(curs, next - addr);
521 		xe_walk->va_curs_start = next;
522 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
523 		*action = ACTION_CONTINUE;
524 
525 		return ret;
526 	}
527 
528 	/*
529 	 * Descending to lower level. Determine if we need to allocate a
530 	 * new page table or -directory, which we do if there is no
531 	 * previous one or there is one we can completely replace.
532 	 */
533 	if (level == 1) {
534 		walk->shifts = xe_normal_pt_shifts;
535 		xe_walk->l0_end_addr = next;
536 	}
537 
538 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
539 	if (covers || !*child) {
540 		u64 flags = 0;
541 
542 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
543 		if (IS_ERR(xe_child))
544 			return PTR_ERR(xe_child);
545 
546 		xe_pt_set_addr(xe_child,
547 			       round_down(addr, 1ull << walk->shifts[level]));
548 
549 		if (!covers)
550 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
551 
552 		*child = &xe_child->base;
553 
554 		/*
555 		 * Prefer the compact pagetable layout for L0 if possible. Only
556 		 * possible if VMA covers entire 2MB region as compact 64k and
557 		 * 4k pages cannot be mixed within a 2MB region.
558 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
559 		 * memory.
560 		 */
561 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
562 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
563 			walk->shifts = xe_compact_pt_shifts;
564 			xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
565 			flags |= XE_PDE_64K;
566 			xe_child->is_compact = true;
567 		}
568 
569 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
570 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
571 					 pte);
572 	}
573 
574 	*action = ACTION_SUBTREE;
575 	return ret;
576 }
577 
578 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
579 	.pt_entry = xe_pt_stage_bind_entry,
580 };
581 
582 /**
583  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
584  * range.
585  * @tile: The tile we're building for.
586  * @vma: The vma indicating the address range.
587  * @entries: Storage for the update entries used for connecting the tree to
588  * the main tree at commit time.
589  * @num_entries: On output contains the number of @entries used.
590  *
591  * This function builds a disconnected page-table tree for a given address
592  * range. The tree is connected to the main vm tree for the gpu using
593  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
594  * The function builds xe_vm_pgtable_update structures for already existing
595  * shared page-tables, and non-existing shared and non-shared page-tables
596  * are built and populated directly.
597  *
598  * Return 0 on success, negative error code on error.
599  */
600 static int
601 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
602 		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
603 {
604 	struct xe_device *xe = tile_to_xe(tile);
605 	struct xe_bo *bo = xe_vma_bo(vma);
606 	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
607 		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
608 	struct xe_res_cursor curs;
609 	struct xe_pt_stage_bind_walk xe_walk = {
610 		.base = {
611 			.ops = &xe_pt_stage_bind_ops,
612 			.shifts = xe_normal_pt_shifts,
613 			.max_level = XE_PT_HIGHEST_LEVEL,
614 		},
615 		.vm = xe_vma_vm(vma),
616 		.tile = tile,
617 		.curs = &curs,
618 		.va_curs_start = xe_vma_start(vma),
619 		.vma = vma,
620 		.wupd.entries = entries,
621 		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
622 	};
623 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
624 	int ret;
625 
626 	/**
627 	 * Default atomic expectations for different allocation scenarios are as follows:
628 	 *
629 	 * 1. Traditional API: When the VM is not in LR mode:
630 	 *    - Device atomics are expected to function with all allocations.
631 	 *
632 	 * 2. Compute/SVM API: When the VM is in LR mode:
633 	 *    - Device atomics are the default behavior when the bo is placed in a single region.
634 	 *    - In all other cases device atomics will be disabled with AE=0 until an application
635 	 *      request differently using a ioctl like madvise.
636 	 */
637 	if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
638 		if (xe_vm_in_lr_mode(xe_vma_vm(vma))) {
639 			if (bo && xe_bo_has_single_placement(bo))
640 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
641 			/**
642 			 * If a SMEM+LMEM allocation is backed by SMEM, a device
643 			 * atomics will cause a gpu page fault and which then
644 			 * gets migrated to LMEM, bind such allocations with
645 			 * device atomics enabled.
646 			 */
647 			else if (is_devmem && !xe_bo_has_single_placement(bo))
648 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
649 		} else {
650 			xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
651 		}
652 
653 		/**
654 		 * Unset AE if the platform(PVC) doesn't support it on an
655 		 * allocation
656 		 */
657 		if (!xe->info.has_device_atomics_on_smem && !is_devmem)
658 			xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE;
659 	}
660 
661 	if (is_devmem) {
662 		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
663 		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
664 	}
665 
666 	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
667 		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
668 
669 	xe_bo_assert_held(bo);
670 
671 	if (!xe_vma_is_null(vma)) {
672 		if (xe_vma_is_userptr(vma))
673 			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
674 					xe_vma_size(vma), &curs);
675 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
676 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
677 				     xe_vma_size(vma), &curs);
678 		else
679 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
680 					xe_vma_size(vma), &curs);
681 	} else {
682 		curs.size = xe_vma_size(vma);
683 	}
684 
685 	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
686 			       xe_vma_end(vma), &xe_walk.base);
687 
688 	*num_entries = xe_walk.wupd.num_used_entries;
689 	return ret;
690 }
691 
692 /**
693  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
694  * shared pagetable.
695  * @addr: The start address within the non-shared pagetable.
696  * @end: The end address within the non-shared pagetable.
697  * @level: The level of the non-shared pagetable.
698  * @walk: Walk info. The function adjusts the walk action.
699  * @action: next action to perform (see enum page_walk_action)
700  * @offset: Ignored on input, First non-shared entry on output.
701  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
702  *
703  * A non-shared page-table has some entries that belong to the address range
704  * and others that don't. This function determines the entries that belong
705  * fully to the address range. Depending on level, some entries may
706  * partially belong to the address range (that can't happen at level 0).
707  * The function detects that and adjust those offsets to not include those
708  * partial entries. Iff it does detect partial entries, we know that there must
709  * be shared page tables also at lower levels, so it adjusts the walk action
710  * accordingly.
711  *
712  * Return: true if there were non-shared entries, false otherwise.
713  */
714 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
715 				    struct xe_pt_walk *walk,
716 				    enum page_walk_action *action,
717 				    pgoff_t *offset, pgoff_t *end_offset)
718 {
719 	u64 size = 1ull << walk->shifts[level];
720 
721 	*offset = xe_pt_offset(addr, level, walk);
722 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
723 
724 	if (!level)
725 		return true;
726 
727 	/*
728 	 * If addr or next are not size aligned, there are shared pts at lower
729 	 * level, so in that case traverse down the subtree
730 	 */
731 	*action = ACTION_CONTINUE;
732 	if (!IS_ALIGNED(addr, size)) {
733 		*action = ACTION_SUBTREE;
734 		(*offset)++;
735 	}
736 
737 	if (!IS_ALIGNED(end, size)) {
738 		*action = ACTION_SUBTREE;
739 		(*end_offset)--;
740 	}
741 
742 	return *end_offset > *offset;
743 }
744 
745 struct xe_pt_zap_ptes_walk {
746 	/** @base: The walk base-class */
747 	struct xe_pt_walk base;
748 
749 	/* Input parameters for the walk */
750 	/** @tile: The tile we're building for */
751 	struct xe_tile *tile;
752 
753 	/* Output */
754 	/** @needs_invalidate: Whether we need to invalidate TLB*/
755 	bool needs_invalidate;
756 };
757 
758 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
759 				unsigned int level, u64 addr, u64 next,
760 				struct xe_ptw **child,
761 				enum page_walk_action *action,
762 				struct xe_pt_walk *walk)
763 {
764 	struct xe_pt_zap_ptes_walk *xe_walk =
765 		container_of(walk, typeof(*xe_walk), base);
766 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
767 	pgoff_t end_offset;
768 
769 	XE_WARN_ON(!*child);
770 	XE_WARN_ON(!level);
771 
772 	/*
773 	 * Note that we're called from an entry callback, and we're dealing
774 	 * with the child of that entry rather than the parent, so need to
775 	 * adjust level down.
776 	 */
777 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
778 				    &end_offset)) {
779 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
780 			      offset * sizeof(u64), 0,
781 			      (end_offset - offset) * sizeof(u64));
782 		xe_walk->needs_invalidate = true;
783 	}
784 
785 	return 0;
786 }
787 
788 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
789 	.pt_entry = xe_pt_zap_ptes_entry,
790 };
791 
792 /**
793  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
794  * @tile: The tile we're zapping for.
795  * @vma: GPU VMA detailing address range.
796  *
797  * Eviction and Userptr invalidation needs to be able to zap the
798  * gpu ptes of a given address range in pagefaulting mode.
799  * In order to be able to do that, that function needs access to the shared
800  * page-table entrieaso it can either clear the leaf PTEs or
801  * clear the pointers to lower-level page-tables. The caller is required
802  * to hold the necessary locks to ensure neither the page-table connectivity
803  * nor the page-table entries of the range is updated from under us.
804  *
805  * Return: Whether ptes were actually updated and a TLB invalidation is
806  * required.
807  */
808 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
809 {
810 	struct xe_pt_zap_ptes_walk xe_walk = {
811 		.base = {
812 			.ops = &xe_pt_zap_ptes_ops,
813 			.shifts = xe_normal_pt_shifts,
814 			.max_level = XE_PT_HIGHEST_LEVEL,
815 		},
816 		.tile = tile,
817 	};
818 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
819 	u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
820 
821 	if (!(pt_mask & BIT(tile->id)))
822 		return false;
823 
824 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
825 				xe_vma_end(vma), &xe_walk.base);
826 
827 	return xe_walk.needs_invalidate;
828 }
829 
830 static void
831 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
832 		       struct iosys_map *map, void *data,
833 		       u32 qword_ofs, u32 num_qwords,
834 		       const struct xe_vm_pgtable_update *update)
835 {
836 	struct xe_pt_entry *ptes = update->pt_entries;
837 	u64 *ptr = data;
838 	u32 i;
839 
840 	for (i = 0; i < num_qwords; i++) {
841 		if (map)
842 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
843 				  sizeof(u64), u64, ptes[i].pte);
844 		else
845 			ptr[i] = ptes[i].pte;
846 	}
847 }
848 
849 static void xe_pt_cancel_bind(struct xe_vma *vma,
850 			      struct xe_vm_pgtable_update *entries,
851 			      u32 num_entries)
852 {
853 	u32 i, j;
854 
855 	for (i = 0; i < num_entries; i++) {
856 		struct xe_pt *pt = entries[i].pt;
857 
858 		if (!pt)
859 			continue;
860 
861 		if (pt->level) {
862 			for (j = 0; j < entries[i].qwords; j++)
863 				xe_pt_destroy(entries[i].pt_entries[j].pt,
864 					      xe_vma_vm(vma)->flags, NULL);
865 		}
866 
867 		kfree(entries[i].pt_entries);
868 		entries[i].pt_entries = NULL;
869 		entries[i].qwords = 0;
870 	}
871 }
872 
873 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
874 {
875 	struct xe_vm *vm = xe_vma_vm(vma);
876 
877 	lockdep_assert_held(&vm->lock);
878 
879 	if (!xe_vma_is_userptr(vma) && !xe_vma_is_null(vma))
880 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
881 
882 	xe_vm_assert_held(vm);
883 }
884 
885 static void xe_pt_commit(struct xe_vma *vma,
886 			 struct xe_vm_pgtable_update *entries,
887 			 u32 num_entries, struct llist_head *deferred)
888 {
889 	u32 i, j;
890 
891 	xe_pt_commit_locks_assert(vma);
892 
893 	for (i = 0; i < num_entries; i++) {
894 		struct xe_pt *pt = entries[i].pt;
895 
896 		if (!pt->level)
897 			continue;
898 
899 		for (j = 0; j < entries[i].qwords; j++) {
900 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
901 
902 			xe_pt_destroy(oldpte, xe_vma_vm(vma)->flags, deferred);
903 		}
904 	}
905 }
906 
907 static void xe_pt_abort_bind(struct xe_vma *vma,
908 			     struct xe_vm_pgtable_update *entries,
909 			     u32 num_entries, bool rebind)
910 {
911 	int i, j;
912 
913 	xe_pt_commit_locks_assert(vma);
914 
915 	for (i = num_entries - 1; i >= 0; --i) {
916 		struct xe_pt *pt = entries[i].pt;
917 		struct xe_pt_dir *pt_dir;
918 
919 		if (!rebind)
920 			pt->num_live -= entries[i].qwords;
921 
922 		if (!pt->level)
923 			continue;
924 
925 		pt_dir = as_xe_pt_dir(pt);
926 		for (j = 0; j < entries[i].qwords; j++) {
927 			u32 j_ = j + entries[i].ofs;
928 			struct xe_pt *newpte = xe_pt_entry(pt_dir, j_);
929 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
930 
931 			pt_dir->children[j_] = oldpte ? &oldpte->base : 0;
932 			xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
933 		}
934 	}
935 }
936 
937 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
938 				      struct xe_vm_pgtable_update *entries,
939 				      u32 num_entries, bool rebind)
940 {
941 	u32 i, j;
942 
943 	xe_pt_commit_locks_assert(vma);
944 
945 	for (i = 0; i < num_entries; i++) {
946 		struct xe_pt *pt = entries[i].pt;
947 		struct xe_pt_dir *pt_dir;
948 
949 		if (!rebind)
950 			pt->num_live += entries[i].qwords;
951 
952 		if (!pt->level)
953 			continue;
954 
955 		pt_dir = as_xe_pt_dir(pt);
956 		for (j = 0; j < entries[i].qwords; j++) {
957 			u32 j_ = j + entries[i].ofs;
958 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
959 			struct xe_pt *oldpte = NULL;
960 
961 			if (xe_pt_entry(pt_dir, j_))
962 				oldpte = xe_pt_entry(pt_dir, j_);
963 
964 			pt_dir->children[j_] = &newpte->base;
965 			entries[i].pt_entries[j].pt = oldpte;
966 		}
967 	}
968 }
969 
970 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
971 			    u32 num_entries)
972 {
973 	u32 i;
974 
975 	for (i = 0; i < num_entries; i++)
976 		kfree(entries[i].pt_entries);
977 }
978 
979 static int
980 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
981 		   struct xe_vm_pgtable_update *entries, u32 *num_entries)
982 {
983 	int err;
984 
985 	*num_entries = 0;
986 	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
987 	if (!err)
988 		xe_tile_assert(tile, *num_entries);
989 
990 	return err;
991 }
992 
993 static void xe_vm_dbg_print_entries(struct xe_device *xe,
994 				    const struct xe_vm_pgtable_update *entries,
995 				    unsigned int num_entries, bool bind)
996 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
997 {
998 	unsigned int i;
999 
1000 	vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1001 	       num_entries);
1002 	for (i = 0; i < num_entries; i++) {
1003 		const struct xe_vm_pgtable_update *entry = &entries[i];
1004 		struct xe_pt *xe_pt = entry->pt;
1005 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1006 		u64 end;
1007 		u64 start;
1008 
1009 		xe_assert(xe, !entry->pt->is_compact);
1010 		start = entry->ofs * page_size;
1011 		end = start + page_size * entry->qwords;
1012 		vm_dbg(&xe->drm,
1013 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1014 		       i, xe_pt->level, entry->ofs, entry->qwords,
1015 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1016 	}
1017 }
1018 #else
1019 {}
1020 #endif
1021 
1022 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1023 {
1024 	int i;
1025 
1026 	for (i = 0; i < num_syncs; i++) {
1027 		struct dma_fence *fence = syncs[i].fence;
1028 
1029 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1030 				       &fence->flags))
1031 			return false;
1032 	}
1033 
1034 	return true;
1035 }
1036 
1037 static int job_test_add_deps(struct xe_sched_job *job,
1038 			     struct dma_resv *resv,
1039 			     enum dma_resv_usage usage)
1040 {
1041 	if (!job) {
1042 		if (!dma_resv_test_signaled(resv, usage))
1043 			return -ETIME;
1044 
1045 		return 0;
1046 	}
1047 
1048 	return xe_sched_job_add_deps(job, resv, usage);
1049 }
1050 
1051 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1052 {
1053 	struct xe_bo *bo = xe_vma_bo(vma);
1054 
1055 	xe_bo_assert_held(bo);
1056 
1057 	if (bo && !bo->vm)
1058 		return job_test_add_deps(job, bo->ttm.base.resv,
1059 					 DMA_RESV_USAGE_KERNEL);
1060 
1061 	return 0;
1062 }
1063 
1064 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1065 		       struct xe_sched_job *job)
1066 {
1067 	int err = 0;
1068 
1069 	switch (op->base.op) {
1070 	case DRM_GPUVA_OP_MAP:
1071 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1072 			break;
1073 
1074 		err = vma_add_deps(op->map.vma, job);
1075 		break;
1076 	case DRM_GPUVA_OP_REMAP:
1077 		if (op->remap.prev)
1078 			err = vma_add_deps(op->remap.prev, job);
1079 		if (!err && op->remap.next)
1080 			err = vma_add_deps(op->remap.next, job);
1081 		break;
1082 	case DRM_GPUVA_OP_UNMAP:
1083 		break;
1084 	case DRM_GPUVA_OP_PREFETCH:
1085 		err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1086 		break;
1087 	default:
1088 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1089 	}
1090 
1091 	return err;
1092 }
1093 
1094 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1095 				 struct xe_vm *vm,
1096 				 struct xe_vma_ops *vops,
1097 				 struct xe_vm_pgtable_update_ops *pt_update_ops,
1098 				 struct xe_range_fence_tree *rftree)
1099 {
1100 	struct xe_range_fence *rtfence;
1101 	struct dma_fence *fence;
1102 	struct xe_vma_op *op;
1103 	int err = 0, i;
1104 
1105 	xe_vm_assert_held(vm);
1106 
1107 	if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1108 		return -ETIME;
1109 
1110 	if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1111 		return -ETIME;
1112 
1113 	if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1114 		err = job_test_add_deps(job, xe_vm_resv(vm),
1115 					pt_update_ops->wait_vm_bookkeep ?
1116 					DMA_RESV_USAGE_BOOKKEEP :
1117 					DMA_RESV_USAGE_KERNEL);
1118 		if (err)
1119 			return err;
1120 	}
1121 
1122 	rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1123 					    pt_update_ops->last);
1124 	while (rtfence) {
1125 		fence = rtfence->fence;
1126 
1127 		if (!dma_fence_is_signaled(fence)) {
1128 			/*
1129 			 * Is this a CPU update? GPU is busy updating, so return
1130 			 * an error
1131 			 */
1132 			if (!job)
1133 				return -ETIME;
1134 
1135 			dma_fence_get(fence);
1136 			err = drm_sched_job_add_dependency(&job->drm, fence);
1137 			if (err)
1138 				return err;
1139 		}
1140 
1141 		rtfence = xe_range_fence_tree_next(rtfence,
1142 						   pt_update_ops->start,
1143 						   pt_update_ops->last);
1144 	}
1145 
1146 	list_for_each_entry(op, &vops->list, link) {
1147 		err = op_add_deps(vm, op, job);
1148 		if (err)
1149 			return err;
1150 	}
1151 
1152 	if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) {
1153 		if (job)
1154 			err = xe_sched_job_last_fence_add_dep(job, vm);
1155 		else
1156 			err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm);
1157 	}
1158 
1159 	for (i = 0; job && !err && i < vops->num_syncs; i++)
1160 		err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1161 
1162 	return err;
1163 }
1164 
1165 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1166 {
1167 	struct xe_vma_ops *vops = pt_update->vops;
1168 	struct xe_vm *vm = vops->vm;
1169 	struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1170 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1171 		&vops->pt_update_ops[pt_update->tile_id];
1172 
1173 	return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops,
1174 				     pt_update_ops, rftree);
1175 }
1176 
1177 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1178 
1179 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1180 {
1181 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1182 	static u32 count;
1183 
1184 	if (count++ % divisor == divisor - 1) {
1185 		uvma->userptr.divisor = divisor << 1;
1186 		return true;
1187 	}
1188 
1189 	return false;
1190 }
1191 
1192 #else
1193 
1194 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1195 {
1196 	return false;
1197 }
1198 
1199 #endif
1200 
1201 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1202 			     struct xe_vm_pgtable_update_ops *pt_update)
1203 {
1204 	struct xe_userptr_vma *uvma;
1205 	unsigned long notifier_seq;
1206 
1207 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1208 
1209 	if (!xe_vma_is_userptr(vma))
1210 		return 0;
1211 
1212 	uvma = to_userptr_vma(vma);
1213 	notifier_seq = uvma->userptr.notifier_seq;
1214 
1215 	if (uvma->userptr.initial_bind && !xe_vm_in_fault_mode(vm))
1216 		return 0;
1217 
1218 	if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1219 				     notifier_seq) &&
1220 	    !xe_pt_userptr_inject_eagain(uvma))
1221 		return 0;
1222 
1223 	if (xe_vm_in_fault_mode(vm)) {
1224 		return -EAGAIN;
1225 	} else {
1226 		spin_lock(&vm->userptr.invalidated_lock);
1227 		list_move_tail(&uvma->userptr.invalidate_link,
1228 			       &vm->userptr.invalidated);
1229 		spin_unlock(&vm->userptr.invalidated_lock);
1230 
1231 		if (xe_vm_in_preempt_fence_mode(vm)) {
1232 			struct dma_resv_iter cursor;
1233 			struct dma_fence *fence;
1234 			long err;
1235 
1236 			dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
1237 					    DMA_RESV_USAGE_BOOKKEEP);
1238 			dma_resv_for_each_fence_unlocked(&cursor, fence)
1239 				dma_fence_enable_sw_signaling(fence);
1240 			dma_resv_iter_end(&cursor);
1241 
1242 			err = dma_resv_wait_timeout(xe_vm_resv(vm),
1243 						    DMA_RESV_USAGE_BOOKKEEP,
1244 						    false, MAX_SCHEDULE_TIMEOUT);
1245 			XE_WARN_ON(err <= 0);
1246 		}
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1253 			    struct xe_vm_pgtable_update_ops *pt_update)
1254 {
1255 	int err = 0;
1256 
1257 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1258 
1259 	switch (op->base.op) {
1260 	case DRM_GPUVA_OP_MAP:
1261 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1262 			break;
1263 
1264 		err = vma_check_userptr(vm, op->map.vma, pt_update);
1265 		break;
1266 	case DRM_GPUVA_OP_REMAP:
1267 		if (op->remap.prev)
1268 			err = vma_check_userptr(vm, op->remap.prev, pt_update);
1269 		if (!err && op->remap.next)
1270 			err = vma_check_userptr(vm, op->remap.next, pt_update);
1271 		break;
1272 	case DRM_GPUVA_OP_UNMAP:
1273 		break;
1274 	case DRM_GPUVA_OP_PREFETCH:
1275 		err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va),
1276 					pt_update);
1277 		break;
1278 	default:
1279 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1280 	}
1281 
1282 	return err;
1283 }
1284 
1285 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1286 {
1287 	struct xe_vm *vm = pt_update->vops->vm;
1288 	struct xe_vma_ops *vops = pt_update->vops;
1289 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1290 		&vops->pt_update_ops[pt_update->tile_id];
1291 	struct xe_vma_op *op;
1292 	int err;
1293 
1294 	err = xe_pt_pre_commit(pt_update);
1295 	if (err)
1296 		return err;
1297 
1298 	down_read(&vm->userptr.notifier_lock);
1299 
1300 	list_for_each_entry(op, &vops->list, link) {
1301 		err = op_check_userptr(vm, op, pt_update_ops);
1302 		if (err) {
1303 			up_read(&vm->userptr.notifier_lock);
1304 			break;
1305 		}
1306 	}
1307 
1308 	return err;
1309 }
1310 
1311 struct invalidation_fence {
1312 	struct xe_gt_tlb_invalidation_fence base;
1313 	struct xe_gt *gt;
1314 	struct dma_fence *fence;
1315 	struct dma_fence_cb cb;
1316 	struct work_struct work;
1317 	u64 start;
1318 	u64 end;
1319 	u32 asid;
1320 };
1321 
1322 static void invalidation_fence_cb(struct dma_fence *fence,
1323 				  struct dma_fence_cb *cb)
1324 {
1325 	struct invalidation_fence *ifence =
1326 		container_of(cb, struct invalidation_fence, cb);
1327 	struct xe_device *xe = gt_to_xe(ifence->gt);
1328 
1329 	trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base);
1330 	if (!ifence->fence->error) {
1331 		queue_work(system_wq, &ifence->work);
1332 	} else {
1333 		ifence->base.base.error = ifence->fence->error;
1334 		dma_fence_signal(&ifence->base.base);
1335 		dma_fence_put(&ifence->base.base);
1336 	}
1337 	dma_fence_put(ifence->fence);
1338 }
1339 
1340 static void invalidation_fence_work_func(struct work_struct *w)
1341 {
1342 	struct invalidation_fence *ifence =
1343 		container_of(w, struct invalidation_fence, work);
1344 	struct xe_device *xe = gt_to_xe(ifence->gt);
1345 
1346 	trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base);
1347 	xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start,
1348 				     ifence->end, ifence->asid);
1349 }
1350 
1351 static void invalidation_fence_init(struct xe_gt *gt,
1352 				    struct invalidation_fence *ifence,
1353 				    struct dma_fence *fence,
1354 				    u64 start, u64 end, u32 asid)
1355 {
1356 	int ret;
1357 
1358 	trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base);
1359 
1360 	xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false);
1361 
1362 	ifence->fence = fence;
1363 	ifence->gt = gt;
1364 	ifence->start = start;
1365 	ifence->end = end;
1366 	ifence->asid = asid;
1367 
1368 	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1369 	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1370 	if (ret == -ENOENT) {
1371 		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1372 		invalidation_fence_work_func(&ifence->work);
1373 	} else if (ret) {
1374 		dma_fence_put(&ifence->base.base);	/* Caller ref */
1375 		dma_fence_put(&ifence->base.base);	/* Creation ref */
1376 	}
1377 
1378 	xe_gt_assert(gt, !ret || ret == -ENOENT);
1379 }
1380 
1381 struct xe_pt_stage_unbind_walk {
1382 	/** @base: The pagewalk base-class. */
1383 	struct xe_pt_walk base;
1384 
1385 	/* Input parameters for the walk */
1386 	/** @tile: The tile we're unbinding from. */
1387 	struct xe_tile *tile;
1388 
1389 	/**
1390 	 * @modified_start: Walk range start, modified to include any
1391 	 * shared pagetables that we're the only user of and can thus
1392 	 * treat as private.
1393 	 */
1394 	u64 modified_start;
1395 	/** @modified_end: Walk range start, modified like @modified_start. */
1396 	u64 modified_end;
1397 
1398 	/* Output */
1399 	/* @wupd: Structure to track the page-table updates we're building */
1400 	struct xe_walk_update wupd;
1401 };
1402 
1403 /*
1404  * Check whether this range is the only one populating this pagetable,
1405  * and in that case, update the walk range checks so that higher levels don't
1406  * view us as a shared pagetable.
1407  */
1408 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1409 			     const struct xe_pt *child,
1410 			     enum page_walk_action *action,
1411 			     struct xe_pt_walk *walk)
1412 {
1413 	struct xe_pt_stage_unbind_walk *xe_walk =
1414 		container_of(walk, typeof(*xe_walk), base);
1415 	unsigned int shift = walk->shifts[level];
1416 	u64 size = 1ull << shift;
1417 
1418 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1419 	    ((next - addr) >> shift) == child->num_live) {
1420 		u64 size = 1ull << walk->shifts[level + 1];
1421 
1422 		*action = ACTION_CONTINUE;
1423 
1424 		if (xe_walk->modified_start >= addr)
1425 			xe_walk->modified_start = round_down(addr, size);
1426 		if (xe_walk->modified_end <= next)
1427 			xe_walk->modified_end = round_up(next, size);
1428 
1429 		return true;
1430 	}
1431 
1432 	return false;
1433 }
1434 
1435 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1436 				    unsigned int level, u64 addr, u64 next,
1437 				    struct xe_ptw **child,
1438 				    enum page_walk_action *action,
1439 				    struct xe_pt_walk *walk)
1440 {
1441 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1442 
1443 	XE_WARN_ON(!*child);
1444 	XE_WARN_ON(!level);
1445 
1446 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1447 
1448 	return 0;
1449 }
1450 
1451 static int
1452 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1453 				unsigned int level, u64 addr, u64 next,
1454 				struct xe_ptw **child,
1455 				enum page_walk_action *action,
1456 				struct xe_pt_walk *walk)
1457 {
1458 	struct xe_pt_stage_unbind_walk *xe_walk =
1459 		container_of(walk, typeof(*xe_walk), base);
1460 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1461 	pgoff_t end_offset;
1462 	u64 size = 1ull << walk->shifts[--level];
1463 	int err;
1464 
1465 	if (!IS_ALIGNED(addr, size))
1466 		addr = xe_walk->modified_start;
1467 	if (!IS_ALIGNED(next, size))
1468 		next = xe_walk->modified_end;
1469 
1470 	/* Parent == *child is the root pt. Don't kill it. */
1471 	if (parent != *child &&
1472 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1473 		return 0;
1474 
1475 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1476 				     &end_offset))
1477 		return 0;
1478 
1479 	err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1480 	if (err)
1481 		return err;
1482 
1483 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1484 
1485 	return 0;
1486 }
1487 
1488 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1489 	.pt_entry = xe_pt_stage_unbind_entry,
1490 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1491 };
1492 
1493 /**
1494  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1495  * operation
1496  * @tile: The tile we're unbinding for.
1497  * @vma: The vma we're unbinding.
1498  * @entries: Caller-provided storage for the update structures.
1499  *
1500  * Builds page-table update structures for an unbind operation. The function
1501  * will attempt to remove all page-tables that we're the only user
1502  * of, and for that to work, the unbind operation must be committed in the
1503  * same critical section that blocks racing binds to the same page-table tree.
1504  *
1505  * Return: The number of entries used.
1506  */
1507 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1508 				       struct xe_vm_pgtable_update *entries)
1509 {
1510 	struct xe_pt_stage_unbind_walk xe_walk = {
1511 		.base = {
1512 			.ops = &xe_pt_stage_unbind_ops,
1513 			.shifts = xe_normal_pt_shifts,
1514 			.max_level = XE_PT_HIGHEST_LEVEL,
1515 		},
1516 		.tile = tile,
1517 		.modified_start = xe_vma_start(vma),
1518 		.modified_end = xe_vma_end(vma),
1519 		.wupd.entries = entries,
1520 	};
1521 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1522 
1523 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1524 				xe_vma_end(vma), &xe_walk.base);
1525 
1526 	return xe_walk.wupd.num_used_entries;
1527 }
1528 
1529 static void
1530 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1531 				  struct xe_tile *tile, struct iosys_map *map,
1532 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1533 				  const struct xe_vm_pgtable_update *update)
1534 {
1535 	struct xe_vm *vm = pt_update->vops->vm;
1536 	u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1537 	int i;
1538 
1539 	if (map && map->is_iomem)
1540 		for (i = 0; i < num_qwords; ++i)
1541 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1542 				  sizeof(u64), u64, empty);
1543 	else if (map)
1544 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1545 			 num_qwords);
1546 	else
1547 		memset64(ptr, empty, num_qwords);
1548 }
1549 
1550 static void xe_pt_abort_unbind(struct xe_vma *vma,
1551 			       struct xe_vm_pgtable_update *entries,
1552 			       u32 num_entries)
1553 {
1554 	int i, j;
1555 
1556 	xe_pt_commit_locks_assert(vma);
1557 
1558 	for (i = num_entries - 1; i >= 0; --i) {
1559 		struct xe_vm_pgtable_update *entry = &entries[i];
1560 		struct xe_pt *pt = entry->pt;
1561 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1562 
1563 		pt->num_live += entry->qwords;
1564 
1565 		if (!pt->level)
1566 			continue;
1567 
1568 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1569 			pt_dir->children[j] =
1570 				entries[i].pt_entries[j - entry->ofs].pt ?
1571 				&entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1572 	}
1573 }
1574 
1575 static void
1576 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1577 			    struct xe_vm_pgtable_update *entries,
1578 			    u32 num_entries)
1579 {
1580 	int i, j;
1581 
1582 	xe_pt_commit_locks_assert(vma);
1583 
1584 	for (i = 0; i < num_entries; ++i) {
1585 		struct xe_vm_pgtable_update *entry = &entries[i];
1586 		struct xe_pt *pt = entry->pt;
1587 		struct xe_pt_dir *pt_dir;
1588 
1589 		pt->num_live -= entry->qwords;
1590 		if (!pt->level)
1591 			continue;
1592 
1593 		pt_dir = as_xe_pt_dir(pt);
1594 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1595 			entry->pt_entries[j - entry->ofs].pt =
1596 				xe_pt_entry(pt_dir, j);
1597 			pt_dir->children[j] = NULL;
1598 		}
1599 	}
1600 }
1601 
1602 static void
1603 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1604 				 struct xe_vma *vma)
1605 {
1606 	u32 current_op = pt_update_ops->current_op;
1607 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1608 	int i, level = 0;
1609 	u64 start, last;
1610 
1611 	for (i = 0; i < pt_op->num_entries; i++) {
1612 		const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1613 
1614 		if (entry->pt->level > level)
1615 			level = entry->pt->level;
1616 	}
1617 
1618 	/* Greedy (non-optimal) calculation but simple */
1619 	start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level));
1620 	last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1;
1621 
1622 	if (start < pt_update_ops->start)
1623 		pt_update_ops->start = start;
1624 	if (last > pt_update_ops->last)
1625 		pt_update_ops->last = last;
1626 }
1627 
1628 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1629 {
1630 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1631 		return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1632 					       xe->info.tile_count);
1633 
1634 	return 0;
1635 }
1636 
1637 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1638 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1639 			   struct xe_vma *vma)
1640 {
1641 	u32 current_op = pt_update_ops->current_op;
1642 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1643 	int err;
1644 
1645 	xe_bo_assert_held(xe_vma_bo(vma));
1646 
1647 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1648 	       "Preparing bind, with range [%llx...%llx)\n",
1649 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1650 
1651 	pt_op->vma = NULL;
1652 	pt_op->bind = true;
1653 	pt_op->rebind = BIT(tile->id) & vma->tile_present;
1654 
1655 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1656 	if (err)
1657 		return err;
1658 
1659 	err = xe_pt_prepare_bind(tile, vma, pt_op->entries,
1660 				 &pt_op->num_entries);
1661 	if (!err) {
1662 		xe_tile_assert(tile, pt_op->num_entries <=
1663 			       ARRAY_SIZE(pt_op->entries));
1664 		xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1665 					pt_op->num_entries, true);
1666 
1667 		xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1668 		++pt_update_ops->current_op;
1669 		pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1670 
1671 		/*
1672 		 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1673 		 * cached PTEs point to freed memory. On LR vms this is done
1674 		 * automatically when the context is re-enabled by the rebind worker,
1675 		 * or in fault mode it was invalidated on PTE zapping.
1676 		 *
1677 		 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1678 		 * PTE is already cached in the TLB so it needs to be invalidated.
1679 		 * On !LR VMs this is done in the ring ops preceding a batch, but on
1680 		 * non-faulting LR, in particular on user-space batch buffer chaining,
1681 		 * it needs to be done here.
1682 		 */
1683 		if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1684 		     xe_vm_in_preempt_fence_mode(vm)))
1685 			pt_update_ops->needs_invalidation = true;
1686 		else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1687 			/* We bump also if batch_invalidate_tlb is true */
1688 			vm->tlb_flush_seqno++;
1689 
1690 		vma->tile_staged |= BIT(tile->id);
1691 		pt_op->vma = vma;
1692 		xe_pt_commit_prepare_bind(vma, pt_op->entries,
1693 					  pt_op->num_entries, pt_op->rebind);
1694 	} else {
1695 		xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1696 	}
1697 
1698 	return err;
1699 }
1700 
1701 static int unbind_op_prepare(struct xe_tile *tile,
1702 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1703 			     struct xe_vma *vma)
1704 {
1705 	u32 current_op = pt_update_ops->current_op;
1706 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1707 	int err;
1708 
1709 	if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1710 		return 0;
1711 
1712 	xe_bo_assert_held(xe_vma_bo(vma));
1713 
1714 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1715 	       "Preparing unbind, with range [%llx...%llx)\n",
1716 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1717 
1718 	/*
1719 	 * Wait for invalidation to complete. Can corrupt internal page table
1720 	 * state if an invalidation is running while preparing an unbind.
1721 	 */
1722 	if (xe_vma_is_userptr(vma) && xe_vm_in_fault_mode(xe_vma_vm(vma)))
1723 		mmu_interval_read_begin(&to_userptr_vma(vma)->userptr.notifier);
1724 
1725 	pt_op->vma = vma;
1726 	pt_op->bind = false;
1727 	pt_op->rebind = false;
1728 
1729 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1730 	if (err)
1731 		return err;
1732 
1733 	pt_op->num_entries = xe_pt_stage_unbind(tile, vma, pt_op->entries);
1734 
1735 	xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1736 				pt_op->num_entries, false);
1737 	xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1738 	++pt_update_ops->current_op;
1739 	pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1740 	pt_update_ops->needs_invalidation = true;
1741 
1742 	xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1743 
1744 	return 0;
1745 }
1746 
1747 static int op_prepare(struct xe_vm *vm,
1748 		      struct xe_tile *tile,
1749 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1750 		      struct xe_vma_op *op)
1751 {
1752 	int err = 0;
1753 
1754 	xe_vm_assert_held(vm);
1755 
1756 	switch (op->base.op) {
1757 	case DRM_GPUVA_OP_MAP:
1758 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1759 			break;
1760 
1761 		err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma);
1762 		pt_update_ops->wait_vm_kernel = true;
1763 		break;
1764 	case DRM_GPUVA_OP_REMAP:
1765 		err = unbind_op_prepare(tile, pt_update_ops,
1766 					gpuva_to_vma(op->base.remap.unmap->va));
1767 
1768 		if (!err && op->remap.prev) {
1769 			err = bind_op_prepare(vm, tile, pt_update_ops,
1770 					      op->remap.prev);
1771 			pt_update_ops->wait_vm_bookkeep = true;
1772 		}
1773 		if (!err && op->remap.next) {
1774 			err = bind_op_prepare(vm, tile, pt_update_ops,
1775 					      op->remap.next);
1776 			pt_update_ops->wait_vm_bookkeep = true;
1777 		}
1778 		break;
1779 	case DRM_GPUVA_OP_UNMAP:
1780 		err = unbind_op_prepare(tile, pt_update_ops,
1781 					gpuva_to_vma(op->base.unmap.va));
1782 		break;
1783 	case DRM_GPUVA_OP_PREFETCH:
1784 		err = bind_op_prepare(vm, tile, pt_update_ops,
1785 				      gpuva_to_vma(op->base.prefetch.va));
1786 		pt_update_ops->wait_vm_kernel = true;
1787 		break;
1788 	default:
1789 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1790 	}
1791 
1792 	return err;
1793 }
1794 
1795 static void
1796 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
1797 {
1798 	init_llist_head(&pt_update_ops->deferred);
1799 	pt_update_ops->start = ~0x0ull;
1800 	pt_update_ops->last = 0x0ull;
1801 }
1802 
1803 /**
1804  * xe_pt_update_ops_prepare() - Prepare PT update operations
1805  * @tile: Tile of PT update operations
1806  * @vops: VMA operationa
1807  *
1808  * Prepare PT update operations which includes updating internal PT state,
1809  * allocate memory for page tables, populate page table being pruned in, and
1810  * create PT update operations for leaf insertion / removal.
1811  *
1812  * Return: 0 on success, negative error code on error.
1813  */
1814 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
1815 {
1816 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1817 		&vops->pt_update_ops[tile->id];
1818 	struct xe_vma_op *op;
1819 	int err;
1820 
1821 	lockdep_assert_held(&vops->vm->lock);
1822 	xe_vm_assert_held(vops->vm);
1823 
1824 	xe_pt_update_ops_init(pt_update_ops);
1825 
1826 	err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
1827 				      tile_to_xe(tile)->info.tile_count);
1828 	if (err)
1829 		return err;
1830 
1831 	list_for_each_entry(op, &vops->list, link) {
1832 		err = op_prepare(vops->vm, tile, pt_update_ops, op);
1833 
1834 		if (err)
1835 			return err;
1836 	}
1837 
1838 	xe_tile_assert(tile, pt_update_ops->current_op <=
1839 		       pt_update_ops->num_ops);
1840 
1841 #ifdef TEST_VM_OPS_ERROR
1842 	if (vops->inject_error &&
1843 	    vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
1844 		return -ENOSPC;
1845 #endif
1846 
1847 	return 0;
1848 }
1849 
1850 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1851 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1852 			   struct xe_vma *vma, struct dma_fence *fence)
1853 {
1854 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1855 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1856 				   pt_update_ops->wait_vm_bookkeep ?
1857 				   DMA_RESV_USAGE_KERNEL :
1858 				   DMA_RESV_USAGE_BOOKKEEP);
1859 	vma->tile_present |= BIT(tile->id);
1860 	vma->tile_staged &= ~BIT(tile->id);
1861 	if (xe_vma_is_userptr(vma)) {
1862 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
1863 		to_userptr_vma(vma)->userptr.initial_bind = true;
1864 	}
1865 
1866 	/*
1867 	 * Kick rebind worker if this bind triggers preempt fences and not in
1868 	 * the rebind worker
1869 	 */
1870 	if (pt_update_ops->wait_vm_bookkeep &&
1871 	    xe_vm_in_preempt_fence_mode(vm) &&
1872 	    !current->mm)
1873 		xe_vm_queue_rebind_worker(vm);
1874 }
1875 
1876 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1877 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1878 			     struct xe_vma *vma, struct dma_fence *fence)
1879 {
1880 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1881 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1882 				   pt_update_ops->wait_vm_bookkeep ?
1883 				   DMA_RESV_USAGE_KERNEL :
1884 				   DMA_RESV_USAGE_BOOKKEEP);
1885 	vma->tile_present &= ~BIT(tile->id);
1886 	if (!vma->tile_present) {
1887 		list_del_init(&vma->combined_links.rebind);
1888 		if (xe_vma_is_userptr(vma)) {
1889 			lockdep_assert_held_read(&vm->userptr.notifier_lock);
1890 
1891 			spin_lock(&vm->userptr.invalidated_lock);
1892 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1893 			spin_unlock(&vm->userptr.invalidated_lock);
1894 		}
1895 	}
1896 }
1897 
1898 static void op_commit(struct xe_vm *vm,
1899 		      struct xe_tile *tile,
1900 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1901 		      struct xe_vma_op *op, struct dma_fence *fence)
1902 {
1903 	xe_vm_assert_held(vm);
1904 
1905 	switch (op->base.op) {
1906 	case DRM_GPUVA_OP_MAP:
1907 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1908 			break;
1909 
1910 		bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence);
1911 		break;
1912 	case DRM_GPUVA_OP_REMAP:
1913 		unbind_op_commit(vm, tile, pt_update_ops,
1914 				 gpuva_to_vma(op->base.remap.unmap->va), fence);
1915 
1916 		if (op->remap.prev)
1917 			bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
1918 				       fence);
1919 		if (op->remap.next)
1920 			bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
1921 				       fence);
1922 		break;
1923 	case DRM_GPUVA_OP_UNMAP:
1924 		unbind_op_commit(vm, tile, pt_update_ops,
1925 				 gpuva_to_vma(op->base.unmap.va), fence);
1926 		break;
1927 	case DRM_GPUVA_OP_PREFETCH:
1928 		bind_op_commit(vm, tile, pt_update_ops,
1929 			       gpuva_to_vma(op->base.prefetch.va), fence);
1930 		break;
1931 	default:
1932 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1933 	}
1934 }
1935 
1936 static const struct xe_migrate_pt_update_ops migrate_ops = {
1937 	.populate = xe_vm_populate_pgtable,
1938 	.clear = xe_migrate_clear_pgtable_callback,
1939 	.pre_commit = xe_pt_pre_commit,
1940 };
1941 
1942 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = {
1943 	.populate = xe_vm_populate_pgtable,
1944 	.clear = xe_migrate_clear_pgtable_callback,
1945 	.pre_commit = xe_pt_userptr_pre_commit,
1946 };
1947 
1948 /**
1949  * xe_pt_update_ops_run() - Run PT update operations
1950  * @tile: Tile of PT update operations
1951  * @vops: VMA operationa
1952  *
1953  * Run PT update operations which includes committing internal PT state changes,
1954  * creating job for PT update operations for leaf insertion / removal, and
1955  * installing job fence in various places.
1956  *
1957  * Return: fence on success, negative ERR_PTR on error.
1958  */
1959 struct dma_fence *
1960 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
1961 {
1962 	struct xe_vm *vm = vops->vm;
1963 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1964 		&vops->pt_update_ops[tile->id];
1965 	struct dma_fence *fence;
1966 	struct invalidation_fence *ifence = NULL;
1967 	struct xe_range_fence *rfence;
1968 	struct xe_vma_op *op;
1969 	int err = 0, i;
1970 	struct xe_migrate_pt_update update = {
1971 		.ops = pt_update_ops->needs_userptr_lock ?
1972 			&userptr_migrate_ops :
1973 			&migrate_ops,
1974 		.vops = vops,
1975 		.tile_id = tile->id,
1976 	};
1977 
1978 	lockdep_assert_held(&vm->lock);
1979 	xe_vm_assert_held(vm);
1980 
1981 	if (!pt_update_ops->current_op) {
1982 		xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
1983 
1984 		return dma_fence_get_stub();
1985 	}
1986 
1987 #ifdef TEST_VM_OPS_ERROR
1988 	if (vops->inject_error &&
1989 	    vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
1990 		return ERR_PTR(-ENOSPC);
1991 #endif
1992 
1993 	if (pt_update_ops->needs_invalidation) {
1994 		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1995 		if (!ifence) {
1996 			err = -ENOMEM;
1997 			goto kill_vm_tile1;
1998 		}
1999 	}
2000 
2001 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2002 	if (!rfence) {
2003 		err = -ENOMEM;
2004 		goto free_ifence;
2005 	}
2006 
2007 	fence = xe_migrate_update_pgtables(tile->migrate, &update);
2008 	if (IS_ERR(fence)) {
2009 		err = PTR_ERR(fence);
2010 		goto free_rfence;
2011 	}
2012 
2013 	/* Point of no return - VM killed if failure after this */
2014 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2015 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2016 
2017 		xe_pt_commit(pt_op->vma, pt_op->entries,
2018 			     pt_op->num_entries, &pt_update_ops->deferred);
2019 		pt_op->vma = NULL;	/* skip in xe_pt_update_ops_abort */
2020 	}
2021 
2022 	if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2023 				  &xe_range_fence_kfree_ops,
2024 				  pt_update_ops->start,
2025 				  pt_update_ops->last, fence))
2026 		dma_fence_wait(fence, false);
2027 
2028 	/* tlb invalidation must be done before signaling rebind */
2029 	if (ifence) {
2030 		invalidation_fence_init(tile->primary_gt, ifence, fence,
2031 					pt_update_ops->start,
2032 					pt_update_ops->last, vm->usm.asid);
2033 		fence = &ifence->base.base;
2034 	}
2035 
2036 	dma_resv_add_fence(xe_vm_resv(vm), fence,
2037 			   pt_update_ops->wait_vm_bookkeep ?
2038 			   DMA_RESV_USAGE_KERNEL :
2039 			   DMA_RESV_USAGE_BOOKKEEP);
2040 
2041 	list_for_each_entry(op, &vops->list, link)
2042 		op_commit(vops->vm, tile, pt_update_ops, op, fence);
2043 
2044 	if (pt_update_ops->needs_userptr_lock)
2045 		up_read(&vm->userptr.notifier_lock);
2046 
2047 	return fence;
2048 
2049 free_rfence:
2050 	kfree(rfence);
2051 free_ifence:
2052 	kfree(ifence);
2053 kill_vm_tile1:
2054 	if (err != -EAGAIN && tile->id)
2055 		xe_vm_kill(vops->vm, false);
2056 
2057 	return ERR_PTR(err);
2058 }
2059 
2060 /**
2061  * xe_pt_update_ops_fini() - Finish PT update operations
2062  * @tile: Tile of PT update operations
2063  * @vops: VMA operations
2064  *
2065  * Finish PT update operations by committing to destroy page table memory
2066  */
2067 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2068 {
2069 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2070 		&vops->pt_update_ops[tile->id];
2071 	int i;
2072 
2073 	lockdep_assert_held(&vops->vm->lock);
2074 	xe_vm_assert_held(vops->vm);
2075 
2076 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2077 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2078 
2079 		xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2080 	}
2081 	xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2082 }
2083 
2084 /**
2085  * xe_pt_update_ops_abort() - Abort PT update operations
2086  * @tile: Tile of PT update operations
2087  * @vops: VMA operationa
2088  *
2089  *  Abort PT update operations by unwinding internal PT state
2090  */
2091 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2092 {
2093 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2094 		&vops->pt_update_ops[tile->id];
2095 	int i;
2096 
2097 	lockdep_assert_held(&vops->vm->lock);
2098 	xe_vm_assert_held(vops->vm);
2099 
2100 	for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2101 		struct xe_vm_pgtable_update_op *pt_op =
2102 			&pt_update_ops->ops[i];
2103 
2104 		if (!pt_op->vma || i >= pt_update_ops->current_op)
2105 			continue;
2106 
2107 		if (pt_op->bind)
2108 			xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2109 					 pt_op->num_entries,
2110 					 pt_op->rebind);
2111 		else
2112 			xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2113 					   pt_op->num_entries);
2114 	}
2115 
2116 	xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2117 }
2118