1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <linux/dma-fence-array.h> 7 8 #include "xe_pt.h" 9 10 #include "regs/xe_gtt_defs.h" 11 #include "xe_bo.h" 12 #include "xe_device.h" 13 #include "xe_drm_client.h" 14 #include "xe_exec_queue.h" 15 #include "xe_gt.h" 16 #include "xe_gt_tlb_inval_job.h" 17 #include "xe_migrate.h" 18 #include "xe_pt_types.h" 19 #include "xe_pt_walk.h" 20 #include "xe_res_cursor.h" 21 #include "xe_sched_job.h" 22 #include "xe_sync.h" 23 #include "xe_svm.h" 24 #include "xe_trace.h" 25 #include "xe_ttm_stolen_mgr.h" 26 #include "xe_vm.h" 27 28 struct xe_pt_dir { 29 struct xe_pt pt; 30 /** @children: Array of page-table child nodes */ 31 struct xe_ptw *children[XE_PDES]; 32 /** @staging: Array of page-table staging nodes */ 33 struct xe_ptw *staging[XE_PDES]; 34 }; 35 36 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 37 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 38 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 39 #else 40 #define xe_pt_set_addr(__xe_pt, __addr) 41 #define xe_pt_addr(__xe_pt) 0ull 42 #endif 43 44 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 45 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 46 47 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 48 49 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 50 { 51 return container_of(pt, struct xe_pt_dir, pt); 52 } 53 54 static struct xe_pt * 55 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index) 56 { 57 return container_of(pt_dir->staging[index], struct xe_pt, base); 58 } 59 60 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 61 unsigned int level) 62 { 63 struct xe_device *xe = tile_to_xe(tile); 64 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 65 u8 id = tile->id; 66 67 if (!xe_vm_has_scratch(vm)) 68 return 0; 69 70 if (level > MAX_HUGEPTE_LEVEL) 71 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 72 0); 73 74 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 75 XE_PTE_NULL; 76 } 77 78 static void xe_pt_free(struct xe_pt *pt) 79 { 80 if (pt->level) 81 kfree(as_xe_pt_dir(pt)); 82 else 83 kfree(pt); 84 } 85 86 /** 87 * xe_pt_create() - Create a page-table. 88 * @vm: The vm to create for. 89 * @tile: The tile to create for. 90 * @level: The page-table level. 91 * 92 * Allocate and initialize a single struct xe_pt metadata structure. Also 93 * create the corresponding page-table bo, but don't initialize it. If the 94 * level is grater than zero, then it's assumed to be a directory page- 95 * table and the directory structure is also allocated and initialized to 96 * NULL pointers. 97 * 98 * Return: A valid struct xe_pt pointer on success, Pointer error code on 99 * error. 100 */ 101 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 102 unsigned int level) 103 { 104 struct xe_pt *pt; 105 struct xe_bo *bo; 106 u32 bo_flags; 107 int err; 108 109 if (level) { 110 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 111 112 pt = (dir) ? &dir->pt : NULL; 113 } else { 114 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 115 } 116 if (!pt) 117 return ERR_PTR(-ENOMEM); 118 119 bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | 120 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 121 XE_BO_FLAG_NO_RESV_EVICT | XE_BO_FLAG_PAGETABLE; 122 if (vm->xef) /* userspace */ 123 bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE; 124 125 pt->level = level; 126 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 127 ttm_bo_type_kernel, 128 bo_flags); 129 if (IS_ERR(bo)) { 130 err = PTR_ERR(bo); 131 goto err_kfree; 132 } 133 pt->bo = bo; 134 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 135 pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL; 136 137 if (vm->xef) 138 xe_drm_client_add_bo(vm->xef->client, pt->bo); 139 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 140 141 return pt; 142 143 err_kfree: 144 xe_pt_free(pt); 145 return ERR_PTR(err); 146 } 147 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO); 148 149 /** 150 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 151 * entries. 152 * @tile: The tile the scratch pagetable of which to use. 153 * @vm: The vm we populate for. 154 * @pt: The pagetable the bo of which to initialize. 155 * 156 * Populate the page-table bo of @pt with entries pointing into the tile's 157 * scratch page-table tree if any. Otherwise populate with zeros. 158 */ 159 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 160 struct xe_pt *pt) 161 { 162 struct iosys_map *map = &pt->bo->vmap; 163 u64 empty; 164 int i; 165 166 if (!xe_vm_has_scratch(vm)) { 167 /* 168 * FIXME: Some memory is allocated already allocated to zero? 169 * Find out which memory that is and avoid this memset... 170 */ 171 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 172 } else { 173 empty = __xe_pt_empty_pte(tile, vm, pt->level); 174 for (i = 0; i < XE_PDES; i++) 175 xe_pt_write(vm->xe, map, i, empty); 176 } 177 } 178 179 /** 180 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 181 * a page-table at a certain level. 182 * @level: The level. 183 * 184 * Return: The ilog2 value of the size of the address range of a page-table 185 * at level @level. 186 */ 187 unsigned int xe_pt_shift(unsigned int level) 188 { 189 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 190 } 191 192 /** 193 * xe_pt_destroy() - Destroy a page-table tree. 194 * @pt: The root of the page-table tree to destroy. 195 * @flags: vm flags. Currently unused. 196 * @deferred: List head of lockless list for deferred putting. NULL for 197 * immediate putting. 198 * 199 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 200 * and finally frees @pt. TODO: Can we remove the @flags argument? 201 */ 202 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 203 { 204 int i; 205 206 if (!pt) 207 return; 208 209 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 210 xe_bo_unpin(pt->bo); 211 xe_bo_put_deferred(pt->bo, deferred); 212 213 if (pt->level > 0 && pt->num_live) { 214 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 215 216 for (i = 0; i < XE_PDES; i++) { 217 if (xe_pt_entry_staging(pt_dir, i)) 218 xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags, 219 deferred); 220 } 221 } 222 xe_pt_free(pt); 223 } 224 225 /** 226 * xe_pt_clear() - Clear a page-table. 227 * @xe: xe device. 228 * @pt: The page-table. 229 * 230 * Clears page-table by setting to zero. 231 */ 232 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt) 233 { 234 struct iosys_map *map = &pt->bo->vmap; 235 236 xe_map_memset(xe, map, 0, 0, SZ_4K); 237 } 238 239 /** 240 * DOC: Pagetable building 241 * 242 * Below we use the term "page-table" for both page-directories, containing 243 * pointers to lower level page-directories or page-tables, and level 0 244 * page-tables that contain only page-table-entries pointing to memory pages. 245 * 246 * When inserting an address range in an already existing page-table tree 247 * there will typically be a set of page-tables that are shared with other 248 * address ranges, and a set that are private to this address range. 249 * The set of shared page-tables can be at most two per level, 250 * and those can't be updated immediately because the entries of those 251 * page-tables may still be in use by the gpu for other mappings. Therefore 252 * when inserting entries into those, we instead stage those insertions by 253 * adding insertion data into struct xe_vm_pgtable_update structures. This 254 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 255 * added in a separate commit step. CPU-data is committed while still under the 256 * vm lock, the object lock and for userptr, the notifier lock in read mode. 257 * The GPU async data is committed either by the GPU or CPU after fulfilling 258 * relevant dependencies. 259 * For non-shared page-tables (and, in fact, for shared ones that aren't 260 * existing at the time of staging), we add the data in-place without the 261 * special update structures. This private part of the page-table tree will 262 * remain disconnected from the vm page-table tree until data is committed to 263 * the shared page tables of the vm tree in the commit phase. 264 */ 265 266 struct xe_pt_update { 267 /** @update: The update structure we're building for this parent. */ 268 struct xe_vm_pgtable_update *update; 269 /** @parent: The parent. Used to detect a parent change. */ 270 struct xe_pt *parent; 271 /** @preexisting: Whether the parent was pre-existing or allocated */ 272 bool preexisting; 273 }; 274 275 /** 276 * struct xe_pt_stage_bind_walk - Walk state for the stage_bind walk. 277 */ 278 struct xe_pt_stage_bind_walk { 279 /** @base: The base class. */ 280 struct xe_pt_walk base; 281 282 /* Input parameters for the walk */ 283 /** @vm: The vm we're building for. */ 284 struct xe_vm *vm; 285 /** @tile: The tile we're building for. */ 286 struct xe_tile *tile; 287 /** @default_vram_pte: PTE flag only template for VRAM. No address is associated */ 288 u64 default_vram_pte; 289 /** @default_system_pte: PTE flag only template for System. No address is associated */ 290 u64 default_system_pte; 291 /** @dma_offset: DMA offset to add to the PTE. */ 292 u64 dma_offset; 293 /** 294 * @needs_64K: This address range enforces 64K alignment and 295 * granularity on VRAM. 296 */ 297 bool needs_64K; 298 /** @clear_pt: clear page table entries during the bind walk */ 299 bool clear_pt; 300 /** 301 * @vma: VMA being mapped 302 */ 303 struct xe_vma *vma; 304 305 /* Also input, but is updated during the walk*/ 306 /** @curs: The DMA address cursor. */ 307 struct xe_res_cursor *curs; 308 /** @va_curs_start: The Virtual address corresponding to @curs->start */ 309 u64 va_curs_start; 310 311 /* Output */ 312 /** @wupd: Walk output data for page-table updates. */ 313 struct xe_walk_update { 314 /** @wupd.entries: Caller provided storage. */ 315 struct xe_vm_pgtable_update *entries; 316 /** @wupd.num_used_entries: Number of update @entries used. */ 317 unsigned int num_used_entries; 318 /** @wupd.updates: Tracks the update entry at a given level */ 319 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 320 } wupd; 321 322 /* Walk state */ 323 /** 324 * @l0_end_addr: The end address of the current l0 leaf. Used for 325 * 64K granularity detection. 326 */ 327 u64 l0_end_addr; 328 /** @addr_64K: The start address of the current 64K chunk. */ 329 u64 addr_64K; 330 /** @found_64K: Whether @add_64K actually points to a 64K chunk. */ 331 bool found_64K; 332 }; 333 334 static int 335 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 336 pgoff_t offset, bool alloc_entries) 337 { 338 struct xe_pt_update *upd = &wupd->updates[parent->level]; 339 struct xe_vm_pgtable_update *entry; 340 341 /* 342 * For *each level*, we could only have one active 343 * struct xt_pt_update at any one time. Once we move on to a 344 * new parent and page-directory, the old one is complete, and 345 * updates are either already stored in the build tree or in 346 * @wupd->entries 347 */ 348 if (likely(upd->parent == parent)) 349 return 0; 350 351 upd->parent = parent; 352 upd->preexisting = true; 353 354 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 355 return -EINVAL; 356 357 entry = wupd->entries + wupd->num_used_entries++; 358 upd->update = entry; 359 entry->ofs = offset; 360 entry->pt_bo = parent->bo; 361 entry->pt = parent; 362 entry->flags = 0; 363 entry->qwords = 0; 364 entry->pt_bo->update_index = -1; 365 366 if (alloc_entries) { 367 entry->pt_entries = kmalloc_array(XE_PDES, 368 sizeof(*entry->pt_entries), 369 GFP_KERNEL); 370 if (!entry->pt_entries) 371 return -ENOMEM; 372 } 373 374 return 0; 375 } 376 377 /* 378 * NOTE: This is a very frequently called function so we allow ourselves 379 * to annotate (using branch prediction hints) the fastpath of updating a 380 * non-pre-existing pagetable with leaf ptes. 381 */ 382 static int 383 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 384 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 385 { 386 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 387 struct xe_pt_update *child_upd = xe_child ? 388 &xe_walk->wupd.updates[xe_child->level] : NULL; 389 int ret; 390 391 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 392 if (unlikely(ret)) 393 return ret; 394 395 /* 396 * Register this new pagetable so that it won't be recognized as 397 * a shared pagetable by a subsequent insertion. 398 */ 399 if (unlikely(child_upd)) { 400 child_upd->update = NULL; 401 child_upd->parent = xe_child; 402 child_upd->preexisting = false; 403 } 404 405 if (likely(!upd->preexisting)) { 406 /* Continue building a non-connected subtree. */ 407 struct iosys_map *map = &parent->bo->vmap; 408 409 if (unlikely(xe_child)) { 410 parent->base.children[offset] = &xe_child->base; 411 parent->base.staging[offset] = &xe_child->base; 412 } 413 414 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 415 parent->num_live++; 416 } else { 417 /* Shared pt. Stage update. */ 418 unsigned int idx; 419 struct xe_vm_pgtable_update *entry = upd->update; 420 421 idx = offset - entry->ofs; 422 entry->pt_entries[idx].pt = xe_child; 423 entry->pt_entries[idx].pte = pte; 424 entry->qwords++; 425 } 426 427 return 0; 428 } 429 430 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 431 struct xe_pt_stage_bind_walk *xe_walk) 432 { 433 u64 size, dma; 434 435 if (level > MAX_HUGEPTE_LEVEL) 436 return false; 437 438 /* Does the virtual range requested cover a huge pte? */ 439 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 440 return false; 441 442 /* Does the DMA segment cover the whole pte? */ 443 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 444 return false; 445 446 /* null VMA's do not have dma addresses */ 447 if (xe_vma_is_null(xe_walk->vma)) 448 return true; 449 450 /* if we are clearing page table, no dma addresses*/ 451 if (xe_walk->clear_pt) 452 return true; 453 454 /* Is the DMA address huge PTE size aligned? */ 455 size = next - addr; 456 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 457 458 return IS_ALIGNED(dma, size); 459 } 460 461 /* 462 * Scan the requested mapping to check whether it can be done entirely 463 * with 64K PTEs. 464 */ 465 static bool 466 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 467 { 468 struct xe_res_cursor curs = *xe_walk->curs; 469 470 if (!IS_ALIGNED(addr, SZ_64K)) 471 return false; 472 473 if (next > xe_walk->l0_end_addr) 474 return false; 475 476 /* null VMA's do not have dma addresses */ 477 if (xe_vma_is_null(xe_walk->vma)) 478 return true; 479 480 xe_res_next(&curs, addr - xe_walk->va_curs_start); 481 for (; addr < next; addr += SZ_64K) { 482 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 483 return false; 484 485 xe_res_next(&curs, SZ_64K); 486 } 487 488 return addr == next; 489 } 490 491 /* 492 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 493 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 494 * device to the PTE. 495 * This function determines whether the address is part of such a 496 * segment. For VRAM in normal pagetables, this is strictly necessary on 497 * some devices. 498 */ 499 static bool 500 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 501 { 502 /* Address is within an already found 64k region */ 503 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 504 return true; 505 506 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 507 xe_walk->addr_64K = addr; 508 509 return xe_walk->found_64K; 510 } 511 512 static int 513 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 514 unsigned int level, u64 addr, u64 next, 515 struct xe_ptw **child, 516 enum page_walk_action *action, 517 struct xe_pt_walk *walk) 518 { 519 struct xe_pt_stage_bind_walk *xe_walk = 520 container_of(walk, typeof(*xe_walk), base); 521 u16 pat_index = xe_walk->vma->attr.pat_index; 522 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 523 struct xe_vm *vm = xe_walk->vm; 524 struct xe_pt *xe_child; 525 bool covers; 526 int ret = 0; 527 u64 pte; 528 529 /* Is this a leaf entry ?*/ 530 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 531 struct xe_res_cursor *curs = xe_walk->curs; 532 bool is_null = xe_vma_is_null(xe_walk->vma); 533 bool is_vram = is_null ? false : xe_res_is_vram(curs); 534 535 XE_WARN_ON(xe_walk->va_curs_start != addr); 536 537 if (xe_walk->clear_pt) { 538 pte = 0; 539 } else { 540 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 541 xe_res_dma(curs) + 542 xe_walk->dma_offset, 543 xe_walk->vma, 544 pat_index, level); 545 if (!is_null) 546 pte |= is_vram ? xe_walk->default_vram_pte : 547 xe_walk->default_system_pte; 548 549 /* 550 * Set the XE_PTE_PS64 hint if possible, otherwise if 551 * this device *requires* 64K PTE size for VRAM, fail. 552 */ 553 if (level == 0 && !xe_parent->is_compact) { 554 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 555 xe_walk->vma->gpuva.flags |= 556 XE_VMA_PTE_64K; 557 pte |= XE_PTE_PS64; 558 } else if (XE_WARN_ON(xe_walk->needs_64K && 559 is_vram)) { 560 return -EINVAL; 561 } 562 } 563 } 564 565 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 566 if (unlikely(ret)) 567 return ret; 568 569 if (!is_null && !xe_walk->clear_pt) 570 xe_res_next(curs, next - addr); 571 xe_walk->va_curs_start = next; 572 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 573 *action = ACTION_CONTINUE; 574 575 return ret; 576 } 577 578 /* 579 * Descending to lower level. Determine if we need to allocate a 580 * new page table or -directory, which we do if there is no 581 * previous one or there is one we can completely replace. 582 */ 583 if (level == 1) { 584 walk->shifts = xe_normal_pt_shifts; 585 xe_walk->l0_end_addr = next; 586 } 587 588 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 589 if (covers || !*child) { 590 u64 flags = 0; 591 592 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 593 if (IS_ERR(xe_child)) 594 return PTR_ERR(xe_child); 595 596 xe_pt_set_addr(xe_child, 597 round_down(addr, 1ull << walk->shifts[level])); 598 599 if (!covers) 600 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 601 602 *child = &xe_child->base; 603 604 /* 605 * Prefer the compact pagetable layout for L0 if possible. Only 606 * possible if VMA covers entire 2MB region as compact 64k and 607 * 4k pages cannot be mixed within a 2MB region. 608 * TODO: Suballocate the pt bo to avoid wasting a lot of 609 * memory. 610 */ 611 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 612 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 613 walk->shifts = xe_compact_pt_shifts; 614 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 615 flags |= XE_PDE_64K; 616 xe_child->is_compact = true; 617 } 618 619 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0) | flags; 620 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 621 pte); 622 } 623 624 *action = ACTION_SUBTREE; 625 return ret; 626 } 627 628 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 629 .pt_entry = xe_pt_stage_bind_entry, 630 }; 631 632 /* 633 * Default atomic expectations for different allocation scenarios are as follows: 634 * 635 * 1. Traditional API: When the VM is not in LR mode: 636 * - Device atomics are expected to function with all allocations. 637 * 638 * 2. Compute/SVM API: When the VM is in LR mode: 639 * - Device atomics are the default behavior when the bo is placed in a single region. 640 * - In all other cases device atomics will be disabled with AE=0 until an application 641 * request differently using a ioctl like madvise. 642 */ 643 static bool xe_atomic_for_vram(struct xe_vm *vm, struct xe_vma *vma) 644 { 645 if (vma->attr.atomic_access == DRM_XE_ATOMIC_CPU) 646 return false; 647 648 return true; 649 } 650 651 static bool xe_atomic_for_system(struct xe_vm *vm, struct xe_vma *vma) 652 { 653 struct xe_device *xe = vm->xe; 654 struct xe_bo *bo = xe_vma_bo(vma); 655 656 if (!xe->info.has_device_atomics_on_smem || 657 vma->attr.atomic_access == DRM_XE_ATOMIC_CPU) 658 return false; 659 660 if (vma->attr.atomic_access == DRM_XE_ATOMIC_DEVICE) 661 return true; 662 663 /* 664 * If a SMEM+LMEM allocation is backed by SMEM, a device 665 * atomics will cause a gpu page fault and which then 666 * gets migrated to LMEM, bind such allocations with 667 * device atomics enabled. 668 */ 669 return (!IS_DGFX(xe) || (!xe_vm_in_lr_mode(vm) || 670 (bo && xe_bo_has_single_placement(bo)))); 671 } 672 673 /** 674 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 675 * range. 676 * @tile: The tile we're building for. 677 * @vma: The vma indicating the address range. 678 * @range: The range indicating the address range. 679 * @entries: Storage for the update entries used for connecting the tree to 680 * the main tree at commit time. 681 * @num_entries: On output contains the number of @entries used. 682 * @clear_pt: Clear the page table entries. 683 * 684 * This function builds a disconnected page-table tree for a given address 685 * range. The tree is connected to the main vm tree for the gpu using 686 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 687 * The function builds xe_vm_pgtable_update structures for already existing 688 * shared page-tables, and non-existing shared and non-shared page-tables 689 * are built and populated directly. 690 * 691 * Return 0 on success, negative error code on error. 692 */ 693 static int 694 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 695 struct xe_svm_range *range, 696 struct xe_vm_pgtable_update *entries, 697 u32 *num_entries, bool clear_pt) 698 { 699 struct xe_device *xe = tile_to_xe(tile); 700 struct xe_bo *bo = xe_vma_bo(vma); 701 struct xe_res_cursor curs; 702 struct xe_vm *vm = xe_vma_vm(vma); 703 struct xe_pt_stage_bind_walk xe_walk = { 704 .base = { 705 .ops = &xe_pt_stage_bind_ops, 706 .shifts = xe_normal_pt_shifts, 707 .max_level = XE_PT_HIGHEST_LEVEL, 708 .staging = true, 709 }, 710 .vm = vm, 711 .tile = tile, 712 .curs = &curs, 713 .va_curs_start = range ? range->base.itree.start : 714 xe_vma_start(vma), 715 .vma = vma, 716 .wupd.entries = entries, 717 .clear_pt = clear_pt, 718 }; 719 struct xe_pt *pt = vm->pt_root[tile->id]; 720 int ret; 721 722 if (range) { 723 /* Move this entire thing to xe_svm.c? */ 724 xe_svm_notifier_lock(vm); 725 if (!xe_svm_range_pages_valid(range)) { 726 xe_svm_range_debug(range, "BIND PREPARE - RETRY"); 727 xe_svm_notifier_unlock(vm); 728 return -EAGAIN; 729 } 730 if (xe_svm_range_has_dma_mapping(range)) { 731 xe_res_first_dma(range->base.dma_addr, 0, 732 range->base.itree.last + 1 - range->base.itree.start, 733 &curs); 734 xe_svm_range_debug(range, "BIND PREPARE - MIXED"); 735 } else { 736 xe_assert(xe, false); 737 } 738 /* 739 * Note, when unlocking the resource cursor dma addresses may become 740 * stale, but the bind will be aborted anyway at commit time. 741 */ 742 xe_svm_notifier_unlock(vm); 743 } 744 745 xe_walk.needs_64K = (vm->flags & XE_VM_FLAG_64K); 746 if (clear_pt) 747 goto walk_pt; 748 749 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { 750 xe_walk.default_vram_pte = xe_atomic_for_vram(vm, vma) ? XE_USM_PPGTT_PTE_AE : 0; 751 xe_walk.default_system_pte = xe_atomic_for_system(vm, vma) ? 752 XE_USM_PPGTT_PTE_AE : 0; 753 } 754 755 xe_walk.default_vram_pte |= XE_PPGTT_PTE_DM; 756 xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0; 757 if (!range) 758 xe_bo_assert_held(bo); 759 760 if (!xe_vma_is_null(vma) && !range) { 761 if (xe_vma_is_userptr(vma)) 762 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, 763 xe_vma_size(vma), &curs); 764 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 765 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 766 xe_vma_size(vma), &curs); 767 else 768 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 769 xe_vma_size(vma), &curs); 770 } else if (!range) { 771 curs.size = xe_vma_size(vma); 772 } 773 774 walk_pt: 775 ret = xe_pt_walk_range(&pt->base, pt->level, 776 range ? range->base.itree.start : xe_vma_start(vma), 777 range ? range->base.itree.last + 1 : xe_vma_end(vma), 778 &xe_walk.base); 779 780 *num_entries = xe_walk.wupd.num_used_entries; 781 return ret; 782 } 783 784 /** 785 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 786 * shared pagetable. 787 * @addr: The start address within the non-shared pagetable. 788 * @end: The end address within the non-shared pagetable. 789 * @level: The level of the non-shared pagetable. 790 * @walk: Walk info. The function adjusts the walk action. 791 * @action: next action to perform (see enum page_walk_action) 792 * @offset: Ignored on input, First non-shared entry on output. 793 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 794 * 795 * A non-shared page-table has some entries that belong to the address range 796 * and others that don't. This function determines the entries that belong 797 * fully to the address range. Depending on level, some entries may 798 * partially belong to the address range (that can't happen at level 0). 799 * The function detects that and adjust those offsets to not include those 800 * partial entries. Iff it does detect partial entries, we know that there must 801 * be shared page tables also at lower levels, so it adjusts the walk action 802 * accordingly. 803 * 804 * Return: true if there were non-shared entries, false otherwise. 805 */ 806 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 807 struct xe_pt_walk *walk, 808 enum page_walk_action *action, 809 pgoff_t *offset, pgoff_t *end_offset) 810 { 811 u64 size = 1ull << walk->shifts[level]; 812 813 *offset = xe_pt_offset(addr, level, walk); 814 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 815 816 if (!level) 817 return true; 818 819 /* 820 * If addr or next are not size aligned, there are shared pts at lower 821 * level, so in that case traverse down the subtree 822 */ 823 *action = ACTION_CONTINUE; 824 if (!IS_ALIGNED(addr, size)) { 825 *action = ACTION_SUBTREE; 826 (*offset)++; 827 } 828 829 if (!IS_ALIGNED(end, size)) { 830 *action = ACTION_SUBTREE; 831 (*end_offset)--; 832 } 833 834 return *end_offset > *offset; 835 } 836 837 struct xe_pt_zap_ptes_walk { 838 /** @base: The walk base-class */ 839 struct xe_pt_walk base; 840 841 /* Input parameters for the walk */ 842 /** @tile: The tile we're building for */ 843 struct xe_tile *tile; 844 845 /* Output */ 846 /** @needs_invalidate: Whether we need to invalidate TLB*/ 847 bool needs_invalidate; 848 }; 849 850 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 851 unsigned int level, u64 addr, u64 next, 852 struct xe_ptw **child, 853 enum page_walk_action *action, 854 struct xe_pt_walk *walk) 855 { 856 struct xe_pt_zap_ptes_walk *xe_walk = 857 container_of(walk, typeof(*xe_walk), base); 858 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 859 pgoff_t end_offset; 860 861 XE_WARN_ON(!*child); 862 XE_WARN_ON(!level); 863 864 /* 865 * Note that we're called from an entry callback, and we're dealing 866 * with the child of that entry rather than the parent, so need to 867 * adjust level down. 868 */ 869 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 870 &end_offset)) { 871 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 872 offset * sizeof(u64), 0, 873 (end_offset - offset) * sizeof(u64)); 874 xe_walk->needs_invalidate = true; 875 } 876 877 return 0; 878 } 879 880 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 881 .pt_entry = xe_pt_zap_ptes_entry, 882 }; 883 884 /** 885 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 886 * @tile: The tile we're zapping for. 887 * @vma: GPU VMA detailing address range. 888 * 889 * Eviction and Userptr invalidation needs to be able to zap the 890 * gpu ptes of a given address range in pagefaulting mode. 891 * In order to be able to do that, that function needs access to the shared 892 * page-table entrieaso it can either clear the leaf PTEs or 893 * clear the pointers to lower-level page-tables. The caller is required 894 * to hold the necessary locks to ensure neither the page-table connectivity 895 * nor the page-table entries of the range is updated from under us. 896 * 897 * Return: Whether ptes were actually updated and a TLB invalidation is 898 * required. 899 */ 900 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 901 { 902 struct xe_pt_zap_ptes_walk xe_walk = { 903 .base = { 904 .ops = &xe_pt_zap_ptes_ops, 905 .shifts = xe_normal_pt_shifts, 906 .max_level = XE_PT_HIGHEST_LEVEL, 907 }, 908 .tile = tile, 909 }; 910 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 911 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); 912 913 if (xe_vma_bo(vma)) 914 xe_bo_assert_held(xe_vma_bo(vma)); 915 else if (xe_vma_is_userptr(vma)) 916 lockdep_assert_held(&xe_vma_vm(vma)->userptr.notifier_lock); 917 918 if (!(pt_mask & BIT(tile->id))) 919 return false; 920 921 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 922 xe_vma_end(vma), &xe_walk.base); 923 924 return xe_walk.needs_invalidate; 925 } 926 927 /** 928 * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range 929 * @tile: The tile we're zapping for. 930 * @vm: The VM we're zapping for. 931 * @range: The SVM range we're zapping for. 932 * 933 * SVM invalidation needs to be able to zap the gpu ptes of a given address 934 * range. In order to be able to do that, that function needs access to the 935 * shared page-table entries so it can either clear the leaf PTEs or 936 * clear the pointers to lower-level page-tables. The caller is required 937 * to hold the SVM notifier lock. 938 * 939 * Return: Whether ptes were actually updated and a TLB invalidation is 940 * required. 941 */ 942 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm, 943 struct xe_svm_range *range) 944 { 945 struct xe_pt_zap_ptes_walk xe_walk = { 946 .base = { 947 .ops = &xe_pt_zap_ptes_ops, 948 .shifts = xe_normal_pt_shifts, 949 .max_level = XE_PT_HIGHEST_LEVEL, 950 }, 951 .tile = tile, 952 }; 953 struct xe_pt *pt = vm->pt_root[tile->id]; 954 u8 pt_mask = (range->tile_present & ~range->tile_invalidated); 955 956 /* 957 * Locking rules: 958 * 959 * - notifier_lock (write): full protection against page table changes 960 * and MMU notifier invalidations. 961 * 962 * - notifier_lock (read) + vm_lock (write): combined protection against 963 * invalidations and concurrent page table modifications. (e.g., madvise) 964 * 965 */ 966 lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 0) || 967 (lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) && 968 lockdep_is_held_type(&vm->lock, 0))); 969 970 if (!(pt_mask & BIT(tile->id))) 971 return false; 972 973 (void)xe_pt_walk_shared(&pt->base, pt->level, range->base.itree.start, 974 range->base.itree.last + 1, &xe_walk.base); 975 976 return xe_walk.needs_invalidate; 977 } 978 979 static void 980 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 981 struct iosys_map *map, void *data, 982 u32 qword_ofs, u32 num_qwords, 983 const struct xe_vm_pgtable_update *update) 984 { 985 struct xe_pt_entry *ptes = update->pt_entries; 986 u64 *ptr = data; 987 u32 i; 988 989 for (i = 0; i < num_qwords; i++) { 990 if (map) 991 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 992 sizeof(u64), u64, ptes[i].pte); 993 else 994 ptr[i] = ptes[i].pte; 995 } 996 } 997 998 static void xe_pt_cancel_bind(struct xe_vma *vma, 999 struct xe_vm_pgtable_update *entries, 1000 u32 num_entries) 1001 { 1002 u32 i, j; 1003 1004 for (i = 0; i < num_entries; i++) { 1005 struct xe_pt *pt = entries[i].pt; 1006 1007 if (!pt) 1008 continue; 1009 1010 if (pt->level) { 1011 for (j = 0; j < entries[i].qwords; j++) 1012 xe_pt_destroy(entries[i].pt_entries[j].pt, 1013 xe_vma_vm(vma)->flags, NULL); 1014 } 1015 1016 kfree(entries[i].pt_entries); 1017 entries[i].pt_entries = NULL; 1018 entries[i].qwords = 0; 1019 } 1020 } 1021 1022 #define XE_INVALID_VMA ((struct xe_vma *)(0xdeaddeadull)) 1023 1024 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma) 1025 { 1026 struct xe_vm *vm; 1027 1028 if (vma == XE_INVALID_VMA) 1029 return; 1030 1031 vm = xe_vma_vm(vma); 1032 lockdep_assert_held(&vm->lock); 1033 1034 if (!xe_vma_has_no_bo(vma)) 1035 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 1036 1037 xe_vm_assert_held(vm); 1038 } 1039 1040 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 1041 { 1042 struct xe_vm *vm; 1043 1044 if (vma == XE_INVALID_VMA) 1045 return; 1046 1047 vm = xe_vma_vm(vma); 1048 xe_pt_commit_prepare_locks_assert(vma); 1049 1050 if (xe_vma_is_userptr(vma)) 1051 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1052 } 1053 1054 static void xe_pt_commit(struct xe_vma *vma, 1055 struct xe_vm_pgtable_update *entries, 1056 u32 num_entries, struct llist_head *deferred) 1057 { 1058 u32 i, j; 1059 1060 xe_pt_commit_locks_assert(vma); 1061 1062 for (i = 0; i < num_entries; i++) { 1063 struct xe_pt *pt = entries[i].pt; 1064 struct xe_pt_dir *pt_dir; 1065 1066 if (!pt->level) 1067 continue; 1068 1069 pt_dir = as_xe_pt_dir(pt); 1070 for (j = 0; j < entries[i].qwords; j++) { 1071 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1072 int j_ = j + entries[i].ofs; 1073 1074 pt_dir->children[j_] = pt_dir->staging[j_]; 1075 xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 : 1076 xe_vma_vm(vma)->flags, deferred); 1077 } 1078 } 1079 } 1080 1081 static void xe_pt_abort_bind(struct xe_vma *vma, 1082 struct xe_vm_pgtable_update *entries, 1083 u32 num_entries, bool rebind) 1084 { 1085 int i, j; 1086 1087 xe_pt_commit_prepare_locks_assert(vma); 1088 1089 for (i = num_entries - 1; i >= 0; --i) { 1090 struct xe_pt *pt = entries[i].pt; 1091 struct xe_pt_dir *pt_dir; 1092 1093 if (!rebind) 1094 pt->num_live -= entries[i].qwords; 1095 1096 if (!pt->level) 1097 continue; 1098 1099 pt_dir = as_xe_pt_dir(pt); 1100 for (j = 0; j < entries[i].qwords; j++) { 1101 u32 j_ = j + entries[i].ofs; 1102 struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_); 1103 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1104 1105 pt_dir->staging[j_] = oldpte ? &oldpte->base : 0; 1106 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL); 1107 } 1108 } 1109 } 1110 1111 static void xe_pt_commit_prepare_bind(struct xe_vma *vma, 1112 struct xe_vm_pgtable_update *entries, 1113 u32 num_entries, bool rebind) 1114 { 1115 u32 i, j; 1116 1117 xe_pt_commit_prepare_locks_assert(vma); 1118 1119 for (i = 0; i < num_entries; i++) { 1120 struct xe_pt *pt = entries[i].pt; 1121 struct xe_pt_dir *pt_dir; 1122 1123 if (!rebind) 1124 pt->num_live += entries[i].qwords; 1125 1126 if (!pt->level) 1127 continue; 1128 1129 pt_dir = as_xe_pt_dir(pt); 1130 for (j = 0; j < entries[i].qwords; j++) { 1131 u32 j_ = j + entries[i].ofs; 1132 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 1133 struct xe_pt *oldpte = NULL; 1134 1135 if (xe_pt_entry_staging(pt_dir, j_)) 1136 oldpte = xe_pt_entry_staging(pt_dir, j_); 1137 1138 pt_dir->staging[j_] = &newpte->base; 1139 entries[i].pt_entries[j].pt = oldpte; 1140 } 1141 } 1142 } 1143 1144 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries, 1145 u32 num_entries) 1146 { 1147 u32 i; 1148 1149 for (i = 0; i < num_entries; i++) 1150 kfree(entries[i].pt_entries); 1151 } 1152 1153 static int 1154 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 1155 struct xe_svm_range *range, 1156 struct xe_vm_pgtable_update *entries, 1157 u32 *num_entries, bool invalidate_on_bind) 1158 { 1159 int err; 1160 1161 *num_entries = 0; 1162 err = xe_pt_stage_bind(tile, vma, range, entries, num_entries, 1163 invalidate_on_bind); 1164 if (!err) 1165 xe_tile_assert(tile, *num_entries); 1166 1167 return err; 1168 } 1169 1170 static void xe_vm_dbg_print_entries(struct xe_device *xe, 1171 const struct xe_vm_pgtable_update *entries, 1172 unsigned int num_entries, bool bind) 1173 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1174 { 1175 unsigned int i; 1176 1177 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind", 1178 num_entries); 1179 for (i = 0; i < num_entries; i++) { 1180 const struct xe_vm_pgtable_update *entry = &entries[i]; 1181 struct xe_pt *xe_pt = entry->pt; 1182 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1183 u64 end; 1184 u64 start; 1185 1186 xe_assert(xe, !entry->pt->is_compact); 1187 start = entry->ofs * page_size; 1188 end = start + page_size * entry->qwords; 1189 vm_dbg(&xe->drm, 1190 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1191 i, xe_pt->level, entry->ofs, entry->qwords, 1192 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1193 } 1194 } 1195 #else 1196 {} 1197 #endif 1198 1199 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs) 1200 { 1201 int i; 1202 1203 for (i = 0; i < num_syncs; i++) { 1204 struct dma_fence *fence = syncs[i].fence; 1205 1206 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1207 &fence->flags)) 1208 return false; 1209 } 1210 1211 return true; 1212 } 1213 1214 static int job_test_add_deps(struct xe_sched_job *job, 1215 struct dma_resv *resv, 1216 enum dma_resv_usage usage) 1217 { 1218 if (!job) { 1219 if (!dma_resv_test_signaled(resv, usage)) 1220 return -ETIME; 1221 1222 return 0; 1223 } 1224 1225 return xe_sched_job_add_deps(job, resv, usage); 1226 } 1227 1228 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job) 1229 { 1230 struct xe_bo *bo = xe_vma_bo(vma); 1231 1232 xe_bo_assert_held(bo); 1233 1234 if (bo && !bo->vm) 1235 return job_test_add_deps(job, bo->ttm.base.resv, 1236 DMA_RESV_USAGE_KERNEL); 1237 1238 return 0; 1239 } 1240 1241 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op, 1242 struct xe_sched_job *job) 1243 { 1244 int err = 0; 1245 1246 /* 1247 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a 1248 * NOP if VMA is_cpu_addr_mirror 1249 */ 1250 1251 switch (op->base.op) { 1252 case DRM_GPUVA_OP_MAP: 1253 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1254 break; 1255 1256 err = vma_add_deps(op->map.vma, job); 1257 break; 1258 case DRM_GPUVA_OP_REMAP: 1259 if (op->remap.prev) 1260 err = vma_add_deps(op->remap.prev, job); 1261 if (!err && op->remap.next) 1262 err = vma_add_deps(op->remap.next, job); 1263 break; 1264 case DRM_GPUVA_OP_UNMAP: 1265 break; 1266 case DRM_GPUVA_OP_PREFETCH: 1267 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job); 1268 break; 1269 case DRM_GPUVA_OP_DRIVER: 1270 break; 1271 default: 1272 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1273 } 1274 1275 return err; 1276 } 1277 1278 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 1279 struct xe_gt_tlb_inval_job *ijob, 1280 struct xe_gt_tlb_inval_job *mjob, 1281 struct xe_vm *vm, 1282 struct xe_vma_ops *vops, 1283 struct xe_vm_pgtable_update_ops *pt_update_ops, 1284 struct xe_range_fence_tree *rftree) 1285 { 1286 struct xe_range_fence *rtfence; 1287 struct dma_fence *fence; 1288 struct xe_vma_op *op; 1289 int err = 0, i; 1290 1291 xe_vm_assert_held(vm); 1292 1293 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs)) 1294 return -ETIME; 1295 1296 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q)) 1297 return -ETIME; 1298 1299 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) { 1300 err = job_test_add_deps(job, xe_vm_resv(vm), 1301 pt_update_ops->wait_vm_bookkeep ? 1302 DMA_RESV_USAGE_BOOKKEEP : 1303 DMA_RESV_USAGE_KERNEL); 1304 if (err) 1305 return err; 1306 } 1307 1308 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start, 1309 pt_update_ops->last); 1310 while (rtfence) { 1311 fence = rtfence->fence; 1312 1313 if (!dma_fence_is_signaled(fence)) { 1314 /* 1315 * Is this a CPU update? GPU is busy updating, so return 1316 * an error 1317 */ 1318 if (!job) 1319 return -ETIME; 1320 1321 dma_fence_get(fence); 1322 err = drm_sched_job_add_dependency(&job->drm, fence); 1323 if (err) 1324 return err; 1325 } 1326 1327 rtfence = xe_range_fence_tree_next(rtfence, 1328 pt_update_ops->start, 1329 pt_update_ops->last); 1330 } 1331 1332 list_for_each_entry(op, &vops->list, link) { 1333 err = op_add_deps(vm, op, job); 1334 if (err) 1335 return err; 1336 } 1337 1338 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) { 1339 if (job) 1340 err = xe_sched_job_last_fence_add_dep(job, vm); 1341 else 1342 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm); 1343 } 1344 1345 for (i = 0; job && !err && i < vops->num_syncs; i++) 1346 err = xe_sync_entry_add_deps(&vops->syncs[i], job); 1347 1348 if (job) { 1349 if (ijob) { 1350 err = xe_gt_tlb_inval_job_alloc_dep(ijob); 1351 if (err) 1352 return err; 1353 } 1354 1355 if (mjob) { 1356 err = xe_gt_tlb_inval_job_alloc_dep(mjob); 1357 if (err) 1358 return err; 1359 } 1360 } 1361 1362 return err; 1363 } 1364 1365 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1366 { 1367 struct xe_vma_ops *vops = pt_update->vops; 1368 struct xe_vm *vm = vops->vm; 1369 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id]; 1370 struct xe_vm_pgtable_update_ops *pt_update_ops = 1371 &vops->pt_update_ops[pt_update->tile_id]; 1372 1373 return xe_pt_vm_dependencies(pt_update->job, pt_update->ijob, 1374 pt_update->mjob, vm, pt_update->vops, 1375 pt_update_ops, rftree); 1376 } 1377 1378 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1379 1380 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1381 { 1382 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 1383 static u32 count; 1384 1385 if (count++ % divisor == divisor - 1) { 1386 uvma->userptr.divisor = divisor << 1; 1387 return true; 1388 } 1389 1390 return false; 1391 } 1392 1393 #else 1394 1395 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1396 { 1397 return false; 1398 } 1399 1400 #endif 1401 1402 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma, 1403 struct xe_vm_pgtable_update_ops *pt_update) 1404 { 1405 struct xe_userptr_vma *uvma; 1406 unsigned long notifier_seq; 1407 1408 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1409 1410 if (!xe_vma_is_userptr(vma)) 1411 return 0; 1412 1413 uvma = to_userptr_vma(vma); 1414 if (xe_pt_userptr_inject_eagain(uvma)) 1415 xe_vma_userptr_force_invalidate(uvma); 1416 1417 notifier_seq = uvma->userptr.notifier_seq; 1418 1419 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1420 notifier_seq)) 1421 return 0; 1422 1423 if (xe_vm_in_fault_mode(vm)) 1424 return -EAGAIN; 1425 1426 /* 1427 * Just continue the operation since exec or rebind worker 1428 * will take care of rebinding. 1429 */ 1430 return 0; 1431 } 1432 1433 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op, 1434 struct xe_vm_pgtable_update_ops *pt_update) 1435 { 1436 int err = 0; 1437 1438 lockdep_assert_held_read(&vm->userptr.notifier_lock); 1439 1440 switch (op->base.op) { 1441 case DRM_GPUVA_OP_MAP: 1442 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1443 break; 1444 1445 err = vma_check_userptr(vm, op->map.vma, pt_update); 1446 break; 1447 case DRM_GPUVA_OP_REMAP: 1448 if (op->remap.prev) 1449 err = vma_check_userptr(vm, op->remap.prev, pt_update); 1450 if (!err && op->remap.next) 1451 err = vma_check_userptr(vm, op->remap.next, pt_update); 1452 break; 1453 case DRM_GPUVA_OP_UNMAP: 1454 break; 1455 case DRM_GPUVA_OP_PREFETCH: 1456 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), 1457 pt_update); 1458 break; 1459 default: 1460 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1461 } 1462 1463 return err; 1464 } 1465 1466 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1467 { 1468 struct xe_vm *vm = pt_update->vops->vm; 1469 struct xe_vma_ops *vops = pt_update->vops; 1470 struct xe_vm_pgtable_update_ops *pt_update_ops = 1471 &vops->pt_update_ops[pt_update->tile_id]; 1472 struct xe_vma_op *op; 1473 int err; 1474 1475 err = xe_pt_pre_commit(pt_update); 1476 if (err) 1477 return err; 1478 1479 down_read(&vm->userptr.notifier_lock); 1480 1481 list_for_each_entry(op, &vops->list, link) { 1482 err = op_check_userptr(vm, op, pt_update_ops); 1483 if (err) { 1484 up_read(&vm->userptr.notifier_lock); 1485 break; 1486 } 1487 } 1488 1489 return err; 1490 } 1491 1492 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM) 1493 static int xe_pt_svm_pre_commit(struct xe_migrate_pt_update *pt_update) 1494 { 1495 struct xe_vm *vm = pt_update->vops->vm; 1496 struct xe_vma_ops *vops = pt_update->vops; 1497 struct xe_vma_op *op; 1498 unsigned long i; 1499 int err; 1500 1501 err = xe_pt_pre_commit(pt_update); 1502 if (err) 1503 return err; 1504 1505 xe_svm_notifier_lock(vm); 1506 1507 list_for_each_entry(op, &vops->list, link) { 1508 struct xe_svm_range *range = NULL; 1509 1510 if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) 1511 continue; 1512 1513 if (op->base.op == DRM_GPUVA_OP_PREFETCH) { 1514 xe_assert(vm->xe, 1515 xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))); 1516 xa_for_each(&op->prefetch_range.range, i, range) { 1517 xe_svm_range_debug(range, "PRE-COMMIT"); 1518 1519 if (!xe_svm_range_pages_valid(range)) { 1520 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1521 xe_svm_notifier_unlock(vm); 1522 return -ENODATA; 1523 } 1524 } 1525 } else { 1526 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 1527 xe_assert(vm->xe, op->subop == XE_VMA_SUBOP_MAP_RANGE); 1528 range = op->map_range.range; 1529 1530 xe_svm_range_debug(range, "PRE-COMMIT"); 1531 1532 if (!xe_svm_range_pages_valid(range)) { 1533 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1534 xe_svm_notifier_unlock(vm); 1535 return -EAGAIN; 1536 } 1537 } 1538 } 1539 1540 return 0; 1541 } 1542 #endif 1543 1544 struct xe_pt_stage_unbind_walk { 1545 /** @base: The pagewalk base-class. */ 1546 struct xe_pt_walk base; 1547 1548 /* Input parameters for the walk */ 1549 /** @tile: The tile we're unbinding from. */ 1550 struct xe_tile *tile; 1551 1552 /** 1553 * @modified_start: Walk range start, modified to include any 1554 * shared pagetables that we're the only user of and can thus 1555 * treat as private. 1556 */ 1557 u64 modified_start; 1558 /** @modified_end: Walk range start, modified like @modified_start. */ 1559 u64 modified_end; 1560 1561 /* Output */ 1562 /* @wupd: Structure to track the page-table updates we're building */ 1563 struct xe_walk_update wupd; 1564 }; 1565 1566 /* 1567 * Check whether this range is the only one populating this pagetable, 1568 * and in that case, update the walk range checks so that higher levels don't 1569 * view us as a shared pagetable. 1570 */ 1571 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1572 const struct xe_pt *child, 1573 enum page_walk_action *action, 1574 struct xe_pt_walk *walk) 1575 { 1576 struct xe_pt_stage_unbind_walk *xe_walk = 1577 container_of(walk, typeof(*xe_walk), base); 1578 unsigned int shift = walk->shifts[level]; 1579 u64 size = 1ull << shift; 1580 1581 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1582 ((next - addr) >> shift) == child->num_live) { 1583 u64 size = 1ull << walk->shifts[level + 1]; 1584 1585 *action = ACTION_CONTINUE; 1586 1587 if (xe_walk->modified_start >= addr) 1588 xe_walk->modified_start = round_down(addr, size); 1589 if (xe_walk->modified_end <= next) 1590 xe_walk->modified_end = round_up(next, size); 1591 1592 return true; 1593 } 1594 1595 return false; 1596 } 1597 1598 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1599 unsigned int level, u64 addr, u64 next, 1600 struct xe_ptw **child, 1601 enum page_walk_action *action, 1602 struct xe_pt_walk *walk) 1603 { 1604 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1605 1606 XE_WARN_ON(!*child); 1607 XE_WARN_ON(!level); 1608 1609 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1610 1611 return 0; 1612 } 1613 1614 static int 1615 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1616 unsigned int level, u64 addr, u64 next, 1617 struct xe_ptw **child, 1618 enum page_walk_action *action, 1619 struct xe_pt_walk *walk) 1620 { 1621 struct xe_pt_stage_unbind_walk *xe_walk = 1622 container_of(walk, typeof(*xe_walk), base); 1623 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1624 pgoff_t end_offset; 1625 u64 size = 1ull << walk->shifts[--level]; 1626 int err; 1627 1628 if (!IS_ALIGNED(addr, size)) 1629 addr = xe_walk->modified_start; 1630 if (!IS_ALIGNED(next, size)) 1631 next = xe_walk->modified_end; 1632 1633 /* Parent == *child is the root pt. Don't kill it. */ 1634 if (parent != *child && 1635 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1636 return 0; 1637 1638 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1639 &end_offset)) 1640 return 0; 1641 1642 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true); 1643 if (err) 1644 return err; 1645 1646 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1647 1648 return 0; 1649 } 1650 1651 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1652 .pt_entry = xe_pt_stage_unbind_entry, 1653 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1654 }; 1655 1656 /** 1657 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1658 * operation 1659 * @tile: The tile we're unbinding for. 1660 * @vm: The vm 1661 * @vma: The vma we're unbinding. 1662 * @range: The range we're unbinding. 1663 * @entries: Caller-provided storage for the update structures. 1664 * 1665 * Builds page-table update structures for an unbind operation. The function 1666 * will attempt to remove all page-tables that we're the only user 1667 * of, and for that to work, the unbind operation must be committed in the 1668 * same critical section that blocks racing binds to the same page-table tree. 1669 * 1670 * Return: The number of entries used. 1671 */ 1672 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, 1673 struct xe_vm *vm, 1674 struct xe_vma *vma, 1675 struct xe_svm_range *range, 1676 struct xe_vm_pgtable_update *entries) 1677 { 1678 u64 start = range ? range->base.itree.start : xe_vma_start(vma); 1679 u64 end = range ? range->base.itree.last + 1 : xe_vma_end(vma); 1680 struct xe_pt_stage_unbind_walk xe_walk = { 1681 .base = { 1682 .ops = &xe_pt_stage_unbind_ops, 1683 .shifts = xe_normal_pt_shifts, 1684 .max_level = XE_PT_HIGHEST_LEVEL, 1685 .staging = true, 1686 }, 1687 .tile = tile, 1688 .modified_start = start, 1689 .modified_end = end, 1690 .wupd.entries = entries, 1691 }; 1692 struct xe_pt *pt = vm->pt_root[tile->id]; 1693 1694 (void)xe_pt_walk_shared(&pt->base, pt->level, start, end, 1695 &xe_walk.base); 1696 1697 return xe_walk.wupd.num_used_entries; 1698 } 1699 1700 static void 1701 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1702 struct xe_tile *tile, struct iosys_map *map, 1703 void *ptr, u32 qword_ofs, u32 num_qwords, 1704 const struct xe_vm_pgtable_update *update) 1705 { 1706 struct xe_vm *vm = pt_update->vops->vm; 1707 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level); 1708 int i; 1709 1710 if (map && map->is_iomem) 1711 for (i = 0; i < num_qwords; ++i) 1712 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1713 sizeof(u64), u64, empty); 1714 else if (map) 1715 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1716 num_qwords); 1717 else 1718 memset64(ptr, empty, num_qwords); 1719 } 1720 1721 static void xe_pt_abort_unbind(struct xe_vma *vma, 1722 struct xe_vm_pgtable_update *entries, 1723 u32 num_entries) 1724 { 1725 int i, j; 1726 1727 xe_pt_commit_prepare_locks_assert(vma); 1728 1729 for (i = num_entries - 1; i >= 0; --i) { 1730 struct xe_vm_pgtable_update *entry = &entries[i]; 1731 struct xe_pt *pt = entry->pt; 1732 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1733 1734 pt->num_live += entry->qwords; 1735 1736 if (!pt->level) 1737 continue; 1738 1739 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) 1740 pt_dir->staging[j] = 1741 entries[i].pt_entries[j - entry->ofs].pt ? 1742 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL; 1743 } 1744 } 1745 1746 static void 1747 xe_pt_commit_prepare_unbind(struct xe_vma *vma, 1748 struct xe_vm_pgtable_update *entries, 1749 u32 num_entries) 1750 { 1751 int i, j; 1752 1753 xe_pt_commit_prepare_locks_assert(vma); 1754 1755 for (i = 0; i < num_entries; ++i) { 1756 struct xe_vm_pgtable_update *entry = &entries[i]; 1757 struct xe_pt *pt = entry->pt; 1758 struct xe_pt_dir *pt_dir; 1759 1760 pt->num_live -= entry->qwords; 1761 if (!pt->level) 1762 continue; 1763 1764 pt_dir = as_xe_pt_dir(pt); 1765 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) { 1766 entry->pt_entries[j - entry->ofs].pt = 1767 xe_pt_entry_staging(pt_dir, j); 1768 pt_dir->staging[j] = NULL; 1769 } 1770 } 1771 } 1772 1773 static void 1774 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops, 1775 u64 start, u64 end) 1776 { 1777 u64 last; 1778 u32 current_op = pt_update_ops->current_op; 1779 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1780 int i, level = 0; 1781 1782 for (i = 0; i < pt_op->num_entries; i++) { 1783 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i]; 1784 1785 if (entry->pt->level > level) 1786 level = entry->pt->level; 1787 } 1788 1789 /* Greedy (non-optimal) calculation but simple */ 1790 start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level)); 1791 last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1; 1792 1793 if (start < pt_update_ops->start) 1794 pt_update_ops->start = start; 1795 if (last > pt_update_ops->last) 1796 pt_update_ops->last = last; 1797 } 1798 1799 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma) 1800 { 1801 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0; 1802 1803 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1804 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1805 xe->info.tile_count << shift); 1806 1807 return 0; 1808 } 1809 1810 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile, 1811 struct xe_vm_pgtable_update_ops *pt_update_ops, 1812 struct xe_vma *vma, bool invalidate_on_bind) 1813 { 1814 u32 current_op = pt_update_ops->current_op; 1815 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1816 int err; 1817 1818 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1819 xe_bo_assert_held(xe_vma_bo(vma)); 1820 1821 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1822 "Preparing bind, with range [%llx...%llx)\n", 1823 xe_vma_start(vma), xe_vma_end(vma) - 1); 1824 1825 pt_op->vma = NULL; 1826 pt_op->bind = true; 1827 pt_op->rebind = BIT(tile->id) & vma->tile_present; 1828 1829 err = vma_reserve_fences(tile_to_xe(tile), vma); 1830 if (err) 1831 return err; 1832 1833 err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries, 1834 &pt_op->num_entries, invalidate_on_bind); 1835 if (!err) { 1836 xe_tile_assert(tile, pt_op->num_entries <= 1837 ARRAY_SIZE(pt_op->entries)); 1838 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1839 pt_op->num_entries, true); 1840 1841 xe_pt_update_ops_rfence_interval(pt_update_ops, 1842 xe_vma_start(vma), 1843 xe_vma_end(vma)); 1844 ++pt_update_ops->current_op; 1845 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1846 1847 /* 1848 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1849 * cached PTEs point to freed memory. On LR vms this is done 1850 * automatically when the context is re-enabled by the rebind worker, 1851 * or in fault mode it was invalidated on PTE zapping. 1852 * 1853 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1854 * PTE is already cached in the TLB so it needs to be invalidated. 1855 * On !LR VMs this is done in the ring ops preceding a batch, but on 1856 * LR, in particular on user-space batch buffer chaining, it needs to 1857 * be done here. 1858 */ 1859 if ((!pt_op->rebind && xe_vm_has_scratch(vm) && 1860 xe_vm_in_lr_mode(vm))) 1861 pt_update_ops->needs_invalidation = true; 1862 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm)) 1863 /* We bump also if batch_invalidate_tlb is true */ 1864 vm->tlb_flush_seqno++; 1865 1866 vma->tile_staged |= BIT(tile->id); 1867 pt_op->vma = vma; 1868 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1869 pt_op->num_entries, pt_op->rebind); 1870 } else { 1871 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1872 } 1873 1874 return err; 1875 } 1876 1877 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile, 1878 struct xe_vm_pgtable_update_ops *pt_update_ops, 1879 struct xe_vma *vma, struct xe_svm_range *range) 1880 { 1881 u32 current_op = pt_update_ops->current_op; 1882 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1883 int err; 1884 1885 xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma)); 1886 1887 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1888 "Preparing bind, with range [%lx...%lx)\n", 1889 range->base.itree.start, range->base.itree.last); 1890 1891 pt_op->vma = NULL; 1892 pt_op->bind = true; 1893 pt_op->rebind = BIT(tile->id) & range->tile_present; 1894 1895 err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries, 1896 &pt_op->num_entries, false); 1897 if (!err) { 1898 xe_tile_assert(tile, pt_op->num_entries <= 1899 ARRAY_SIZE(pt_op->entries)); 1900 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1901 pt_op->num_entries, true); 1902 1903 xe_pt_update_ops_rfence_interval(pt_update_ops, 1904 range->base.itree.start, 1905 range->base.itree.last + 1); 1906 ++pt_update_ops->current_op; 1907 pt_update_ops->needs_svm_lock = true; 1908 1909 pt_op->vma = vma; 1910 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1911 pt_op->num_entries, pt_op->rebind); 1912 } else { 1913 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1914 } 1915 1916 return err; 1917 } 1918 1919 static int unbind_op_prepare(struct xe_tile *tile, 1920 struct xe_vm_pgtable_update_ops *pt_update_ops, 1921 struct xe_vma *vma) 1922 { 1923 u32 current_op = pt_update_ops->current_op; 1924 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1925 int err; 1926 1927 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id))) 1928 return 0; 1929 1930 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1931 xe_bo_assert_held(xe_vma_bo(vma)); 1932 1933 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1934 "Preparing unbind, with range [%llx...%llx)\n", 1935 xe_vma_start(vma), xe_vma_end(vma) - 1); 1936 1937 pt_op->vma = vma; 1938 pt_op->bind = false; 1939 pt_op->rebind = false; 1940 1941 err = vma_reserve_fences(tile_to_xe(tile), vma); 1942 if (err) 1943 return err; 1944 1945 pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma), 1946 vma, NULL, pt_op->entries); 1947 1948 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1949 pt_op->num_entries, false); 1950 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma), 1951 xe_vma_end(vma)); 1952 ++pt_update_ops->current_op; 1953 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma); 1954 pt_update_ops->needs_invalidation = true; 1955 1956 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries); 1957 1958 return 0; 1959 } 1960 1961 static bool 1962 xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op *pt_op, 1963 struct xe_svm_range *range) 1964 { 1965 struct xe_vm_pgtable_update *update = pt_op->entries; 1966 1967 XE_WARN_ON(!pt_op->num_entries); 1968 1969 /* 1970 * We can't skip the invalidation if we are removing PTEs that span more 1971 * than the range, do some checks to ensure we are removing PTEs that 1972 * are invalid. 1973 */ 1974 1975 if (pt_op->num_entries > 1) 1976 return false; 1977 1978 if (update->pt->level == 0) 1979 return true; 1980 1981 if (update->pt->level == 1) 1982 return xe_svm_range_size(range) >= SZ_2M; 1983 1984 return false; 1985 } 1986 1987 static int unbind_range_prepare(struct xe_vm *vm, 1988 struct xe_tile *tile, 1989 struct xe_vm_pgtable_update_ops *pt_update_ops, 1990 struct xe_svm_range *range) 1991 { 1992 u32 current_op = pt_update_ops->current_op; 1993 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1994 1995 if (!(range->tile_present & BIT(tile->id))) 1996 return 0; 1997 1998 vm_dbg(&vm->xe->drm, 1999 "Preparing unbind, with range [%lx...%lx)\n", 2000 range->base.itree.start, range->base.itree.last); 2001 2002 pt_op->vma = XE_INVALID_VMA; 2003 pt_op->bind = false; 2004 pt_op->rebind = false; 2005 2006 pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range, 2007 pt_op->entries); 2008 2009 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 2010 pt_op->num_entries, false); 2011 xe_pt_update_ops_rfence_interval(pt_update_ops, range->base.itree.start, 2012 range->base.itree.last + 1); 2013 ++pt_update_ops->current_op; 2014 pt_update_ops->needs_svm_lock = true; 2015 pt_update_ops->needs_invalidation |= xe_vm_has_scratch(vm) || 2016 xe_vm_has_valid_gpu_mapping(tile, range->tile_present, 2017 range->tile_invalidated) || 2018 !xe_pt_op_check_range_skip_invalidation(pt_op, range); 2019 2020 xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries, 2021 pt_op->num_entries); 2022 2023 return 0; 2024 } 2025 2026 static int op_prepare(struct xe_vm *vm, 2027 struct xe_tile *tile, 2028 struct xe_vm_pgtable_update_ops *pt_update_ops, 2029 struct xe_vma_op *op) 2030 { 2031 int err = 0; 2032 2033 xe_vm_assert_held(vm); 2034 2035 switch (op->base.op) { 2036 case DRM_GPUVA_OP_MAP: 2037 if ((!op->map.immediate && xe_vm_in_fault_mode(vm) && 2038 !op->map.invalidate_on_bind) || 2039 op->map.is_cpu_addr_mirror) 2040 break; 2041 2042 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma, 2043 op->map.invalidate_on_bind); 2044 pt_update_ops->wait_vm_kernel = true; 2045 break; 2046 case DRM_GPUVA_OP_REMAP: 2047 { 2048 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2049 2050 if (xe_vma_is_cpu_addr_mirror(old)) 2051 break; 2052 2053 err = unbind_op_prepare(tile, pt_update_ops, old); 2054 2055 if (!err && op->remap.prev) { 2056 err = bind_op_prepare(vm, tile, pt_update_ops, 2057 op->remap.prev, false); 2058 pt_update_ops->wait_vm_bookkeep = true; 2059 } 2060 if (!err && op->remap.next) { 2061 err = bind_op_prepare(vm, tile, pt_update_ops, 2062 op->remap.next, false); 2063 pt_update_ops->wait_vm_bookkeep = true; 2064 } 2065 break; 2066 } 2067 case DRM_GPUVA_OP_UNMAP: 2068 { 2069 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2070 2071 if (xe_vma_is_cpu_addr_mirror(vma)) 2072 break; 2073 2074 err = unbind_op_prepare(tile, pt_update_ops, vma); 2075 break; 2076 } 2077 case DRM_GPUVA_OP_PREFETCH: 2078 { 2079 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2080 2081 if (xe_vma_is_cpu_addr_mirror(vma)) { 2082 struct xe_svm_range *range; 2083 unsigned long i; 2084 2085 xa_for_each(&op->prefetch_range.range, i, range) { 2086 err = bind_range_prepare(vm, tile, pt_update_ops, 2087 vma, range); 2088 if (err) 2089 return err; 2090 } 2091 } else { 2092 err = bind_op_prepare(vm, tile, pt_update_ops, vma, false); 2093 pt_update_ops->wait_vm_kernel = true; 2094 } 2095 break; 2096 } 2097 case DRM_GPUVA_OP_DRIVER: 2098 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 2099 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 2100 2101 err = bind_range_prepare(vm, tile, pt_update_ops, 2102 op->map_range.vma, 2103 op->map_range.range); 2104 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) { 2105 err = unbind_range_prepare(vm, tile, pt_update_ops, 2106 op->unmap_range.range); 2107 } 2108 break; 2109 default: 2110 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2111 } 2112 2113 return err; 2114 } 2115 2116 static void 2117 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops) 2118 { 2119 init_llist_head(&pt_update_ops->deferred); 2120 pt_update_ops->start = ~0x0ull; 2121 pt_update_ops->last = 0x0ull; 2122 } 2123 2124 /** 2125 * xe_pt_update_ops_prepare() - Prepare PT update operations 2126 * @tile: Tile of PT update operations 2127 * @vops: VMA operationa 2128 * 2129 * Prepare PT update operations which includes updating internal PT state, 2130 * allocate memory for page tables, populate page table being pruned in, and 2131 * create PT update operations for leaf insertion / removal. 2132 * 2133 * Return: 0 on success, negative error code on error. 2134 */ 2135 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops) 2136 { 2137 struct xe_vm_pgtable_update_ops *pt_update_ops = 2138 &vops->pt_update_ops[tile->id]; 2139 struct xe_vma_op *op; 2140 int shift = tile->media_gt ? 1 : 0; 2141 int err; 2142 2143 lockdep_assert_held(&vops->vm->lock); 2144 xe_vm_assert_held(vops->vm); 2145 2146 xe_pt_update_ops_init(pt_update_ops); 2147 2148 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm), 2149 tile_to_xe(tile)->info.tile_count << shift); 2150 if (err) 2151 return err; 2152 2153 list_for_each_entry(op, &vops->list, link) { 2154 err = op_prepare(vops->vm, tile, pt_update_ops, op); 2155 2156 if (err) 2157 return err; 2158 } 2159 2160 xe_tile_assert(tile, pt_update_ops->current_op <= 2161 pt_update_ops->num_ops); 2162 2163 #ifdef TEST_VM_OPS_ERROR 2164 if (vops->inject_error && 2165 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE) 2166 return -ENOSPC; 2167 #endif 2168 2169 return 0; 2170 } 2171 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO); 2172 2173 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2174 struct xe_vm_pgtable_update_ops *pt_update_ops, 2175 struct xe_vma *vma, struct dma_fence *fence, 2176 struct dma_fence *fence2, bool invalidate_on_bind) 2177 { 2178 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2179 2180 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2181 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2182 pt_update_ops->wait_vm_bookkeep ? 2183 DMA_RESV_USAGE_KERNEL : 2184 DMA_RESV_USAGE_BOOKKEEP); 2185 if (fence2) 2186 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2187 pt_update_ops->wait_vm_bookkeep ? 2188 DMA_RESV_USAGE_KERNEL : 2189 DMA_RESV_USAGE_BOOKKEEP); 2190 } 2191 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2192 WRITE_ONCE(vma->tile_present, vma->tile_present | BIT(tile->id)); 2193 if (invalidate_on_bind) 2194 WRITE_ONCE(vma->tile_invalidated, 2195 vma->tile_invalidated | BIT(tile->id)); 2196 else 2197 WRITE_ONCE(vma->tile_invalidated, 2198 vma->tile_invalidated & ~BIT(tile->id)); 2199 vma->tile_staged &= ~BIT(tile->id); 2200 if (xe_vma_is_userptr(vma)) { 2201 lockdep_assert_held_read(&vm->userptr.notifier_lock); 2202 to_userptr_vma(vma)->userptr.initial_bind = true; 2203 } 2204 2205 /* 2206 * Kick rebind worker if this bind triggers preempt fences and not in 2207 * the rebind worker 2208 */ 2209 if (pt_update_ops->wait_vm_bookkeep && 2210 xe_vm_in_preempt_fence_mode(vm) && 2211 !current->mm) 2212 xe_vm_queue_rebind_worker(vm); 2213 } 2214 2215 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2216 struct xe_vm_pgtable_update_ops *pt_update_ops, 2217 struct xe_vma *vma, struct dma_fence *fence, 2218 struct dma_fence *fence2) 2219 { 2220 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2221 2222 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2223 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2224 pt_update_ops->wait_vm_bookkeep ? 2225 DMA_RESV_USAGE_KERNEL : 2226 DMA_RESV_USAGE_BOOKKEEP); 2227 if (fence2) 2228 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2229 pt_update_ops->wait_vm_bookkeep ? 2230 DMA_RESV_USAGE_KERNEL : 2231 DMA_RESV_USAGE_BOOKKEEP); 2232 } 2233 vma->tile_present &= ~BIT(tile->id); 2234 if (!vma->tile_present) { 2235 list_del_init(&vma->combined_links.rebind); 2236 if (xe_vma_is_userptr(vma)) { 2237 lockdep_assert_held_read(&vm->userptr.notifier_lock); 2238 2239 spin_lock(&vm->userptr.invalidated_lock); 2240 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 2241 spin_unlock(&vm->userptr.invalidated_lock); 2242 } 2243 } 2244 } 2245 2246 static void range_present_and_invalidated_tile(struct xe_vm *vm, 2247 struct xe_svm_range *range, 2248 u8 tile_id) 2249 { 2250 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2251 2252 lockdep_assert_held(&vm->svm.gpusvm.notifier_lock); 2253 2254 WRITE_ONCE(range->tile_present, range->tile_present | BIT(tile_id)); 2255 WRITE_ONCE(range->tile_invalidated, range->tile_invalidated & ~BIT(tile_id)); 2256 } 2257 2258 static void op_commit(struct xe_vm *vm, 2259 struct xe_tile *tile, 2260 struct xe_vm_pgtable_update_ops *pt_update_ops, 2261 struct xe_vma_op *op, struct dma_fence *fence, 2262 struct dma_fence *fence2) 2263 { 2264 xe_vm_assert_held(vm); 2265 2266 switch (op->base.op) { 2267 case DRM_GPUVA_OP_MAP: 2268 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) || 2269 op->map.is_cpu_addr_mirror) 2270 break; 2271 2272 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence, 2273 fence2, op->map.invalidate_on_bind); 2274 break; 2275 case DRM_GPUVA_OP_REMAP: 2276 { 2277 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2278 2279 if (xe_vma_is_cpu_addr_mirror(old)) 2280 break; 2281 2282 unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2); 2283 2284 if (op->remap.prev) 2285 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev, 2286 fence, fence2, false); 2287 if (op->remap.next) 2288 bind_op_commit(vm, tile, pt_update_ops, op->remap.next, 2289 fence, fence2, false); 2290 break; 2291 } 2292 case DRM_GPUVA_OP_UNMAP: 2293 { 2294 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2295 2296 if (!xe_vma_is_cpu_addr_mirror(vma)) 2297 unbind_op_commit(vm, tile, pt_update_ops, vma, fence, 2298 fence2); 2299 break; 2300 } 2301 case DRM_GPUVA_OP_PREFETCH: 2302 { 2303 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2304 2305 if (xe_vma_is_cpu_addr_mirror(vma)) { 2306 struct xe_svm_range *range = NULL; 2307 unsigned long i; 2308 2309 xa_for_each(&op->prefetch_range.range, i, range) 2310 range_present_and_invalidated_tile(vm, range, tile->id); 2311 } else { 2312 bind_op_commit(vm, tile, pt_update_ops, vma, fence, 2313 fence2, false); 2314 } 2315 break; 2316 } 2317 case DRM_GPUVA_OP_DRIVER: 2318 { 2319 /* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2320 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) 2321 range_present_and_invalidated_tile(vm, op->map_range.range, tile->id); 2322 else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) 2323 WRITE_ONCE(op->unmap_range.range->tile_present, 2324 op->unmap_range.range->tile_present & 2325 ~BIT(tile->id)); 2326 2327 break; 2328 } 2329 default: 2330 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2331 } 2332 } 2333 2334 static const struct xe_migrate_pt_update_ops migrate_ops = { 2335 .populate = xe_vm_populate_pgtable, 2336 .clear = xe_migrate_clear_pgtable_callback, 2337 .pre_commit = xe_pt_pre_commit, 2338 }; 2339 2340 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = { 2341 .populate = xe_vm_populate_pgtable, 2342 .clear = xe_migrate_clear_pgtable_callback, 2343 .pre_commit = xe_pt_userptr_pre_commit, 2344 }; 2345 2346 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM) 2347 static const struct xe_migrate_pt_update_ops svm_migrate_ops = { 2348 .populate = xe_vm_populate_pgtable, 2349 .clear = xe_migrate_clear_pgtable_callback, 2350 .pre_commit = xe_pt_svm_pre_commit, 2351 }; 2352 #else 2353 static const struct xe_migrate_pt_update_ops svm_migrate_ops; 2354 #endif 2355 2356 /** 2357 * xe_pt_update_ops_run() - Run PT update operations 2358 * @tile: Tile of PT update operations 2359 * @vops: VMA operationa 2360 * 2361 * Run PT update operations which includes committing internal PT state changes, 2362 * creating job for PT update operations for leaf insertion / removal, and 2363 * installing job fence in various places. 2364 * 2365 * Return: fence on success, negative ERR_PTR on error. 2366 */ 2367 struct dma_fence * 2368 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops) 2369 { 2370 struct xe_vm *vm = vops->vm; 2371 struct xe_vm_pgtable_update_ops *pt_update_ops = 2372 &vops->pt_update_ops[tile->id]; 2373 struct dma_fence *fence, *ifence, *mfence; 2374 struct xe_gt_tlb_inval_job *ijob = NULL, *mjob = NULL; 2375 struct dma_fence **fences = NULL; 2376 struct dma_fence_array *cf = NULL; 2377 struct xe_range_fence *rfence; 2378 struct xe_vma_op *op; 2379 int err = 0, i; 2380 struct xe_migrate_pt_update update = { 2381 .ops = pt_update_ops->needs_svm_lock ? 2382 &svm_migrate_ops : 2383 pt_update_ops->needs_userptr_lock ? 2384 &userptr_migrate_ops : 2385 &migrate_ops, 2386 .vops = vops, 2387 .tile_id = tile->id, 2388 }; 2389 2390 lockdep_assert_held(&vm->lock); 2391 xe_vm_assert_held(vm); 2392 2393 if (!pt_update_ops->current_op) { 2394 xe_tile_assert(tile, xe_vm_in_fault_mode(vm)); 2395 2396 return dma_fence_get_stub(); 2397 } 2398 2399 #ifdef TEST_VM_OPS_ERROR 2400 if (vops->inject_error && 2401 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN) 2402 return ERR_PTR(-ENOSPC); 2403 #endif 2404 2405 if (pt_update_ops->needs_invalidation) { 2406 ijob = xe_gt_tlb_inval_job_create(pt_update_ops->q, 2407 tile->primary_gt, 2408 pt_update_ops->start, 2409 pt_update_ops->last, 2410 vm->usm.asid); 2411 if (IS_ERR(ijob)) { 2412 err = PTR_ERR(ijob); 2413 goto kill_vm_tile1; 2414 } 2415 update.ijob = ijob; 2416 2417 if (tile->media_gt) { 2418 mjob = xe_gt_tlb_inval_job_create(pt_update_ops->q, 2419 tile->media_gt, 2420 pt_update_ops->start, 2421 pt_update_ops->last, 2422 vm->usm.asid); 2423 if (IS_ERR(mjob)) { 2424 err = PTR_ERR(mjob); 2425 goto free_ijob; 2426 } 2427 update.mjob = mjob; 2428 2429 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL); 2430 if (!fences) { 2431 err = -ENOMEM; 2432 goto free_ijob; 2433 } 2434 cf = dma_fence_array_alloc(2); 2435 if (!cf) { 2436 err = -ENOMEM; 2437 goto free_ijob; 2438 } 2439 } 2440 } 2441 2442 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 2443 if (!rfence) { 2444 err = -ENOMEM; 2445 goto free_ijob; 2446 } 2447 2448 fence = xe_migrate_update_pgtables(tile->migrate, &update); 2449 if (IS_ERR(fence)) { 2450 err = PTR_ERR(fence); 2451 goto free_rfence; 2452 } 2453 2454 /* Point of no return - VM killed if failure after this */ 2455 for (i = 0; i < pt_update_ops->current_op; ++i) { 2456 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2457 2458 xe_pt_commit(pt_op->vma, pt_op->entries, 2459 pt_op->num_entries, &pt_update_ops->deferred); 2460 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */ 2461 } 2462 2463 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence, 2464 &xe_range_fence_kfree_ops, 2465 pt_update_ops->start, 2466 pt_update_ops->last, fence)) 2467 dma_fence_wait(fence, false); 2468 2469 /* tlb invalidation must be done before signaling unbind/rebind */ 2470 if (ijob) { 2471 struct dma_fence *__fence; 2472 2473 ifence = xe_gt_tlb_inval_job_push(ijob, tile->migrate, fence); 2474 __fence = ifence; 2475 2476 if (mjob) { 2477 fences[0] = ifence; 2478 mfence = xe_gt_tlb_inval_job_push(mjob, tile->migrate, 2479 fence); 2480 fences[1] = mfence; 2481 2482 dma_fence_array_init(cf, 2, fences, 2483 vm->composite_fence_ctx, 2484 vm->composite_fence_seqno++, 2485 false); 2486 __fence = &cf->base; 2487 } 2488 2489 dma_fence_put(fence); 2490 fence = __fence; 2491 } 2492 2493 if (!mjob) { 2494 dma_resv_add_fence(xe_vm_resv(vm), fence, 2495 pt_update_ops->wait_vm_bookkeep ? 2496 DMA_RESV_USAGE_KERNEL : 2497 DMA_RESV_USAGE_BOOKKEEP); 2498 2499 list_for_each_entry(op, &vops->list, link) 2500 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL); 2501 } else { 2502 dma_resv_add_fence(xe_vm_resv(vm), ifence, 2503 pt_update_ops->wait_vm_bookkeep ? 2504 DMA_RESV_USAGE_KERNEL : 2505 DMA_RESV_USAGE_BOOKKEEP); 2506 2507 dma_resv_add_fence(xe_vm_resv(vm), mfence, 2508 pt_update_ops->wait_vm_bookkeep ? 2509 DMA_RESV_USAGE_KERNEL : 2510 DMA_RESV_USAGE_BOOKKEEP); 2511 2512 list_for_each_entry(op, &vops->list, link) 2513 op_commit(vops->vm, tile, pt_update_ops, op, ifence, 2514 mfence); 2515 } 2516 2517 if (pt_update_ops->needs_svm_lock) 2518 xe_svm_notifier_unlock(vm); 2519 if (pt_update_ops->needs_userptr_lock) 2520 up_read(&vm->userptr.notifier_lock); 2521 2522 xe_gt_tlb_inval_job_put(mjob); 2523 xe_gt_tlb_inval_job_put(ijob); 2524 2525 return fence; 2526 2527 free_rfence: 2528 kfree(rfence); 2529 free_ijob: 2530 kfree(cf); 2531 kfree(fences); 2532 xe_gt_tlb_inval_job_put(mjob); 2533 xe_gt_tlb_inval_job_put(ijob); 2534 kill_vm_tile1: 2535 if (err != -EAGAIN && err != -ENODATA && tile->id) 2536 xe_vm_kill(vops->vm, false); 2537 2538 return ERR_PTR(err); 2539 } 2540 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO); 2541 2542 /** 2543 * xe_pt_update_ops_fini() - Finish PT update operations 2544 * @tile: Tile of PT update operations 2545 * @vops: VMA operations 2546 * 2547 * Finish PT update operations by committing to destroy page table memory 2548 */ 2549 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops) 2550 { 2551 struct xe_vm_pgtable_update_ops *pt_update_ops = 2552 &vops->pt_update_ops[tile->id]; 2553 int i; 2554 2555 lockdep_assert_held(&vops->vm->lock); 2556 xe_vm_assert_held(vops->vm); 2557 2558 for (i = 0; i < pt_update_ops->current_op; ++i) { 2559 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2560 2561 xe_pt_free_bind(pt_op->entries, pt_op->num_entries); 2562 } 2563 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred); 2564 } 2565 2566 /** 2567 * xe_pt_update_ops_abort() - Abort PT update operations 2568 * @tile: Tile of PT update operations 2569 * @vops: VMA operationa 2570 * 2571 * Abort PT update operations by unwinding internal PT state 2572 */ 2573 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops) 2574 { 2575 struct xe_vm_pgtable_update_ops *pt_update_ops = 2576 &vops->pt_update_ops[tile->id]; 2577 int i; 2578 2579 lockdep_assert_held(&vops->vm->lock); 2580 xe_vm_assert_held(vops->vm); 2581 2582 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) { 2583 struct xe_vm_pgtable_update_op *pt_op = 2584 &pt_update_ops->ops[i]; 2585 2586 if (!pt_op->vma || i >= pt_update_ops->current_op) 2587 continue; 2588 2589 if (pt_op->bind) 2590 xe_pt_abort_bind(pt_op->vma, pt_op->entries, 2591 pt_op->num_entries, 2592 pt_op->rebind); 2593 else 2594 xe_pt_abort_unbind(pt_op->vma, pt_op->entries, 2595 pt_op->num_entries); 2596 } 2597 2598 xe_pt_update_ops_fini(tile, vops); 2599 } 2600