1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_pt.h" 7 8 #include "xe_bo.h" 9 #include "xe_device.h" 10 #include "xe_gt.h" 11 #include "xe_gt_tlb_invalidation.h" 12 #include "xe_migrate.h" 13 #include "xe_pt_types.h" 14 #include "xe_pt_walk.h" 15 #include "xe_res_cursor.h" 16 #include "xe_trace.h" 17 #include "xe_ttm_stolen_mgr.h" 18 #include "xe_vm.h" 19 20 struct xe_pt_dir { 21 struct xe_pt pt; 22 /** @dir: Directory structure for the xe_pt_walk functionality */ 23 struct xe_ptw_dir dir; 24 }; 25 26 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 27 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 28 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 29 #else 30 #define xe_pt_set_addr(__xe_pt, __addr) 31 #define xe_pt_addr(__xe_pt) 0ull 32 #endif 33 34 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 35 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 36 37 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 38 39 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 40 { 41 return container_of(pt, struct xe_pt_dir, pt); 42 } 43 44 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) 45 { 46 return container_of(pt_dir->dir.entries[index], struct xe_pt, base); 47 } 48 49 /** 50 * gen8_pde_encode() - Encode a page-table directory entry pointing to 51 * another page-table. 52 * @bo: The page-table bo of the page-table to point to. 53 * @bo_offset: Offset in the page-table bo to point to. 54 * @level: The cache level indicating the caching of @bo. 55 * 56 * TODO: Rename. 57 * 58 * Return: An encoded page directory entry. No errors. 59 */ 60 u64 gen8_pde_encode(struct xe_bo *bo, u64 bo_offset, 61 const enum xe_cache_level level) 62 { 63 u64 pde; 64 bool is_vram; 65 66 pde = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE, &is_vram); 67 pde |= XE_PAGE_PRESENT | XE_PAGE_RW; 68 69 XE_WARN_ON(IS_DGFX(xe_bo_device(bo)) && !is_vram); 70 71 /* FIXME: I don't think the PPAT handling is correct for MTL */ 72 73 if (level != XE_CACHE_NONE) 74 pde |= PPAT_CACHED_PDE; 75 else 76 pde |= PPAT_UNCACHED; 77 78 return pde; 79 } 80 81 static dma_addr_t vma_addr(struct xe_vma *vma, u64 offset, 82 size_t page_size, bool *is_vram) 83 { 84 if (xe_vma_is_userptr(vma)) { 85 struct xe_res_cursor cur; 86 u64 page; 87 88 *is_vram = false; 89 page = offset >> PAGE_SHIFT; 90 offset &= (PAGE_SIZE - 1); 91 92 xe_res_first_sg(vma->userptr.sg, page << PAGE_SHIFT, page_size, 93 &cur); 94 return xe_res_dma(&cur) + offset; 95 } else { 96 return xe_bo_addr(vma->bo, offset, page_size, is_vram); 97 } 98 } 99 100 static u64 __gen8_pte_encode(u64 pte, enum xe_cache_level cache, u32 flags, 101 u32 pt_level) 102 { 103 pte |= XE_PAGE_PRESENT | XE_PAGE_RW; 104 105 if (unlikely(flags & XE_PTE_READ_ONLY)) 106 pte &= ~XE_PAGE_RW; 107 108 /* FIXME: I don't think the PPAT handling is correct for MTL */ 109 110 switch (cache) { 111 case XE_CACHE_NONE: 112 pte |= PPAT_UNCACHED; 113 break; 114 case XE_CACHE_WT: 115 pte |= PPAT_DISPLAY_ELLC; 116 break; 117 default: 118 pte |= PPAT_CACHED; 119 break; 120 } 121 122 if (pt_level == 1) 123 pte |= XE_PDE_PS_2M; 124 else if (pt_level == 2) 125 pte |= XE_PDPE_PS_1G; 126 127 /* XXX: Does hw support 1 GiB pages? */ 128 XE_BUG_ON(pt_level > 2); 129 130 return pte; 131 } 132 133 /** 134 * gen8_pte_encode() - Encode a page-table entry pointing to memory. 135 * @vma: The vma representing the memory to point to. 136 * @bo: If @vma is NULL, representing the memory to point to. 137 * @offset: The offset into @vma or @bo. 138 * @cache: The cache level indicating 139 * @flags: Currently only supports PTE_READ_ONLY for read-only access. 140 * @pt_level: The page-table level of the page-table into which the entry 141 * is to be inserted. 142 * 143 * TODO: Rename. 144 * 145 * Return: An encoded page-table entry. No errors. 146 */ 147 u64 gen8_pte_encode(struct xe_vma *vma, struct xe_bo *bo, 148 u64 offset, enum xe_cache_level cache, 149 u32 flags, u32 pt_level) 150 { 151 u64 pte; 152 bool is_vram; 153 154 if (vma) 155 pte = vma_addr(vma, offset, XE_PAGE_SIZE, &is_vram); 156 else 157 pte = xe_bo_addr(bo, offset, XE_PAGE_SIZE, &is_vram); 158 159 if (is_vram) { 160 pte |= XE_PPGTT_PTE_LM; 161 if (vma && vma->use_atomic_access_pte_bit) 162 pte |= XE_USM_PPGTT_PTE_AE; 163 } 164 165 return __gen8_pte_encode(pte, cache, flags, pt_level); 166 } 167 168 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 169 unsigned int level) 170 { 171 u8 id = tile->id; 172 173 if (!vm->scratch_bo[id]) 174 return 0; 175 176 if (level == 0) { 177 u64 empty = gen8_pte_encode(NULL, vm->scratch_bo[id], 0, 178 XE_CACHE_WB, 0, 0); 179 180 return empty; 181 } else { 182 return gen8_pde_encode(vm->scratch_pt[id][level - 1]->bo, 0, 183 XE_CACHE_WB); 184 } 185 } 186 187 /** 188 * xe_pt_create() - Create a page-table. 189 * @vm: The vm to create for. 190 * @tile: The tile to create for. 191 * @level: The page-table level. 192 * 193 * Allocate and initialize a single struct xe_pt metadata structure. Also 194 * create the corresponding page-table bo, but don't initialize it. If the 195 * level is grater than zero, then it's assumed to be a directory page- 196 * table and the directory structure is also allocated and initialized to 197 * NULL pointers. 198 * 199 * Return: A valid struct xe_pt pointer on success, Pointer error code on 200 * error. 201 */ 202 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 203 unsigned int level) 204 { 205 struct xe_pt *pt; 206 struct xe_bo *bo; 207 size_t size; 208 int err; 209 210 size = !level ? sizeof(struct xe_pt) : sizeof(struct xe_pt_dir) + 211 XE_PDES * sizeof(struct xe_ptw *); 212 pt = kzalloc(size, GFP_KERNEL); 213 if (!pt) 214 return ERR_PTR(-ENOMEM); 215 216 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 217 ttm_bo_type_kernel, 218 XE_BO_CREATE_VRAM_IF_DGFX(tile) | 219 XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT | 220 XE_BO_CREATE_PINNED_BIT | 221 XE_BO_CREATE_NO_RESV_EVICT); 222 if (IS_ERR(bo)) { 223 err = PTR_ERR(bo); 224 goto err_kfree; 225 } 226 pt->bo = bo; 227 pt->level = level; 228 pt->base.dir = level ? &as_xe_pt_dir(pt)->dir : NULL; 229 230 XE_BUG_ON(level > XE_VM_MAX_LEVEL); 231 232 return pt; 233 234 err_kfree: 235 kfree(pt); 236 return ERR_PTR(err); 237 } 238 239 /** 240 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 241 * entries. 242 * @tile: The tile the scratch pagetable of which to use. 243 * @vm: The vm we populate for. 244 * @pt: The pagetable the bo of which to initialize. 245 * 246 * Populate the page-table bo of @pt with entries pointing into the tile's 247 * scratch page-table tree if any. Otherwise populate with zeros. 248 */ 249 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 250 struct xe_pt *pt) 251 { 252 struct iosys_map *map = &pt->bo->vmap; 253 u64 empty; 254 int i; 255 256 if (!vm->scratch_bo[tile->id]) { 257 /* 258 * FIXME: Some memory is allocated already allocated to zero? 259 * Find out which memory that is and avoid this memset... 260 */ 261 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 262 } else { 263 empty = __xe_pt_empty_pte(tile, vm, pt->level); 264 for (i = 0; i < XE_PDES; i++) 265 xe_pt_write(vm->xe, map, i, empty); 266 } 267 } 268 269 /** 270 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 271 * a page-table at a certain level. 272 * @level: The level. 273 * 274 * Return: The ilog2 value of the size of the address range of a page-table 275 * at level @level. 276 */ 277 unsigned int xe_pt_shift(unsigned int level) 278 { 279 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 280 } 281 282 /** 283 * xe_pt_destroy() - Destroy a page-table tree. 284 * @pt: The root of the page-table tree to destroy. 285 * @flags: vm flags. Currently unused. 286 * @deferred: List head of lockless list for deferred putting. NULL for 287 * immediate putting. 288 * 289 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 290 * and finally frees @pt. TODO: Can we remove the @flags argument? 291 */ 292 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 293 { 294 int i; 295 296 if (!pt) 297 return; 298 299 XE_BUG_ON(!list_empty(&pt->bo->vmas)); 300 xe_bo_unpin(pt->bo); 301 xe_bo_put_deferred(pt->bo, deferred); 302 303 if (pt->level > 0 && pt->num_live) { 304 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 305 306 for (i = 0; i < XE_PDES; i++) { 307 if (xe_pt_entry(pt_dir, i)) 308 xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, 309 deferred); 310 } 311 } 312 kfree(pt); 313 } 314 315 /** 316 * xe_pt_create_scratch() - Setup a scratch memory pagetable tree for the 317 * given tile and vm. 318 * @xe: xe device. 319 * @tile: tile to set up for. 320 * @vm: vm to set up for. 321 * 322 * Sets up a pagetable tree with one page-table per level and a single 323 * leaf bo. All pagetable entries point to the single page-table or, 324 * for L0, the single bo one level below. 325 * 326 * Return: 0 on success, negative error code on error. 327 */ 328 int xe_pt_create_scratch(struct xe_device *xe, struct xe_tile *tile, 329 struct xe_vm *vm) 330 { 331 u8 id = tile->id; 332 unsigned int flags; 333 int i; 334 335 /* 336 * So we don't need to worry about 64K TLB hints when dealing with 337 * scratch entires, rather keep the scratch page in system memory on 338 * platforms where 64K pages are needed for VRAM. 339 */ 340 flags = XE_BO_CREATE_PINNED_BIT; 341 if (vm->flags & XE_VM_FLAGS_64K) 342 flags |= XE_BO_CREATE_SYSTEM_BIT; 343 else 344 flags |= XE_BO_CREATE_VRAM_IF_DGFX(tile); 345 346 vm->scratch_bo[id] = xe_bo_create_pin_map(xe, tile, vm, SZ_4K, 347 ttm_bo_type_kernel, 348 flags); 349 if (IS_ERR(vm->scratch_bo[id])) 350 return PTR_ERR(vm->scratch_bo[id]); 351 352 xe_map_memset(vm->xe, &vm->scratch_bo[id]->vmap, 0, 0, 353 vm->scratch_bo[id]->size); 354 355 for (i = 0; i < vm->pt_root[id]->level; i++) { 356 vm->scratch_pt[id][i] = xe_pt_create(vm, tile, i); 357 if (IS_ERR(vm->scratch_pt[id][i])) 358 return PTR_ERR(vm->scratch_pt[id][i]); 359 360 xe_pt_populate_empty(tile, vm, vm->scratch_pt[id][i]); 361 } 362 363 return 0; 364 } 365 366 /** 367 * DOC: Pagetable building 368 * 369 * Below we use the term "page-table" for both page-directories, containing 370 * pointers to lower level page-directories or page-tables, and level 0 371 * page-tables that contain only page-table-entries pointing to memory pages. 372 * 373 * When inserting an address range in an already existing page-table tree 374 * there will typically be a set of page-tables that are shared with other 375 * address ranges, and a set that are private to this address range. 376 * The set of shared page-tables can be at most two per level, 377 * and those can't be updated immediately because the entries of those 378 * page-tables may still be in use by the gpu for other mappings. Therefore 379 * when inserting entries into those, we instead stage those insertions by 380 * adding insertion data into struct xe_vm_pgtable_update structures. This 381 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 382 * added in a separate commit step. CPU-data is committed while still under the 383 * vm lock, the object lock and for userptr, the notifier lock in read mode. 384 * The GPU async data is committed either by the GPU or CPU after fulfilling 385 * relevant dependencies. 386 * For non-shared page-tables (and, in fact, for shared ones that aren't 387 * existing at the time of staging), we add the data in-place without the 388 * special update structures. This private part of the page-table tree will 389 * remain disconnected from the vm page-table tree until data is committed to 390 * the shared page tables of the vm tree in the commit phase. 391 */ 392 393 struct xe_pt_update { 394 /** @update: The update structure we're building for this parent. */ 395 struct xe_vm_pgtable_update *update; 396 /** @parent: The parent. Used to detect a parent change. */ 397 struct xe_pt *parent; 398 /** @preexisting: Whether the parent was pre-existing or allocated */ 399 bool preexisting; 400 }; 401 402 struct xe_pt_stage_bind_walk { 403 /** base: The base class. */ 404 struct xe_pt_walk base; 405 406 /* Input parameters for the walk */ 407 /** @vm: The vm we're building for. */ 408 struct xe_vm *vm; 409 /** @tile: The tile we're building for. */ 410 struct xe_tile *tile; 411 /** @cache: Desired cache level for the ptes */ 412 enum xe_cache_level cache; 413 /** @default_pte: PTE flag only template. No address is associated */ 414 u64 default_pte; 415 /** @dma_offset: DMA offset to add to the PTE. */ 416 u64 dma_offset; 417 /** 418 * @needs_64k: This address range enforces 64K alignment and 419 * granularity. 420 */ 421 bool needs_64K; 422 /** 423 * @pte_flags: Flags determining PTE setup. These are not flags 424 * encoded directly in the PTE. See @default_pte for those. 425 */ 426 u32 pte_flags; 427 428 /* Also input, but is updated during the walk*/ 429 /** @curs: The DMA address cursor. */ 430 struct xe_res_cursor *curs; 431 /** @va_curs_start: The Virtual address coresponding to @curs->start */ 432 u64 va_curs_start; 433 434 /* Output */ 435 struct xe_walk_update { 436 /** @wupd.entries: Caller provided storage. */ 437 struct xe_vm_pgtable_update *entries; 438 /** @wupd.num_used_entries: Number of update @entries used. */ 439 unsigned int num_used_entries; 440 /** @wupd.updates: Tracks the update entry at a given level */ 441 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 442 } wupd; 443 444 /* Walk state */ 445 /** 446 * @l0_end_addr: The end address of the current l0 leaf. Used for 447 * 64K granularity detection. 448 */ 449 u64 l0_end_addr; 450 /** @addr_64K: The start address of the current 64K chunk. */ 451 u64 addr_64K; 452 /** @found_64: Whether @add_64K actually points to a 64K chunk. */ 453 bool found_64K; 454 }; 455 456 static int 457 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 458 pgoff_t offset, bool alloc_entries) 459 { 460 struct xe_pt_update *upd = &wupd->updates[parent->level]; 461 struct xe_vm_pgtable_update *entry; 462 463 /* 464 * For *each level*, we could only have one active 465 * struct xt_pt_update at any one time. Once we move on to a 466 * new parent and page-directory, the old one is complete, and 467 * updates are either already stored in the build tree or in 468 * @wupd->entries 469 */ 470 if (likely(upd->parent == parent)) 471 return 0; 472 473 upd->parent = parent; 474 upd->preexisting = true; 475 476 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 477 return -EINVAL; 478 479 entry = wupd->entries + wupd->num_used_entries++; 480 upd->update = entry; 481 entry->ofs = offset; 482 entry->pt_bo = parent->bo; 483 entry->pt = parent; 484 entry->flags = 0; 485 entry->qwords = 0; 486 487 if (alloc_entries) { 488 entry->pt_entries = kmalloc_array(XE_PDES, 489 sizeof(*entry->pt_entries), 490 GFP_KERNEL); 491 if (!entry->pt_entries) 492 return -ENOMEM; 493 } 494 495 return 0; 496 } 497 498 /* 499 * NOTE: This is a very frequently called function so we allow ourselves 500 * to annotate (using branch prediction hints) the fastpath of updating a 501 * non-pre-existing pagetable with leaf ptes. 502 */ 503 static int 504 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 505 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 506 { 507 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 508 struct xe_pt_update *child_upd = xe_child ? 509 &xe_walk->wupd.updates[xe_child->level] : NULL; 510 int ret; 511 512 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 513 if (unlikely(ret)) 514 return ret; 515 516 /* 517 * Register this new pagetable so that it won't be recognized as 518 * a shared pagetable by a subsequent insertion. 519 */ 520 if (unlikely(child_upd)) { 521 child_upd->update = NULL; 522 child_upd->parent = xe_child; 523 child_upd->preexisting = false; 524 } 525 526 if (likely(!upd->preexisting)) { 527 /* Continue building a non-connected subtree. */ 528 struct iosys_map *map = &parent->bo->vmap; 529 530 if (unlikely(xe_child)) 531 parent->base.dir->entries[offset] = &xe_child->base; 532 533 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 534 parent->num_live++; 535 } else { 536 /* Shared pt. Stage update. */ 537 unsigned int idx; 538 struct xe_vm_pgtable_update *entry = upd->update; 539 540 idx = offset - entry->ofs; 541 entry->pt_entries[idx].pt = xe_child; 542 entry->pt_entries[idx].pte = pte; 543 entry->qwords++; 544 } 545 546 return 0; 547 } 548 549 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 550 struct xe_pt_stage_bind_walk *xe_walk) 551 { 552 u64 size, dma; 553 554 /* Does the virtual range requested cover a huge pte? */ 555 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 556 return false; 557 558 /* Does the DMA segment cover the whole pte? */ 559 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 560 return false; 561 562 /* Is the DMA address huge PTE size aligned? */ 563 size = next - addr; 564 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 565 566 return IS_ALIGNED(dma, size); 567 } 568 569 /* 570 * Scan the requested mapping to check whether it can be done entirely 571 * with 64K PTEs. 572 */ 573 static bool 574 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 575 { 576 struct xe_res_cursor curs = *xe_walk->curs; 577 578 if (!IS_ALIGNED(addr, SZ_64K)) 579 return false; 580 581 if (next > xe_walk->l0_end_addr) 582 return false; 583 584 xe_res_next(&curs, addr - xe_walk->va_curs_start); 585 for (; addr < next; addr += SZ_64K) { 586 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 587 return false; 588 589 xe_res_next(&curs, SZ_64K); 590 } 591 592 return addr == next; 593 } 594 595 /* 596 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 597 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 598 * device to the PTE. 599 * This function determines whether the address is part of such a 600 * segment. For VRAM in normal pagetables, this is strictly necessary on 601 * some devices. 602 */ 603 static bool 604 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 605 { 606 /* Address is within an already found 64k region */ 607 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 608 return true; 609 610 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 611 xe_walk->addr_64K = addr; 612 613 return xe_walk->found_64K; 614 } 615 616 static int 617 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 618 unsigned int level, u64 addr, u64 next, 619 struct xe_ptw **child, 620 enum page_walk_action *action, 621 struct xe_pt_walk *walk) 622 { 623 struct xe_pt_stage_bind_walk *xe_walk = 624 container_of(walk, typeof(*xe_walk), base); 625 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 626 struct xe_pt *xe_child; 627 bool covers; 628 int ret = 0; 629 u64 pte; 630 631 /* Is this a leaf entry ?*/ 632 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 633 struct xe_res_cursor *curs = xe_walk->curs; 634 635 XE_WARN_ON(xe_walk->va_curs_start != addr); 636 637 pte = __gen8_pte_encode(xe_res_dma(curs) + xe_walk->dma_offset, 638 xe_walk->cache, xe_walk->pte_flags, 639 level); 640 pte |= xe_walk->default_pte; 641 642 /* 643 * Set the GEN12_PTE_PS64 hint if possible, otherwise if 644 * this device *requires* 64K PTE size for VRAM, fail. 645 */ 646 if (level == 0 && !xe_parent->is_compact) { 647 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) 648 pte |= XE_PTE_PS64; 649 else if (XE_WARN_ON(xe_walk->needs_64K)) 650 return -EINVAL; 651 } 652 653 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 654 if (unlikely(ret)) 655 return ret; 656 657 xe_res_next(curs, next - addr); 658 xe_walk->va_curs_start = next; 659 *action = ACTION_CONTINUE; 660 661 return ret; 662 } 663 664 /* 665 * Descending to lower level. Determine if we need to allocate a 666 * new page table or -directory, which we do if there is no 667 * previous one or there is one we can completely replace. 668 */ 669 if (level == 1) { 670 walk->shifts = xe_normal_pt_shifts; 671 xe_walk->l0_end_addr = next; 672 } 673 674 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 675 if (covers || !*child) { 676 u64 flags = 0; 677 678 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 679 if (IS_ERR(xe_child)) 680 return PTR_ERR(xe_child); 681 682 xe_pt_set_addr(xe_child, 683 round_down(addr, 1ull << walk->shifts[level])); 684 685 if (!covers) 686 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 687 688 *child = &xe_child->base; 689 690 /* 691 * Prefer the compact pagetable layout for L0 if possible. 692 * TODO: Suballocate the pt bo to avoid wasting a lot of 693 * memory. 694 */ 695 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 696 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 697 walk->shifts = xe_compact_pt_shifts; 698 flags |= XE_PDE_64K; 699 xe_child->is_compact = true; 700 } 701 702 pte = gen8_pde_encode(xe_child->bo, 0, xe_walk->cache) | flags; 703 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 704 pte); 705 } 706 707 *action = ACTION_SUBTREE; 708 return ret; 709 } 710 711 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 712 .pt_entry = xe_pt_stage_bind_entry, 713 }; 714 715 /** 716 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 717 * range. 718 * @tile: The tile we're building for. 719 * @vma: The vma indicating the address range. 720 * @entries: Storage for the update entries used for connecting the tree to 721 * the main tree at commit time. 722 * @num_entries: On output contains the number of @entries used. 723 * 724 * This function builds a disconnected page-table tree for a given address 725 * range. The tree is connected to the main vm tree for the gpu using 726 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 727 * The function builds xe_vm_pgtable_update structures for already existing 728 * shared page-tables, and non-existing shared and non-shared page-tables 729 * are built and populated directly. 730 * 731 * Return 0 on success, negative error code on error. 732 */ 733 static int 734 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 735 struct xe_vm_pgtable_update *entries, u32 *num_entries) 736 { 737 struct xe_bo *bo = vma->bo; 738 bool is_vram = !xe_vma_is_userptr(vma) && bo && xe_bo_is_vram(bo); 739 struct xe_res_cursor curs; 740 struct xe_pt_stage_bind_walk xe_walk = { 741 .base = { 742 .ops = &xe_pt_stage_bind_ops, 743 .shifts = xe_normal_pt_shifts, 744 .max_level = XE_PT_HIGHEST_LEVEL, 745 }, 746 .vm = vma->vm, 747 .tile = tile, 748 .curs = &curs, 749 .va_curs_start = vma->start, 750 .pte_flags = vma->pte_flags, 751 .wupd.entries = entries, 752 .needs_64K = (vma->vm->flags & XE_VM_FLAGS_64K) && is_vram, 753 }; 754 struct xe_pt *pt = vma->vm->pt_root[tile->id]; 755 int ret; 756 757 if (is_vram) { 758 xe_walk.default_pte = XE_PPGTT_PTE_LM; 759 if (vma && vma->use_atomic_access_pte_bit) 760 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 761 xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource); 762 xe_walk.cache = XE_CACHE_WB; 763 } else { 764 if (!xe_vma_is_userptr(vma) && bo->flags & XE_BO_SCANOUT_BIT) 765 xe_walk.cache = XE_CACHE_WT; 766 else 767 xe_walk.cache = XE_CACHE_WB; 768 } 769 if (!xe_vma_is_userptr(vma) && xe_bo_is_stolen(bo)) 770 xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); 771 772 xe_bo_assert_held(bo); 773 if (xe_vma_is_userptr(vma)) 774 xe_res_first_sg(vma->userptr.sg, 0, vma->end - vma->start + 1, 775 &curs); 776 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 777 xe_res_first(bo->ttm.resource, vma->bo_offset, 778 vma->end - vma->start + 1, &curs); 779 else 780 xe_res_first_sg(xe_bo_get_sg(bo), vma->bo_offset, 781 vma->end - vma->start + 1, &curs); 782 783 ret = xe_pt_walk_range(&pt->base, pt->level, vma->start, vma->end + 1, 784 &xe_walk.base); 785 786 *num_entries = xe_walk.wupd.num_used_entries; 787 return ret; 788 } 789 790 /** 791 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 792 * shared pagetable. 793 * @addr: The start address within the non-shared pagetable. 794 * @end: The end address within the non-shared pagetable. 795 * @level: The level of the non-shared pagetable. 796 * @walk: Walk info. The function adjusts the walk action. 797 * @action: next action to perform (see enum page_walk_action) 798 * @offset: Ignored on input, First non-shared entry on output. 799 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 800 * 801 * A non-shared page-table has some entries that belong to the address range 802 * and others that don't. This function determines the entries that belong 803 * fully to the address range. Depending on level, some entries may 804 * partially belong to the address range (that can't happen at level 0). 805 * The function detects that and adjust those offsets to not include those 806 * partial entries. Iff it does detect partial entries, we know that there must 807 * be shared page tables also at lower levels, so it adjusts the walk action 808 * accordingly. 809 * 810 * Return: true if there were non-shared entries, false otherwise. 811 */ 812 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 813 struct xe_pt_walk *walk, 814 enum page_walk_action *action, 815 pgoff_t *offset, pgoff_t *end_offset) 816 { 817 u64 size = 1ull << walk->shifts[level]; 818 819 *offset = xe_pt_offset(addr, level, walk); 820 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 821 822 if (!level) 823 return true; 824 825 /* 826 * If addr or next are not size aligned, there are shared pts at lower 827 * level, so in that case traverse down the subtree 828 */ 829 *action = ACTION_CONTINUE; 830 if (!IS_ALIGNED(addr, size)) { 831 *action = ACTION_SUBTREE; 832 (*offset)++; 833 } 834 835 if (!IS_ALIGNED(end, size)) { 836 *action = ACTION_SUBTREE; 837 (*end_offset)--; 838 } 839 840 return *end_offset > *offset; 841 } 842 843 struct xe_pt_zap_ptes_walk { 844 /** @base: The walk base-class */ 845 struct xe_pt_walk base; 846 847 /* Input parameters for the walk */ 848 /** @tile: The tile we're building for */ 849 struct xe_tile *tile; 850 851 /* Output */ 852 /** @needs_invalidate: Whether we need to invalidate TLB*/ 853 bool needs_invalidate; 854 }; 855 856 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 857 unsigned int level, u64 addr, u64 next, 858 struct xe_ptw **child, 859 enum page_walk_action *action, 860 struct xe_pt_walk *walk) 861 { 862 struct xe_pt_zap_ptes_walk *xe_walk = 863 container_of(walk, typeof(*xe_walk), base); 864 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 865 pgoff_t end_offset; 866 867 XE_BUG_ON(!*child); 868 XE_BUG_ON(!level && xe_child->is_compact); 869 870 /* 871 * Note that we're called from an entry callback, and we're dealing 872 * with the child of that entry rather than the parent, so need to 873 * adjust level down. 874 */ 875 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 876 &end_offset)) { 877 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 878 offset * sizeof(u64), 0, 879 (end_offset - offset) * sizeof(u64)); 880 xe_walk->needs_invalidate = true; 881 } 882 883 return 0; 884 } 885 886 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 887 .pt_entry = xe_pt_zap_ptes_entry, 888 }; 889 890 /** 891 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 892 * @tile: The tile we're zapping for. 893 * @vma: GPU VMA detailing address range. 894 * 895 * Eviction and Userptr invalidation needs to be able to zap the 896 * gpu ptes of a given address range in pagefaulting mode. 897 * In order to be able to do that, that function needs access to the shared 898 * page-table entrieaso it can either clear the leaf PTEs or 899 * clear the pointers to lower-level page-tables. The caller is required 900 * to hold the necessary locks to ensure neither the page-table connectivity 901 * nor the page-table entries of the range is updated from under us. 902 * 903 * Return: Whether ptes were actually updated and a TLB invalidation is 904 * required. 905 */ 906 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 907 { 908 struct xe_pt_zap_ptes_walk xe_walk = { 909 .base = { 910 .ops = &xe_pt_zap_ptes_ops, 911 .shifts = xe_normal_pt_shifts, 912 .max_level = XE_PT_HIGHEST_LEVEL, 913 }, 914 .tile = tile, 915 }; 916 struct xe_pt *pt = vma->vm->pt_root[tile->id]; 917 918 if (!(vma->tile_present & BIT(tile->id))) 919 return false; 920 921 (void)xe_pt_walk_shared(&pt->base, pt->level, vma->start, vma->end + 1, 922 &xe_walk.base); 923 924 return xe_walk.needs_invalidate; 925 } 926 927 static void 928 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 929 struct iosys_map *map, void *data, 930 u32 qword_ofs, u32 num_qwords, 931 const struct xe_vm_pgtable_update *update) 932 { 933 struct xe_pt_entry *ptes = update->pt_entries; 934 u64 *ptr = data; 935 u32 i; 936 937 for (i = 0; i < num_qwords; i++) { 938 if (map) 939 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 940 sizeof(u64), u64, ptes[i].pte); 941 else 942 ptr[i] = ptes[i].pte; 943 } 944 } 945 946 static void xe_pt_abort_bind(struct xe_vma *vma, 947 struct xe_vm_pgtable_update *entries, 948 u32 num_entries) 949 { 950 u32 i, j; 951 952 for (i = 0; i < num_entries; i++) { 953 if (!entries[i].pt_entries) 954 continue; 955 956 for (j = 0; j < entries[i].qwords; j++) 957 xe_pt_destroy(entries[i].pt_entries[j].pt, vma->vm->flags, NULL); 958 kfree(entries[i].pt_entries); 959 } 960 } 961 962 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 963 { 964 struct xe_vm *vm = vma->vm; 965 966 lockdep_assert_held(&vm->lock); 967 968 if (xe_vma_is_userptr(vma)) 969 lockdep_assert_held_read(&vm->userptr.notifier_lock); 970 else 971 dma_resv_assert_held(vma->bo->ttm.base.resv); 972 973 dma_resv_assert_held(&vm->resv); 974 } 975 976 static void xe_pt_commit_bind(struct xe_vma *vma, 977 struct xe_vm_pgtable_update *entries, 978 u32 num_entries, bool rebind, 979 struct llist_head *deferred) 980 { 981 u32 i, j; 982 983 xe_pt_commit_locks_assert(vma); 984 985 for (i = 0; i < num_entries; i++) { 986 struct xe_pt *pt = entries[i].pt; 987 struct xe_pt_dir *pt_dir; 988 989 if (!rebind) 990 pt->num_live += entries[i].qwords; 991 992 if (!pt->level) { 993 kfree(entries[i].pt_entries); 994 continue; 995 } 996 997 pt_dir = as_xe_pt_dir(pt); 998 for (j = 0; j < entries[i].qwords; j++) { 999 u32 j_ = j + entries[i].ofs; 1000 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 1001 1002 if (xe_pt_entry(pt_dir, j_)) 1003 xe_pt_destroy(xe_pt_entry(pt_dir, j_), 1004 vma->vm->flags, deferred); 1005 1006 pt_dir->dir.entries[j_] = &newpte->base; 1007 } 1008 kfree(entries[i].pt_entries); 1009 } 1010 } 1011 1012 static int 1013 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 1014 struct xe_vm_pgtable_update *entries, u32 *num_entries, 1015 bool rebind) 1016 { 1017 int err; 1018 1019 *num_entries = 0; 1020 err = xe_pt_stage_bind(tile, vma, entries, num_entries); 1021 if (!err) 1022 BUG_ON(!*num_entries); 1023 else /* abort! */ 1024 xe_pt_abort_bind(vma, entries, *num_entries); 1025 1026 return err; 1027 } 1028 1029 static void xe_vm_dbg_print_entries(struct xe_device *xe, 1030 const struct xe_vm_pgtable_update *entries, 1031 unsigned int num_entries) 1032 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1033 { 1034 unsigned int i; 1035 1036 vm_dbg(&xe->drm, "%u entries to update\n", num_entries); 1037 for (i = 0; i < num_entries; i++) { 1038 const struct xe_vm_pgtable_update *entry = &entries[i]; 1039 struct xe_pt *xe_pt = entry->pt; 1040 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1041 u64 end; 1042 u64 start; 1043 1044 XE_BUG_ON(entry->pt->is_compact); 1045 start = entry->ofs * page_size; 1046 end = start + page_size * entry->qwords; 1047 vm_dbg(&xe->drm, 1048 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1049 i, xe_pt->level, entry->ofs, entry->qwords, 1050 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1051 } 1052 } 1053 #else 1054 {} 1055 #endif 1056 1057 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1058 1059 static int xe_pt_userptr_inject_eagain(struct xe_vma *vma) 1060 { 1061 u32 divisor = vma->userptr.divisor ? vma->userptr.divisor : 2; 1062 static u32 count; 1063 1064 if (count++ % divisor == divisor - 1) { 1065 struct xe_vm *vm = vma->vm; 1066 1067 vma->userptr.divisor = divisor << 1; 1068 spin_lock(&vm->userptr.invalidated_lock); 1069 list_move_tail(&vma->userptr.invalidate_link, 1070 &vm->userptr.invalidated); 1071 spin_unlock(&vm->userptr.invalidated_lock); 1072 return true; 1073 } 1074 1075 return false; 1076 } 1077 1078 #else 1079 1080 static bool xe_pt_userptr_inject_eagain(struct xe_vma *vma) 1081 { 1082 return false; 1083 } 1084 1085 #endif 1086 1087 /** 1088 * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks 1089 * @base: Base we derive from. 1090 * @bind: Whether this is a bind or an unbind operation. A bind operation 1091 * makes the pre-commit callback error with -EAGAIN if it detects a 1092 * pending invalidation. 1093 * @locked: Whether the pre-commit callback locked the userptr notifier lock 1094 * and it needs unlocking. 1095 */ 1096 struct xe_pt_migrate_pt_update { 1097 struct xe_migrate_pt_update base; 1098 bool bind; 1099 bool locked; 1100 }; 1101 1102 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1103 { 1104 struct xe_pt_migrate_pt_update *userptr_update = 1105 container_of(pt_update, typeof(*userptr_update), base); 1106 struct xe_vma *vma = pt_update->vma; 1107 unsigned long notifier_seq = vma->userptr.notifier_seq; 1108 struct xe_vm *vm = vma->vm; 1109 1110 userptr_update->locked = false; 1111 1112 /* 1113 * Wait until nobody is running the invalidation notifier, and 1114 * since we're exiting the loop holding the notifier lock, 1115 * nobody can proceed invalidating either. 1116 * 1117 * Note that we don't update the vma->userptr.notifier_seq since 1118 * we don't update the userptr pages. 1119 */ 1120 do { 1121 down_read(&vm->userptr.notifier_lock); 1122 if (!mmu_interval_read_retry(&vma->userptr.notifier, 1123 notifier_seq)) 1124 break; 1125 1126 up_read(&vm->userptr.notifier_lock); 1127 1128 if (userptr_update->bind) 1129 return -EAGAIN; 1130 1131 notifier_seq = mmu_interval_read_begin(&vma->userptr.notifier); 1132 } while (true); 1133 1134 /* Inject errors to test_whether they are handled correctly */ 1135 if (userptr_update->bind && xe_pt_userptr_inject_eagain(vma)) { 1136 up_read(&vm->userptr.notifier_lock); 1137 return -EAGAIN; 1138 } 1139 1140 userptr_update->locked = true; 1141 1142 return 0; 1143 } 1144 1145 static const struct xe_migrate_pt_update_ops bind_ops = { 1146 .populate = xe_vm_populate_pgtable, 1147 }; 1148 1149 static const struct xe_migrate_pt_update_ops userptr_bind_ops = { 1150 .populate = xe_vm_populate_pgtable, 1151 .pre_commit = xe_pt_userptr_pre_commit, 1152 }; 1153 1154 struct invalidation_fence { 1155 struct xe_gt_tlb_invalidation_fence base; 1156 struct xe_gt *gt; 1157 struct xe_vma *vma; 1158 struct dma_fence *fence; 1159 struct dma_fence_cb cb; 1160 struct work_struct work; 1161 }; 1162 1163 static const char * 1164 invalidation_fence_get_driver_name(struct dma_fence *dma_fence) 1165 { 1166 return "xe"; 1167 } 1168 1169 static const char * 1170 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence) 1171 { 1172 return "invalidation_fence"; 1173 } 1174 1175 static const struct dma_fence_ops invalidation_fence_ops = { 1176 .get_driver_name = invalidation_fence_get_driver_name, 1177 .get_timeline_name = invalidation_fence_get_timeline_name, 1178 }; 1179 1180 static void invalidation_fence_cb(struct dma_fence *fence, 1181 struct dma_fence_cb *cb) 1182 { 1183 struct invalidation_fence *ifence = 1184 container_of(cb, struct invalidation_fence, cb); 1185 1186 trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base); 1187 if (!ifence->fence->error) { 1188 queue_work(system_wq, &ifence->work); 1189 } else { 1190 ifence->base.base.error = ifence->fence->error; 1191 dma_fence_signal(&ifence->base.base); 1192 dma_fence_put(&ifence->base.base); 1193 } 1194 dma_fence_put(ifence->fence); 1195 } 1196 1197 static void invalidation_fence_work_func(struct work_struct *w) 1198 { 1199 struct invalidation_fence *ifence = 1200 container_of(w, struct invalidation_fence, work); 1201 1202 trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base); 1203 xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma); 1204 } 1205 1206 static int invalidation_fence_init(struct xe_gt *gt, 1207 struct invalidation_fence *ifence, 1208 struct dma_fence *fence, 1209 struct xe_vma *vma) 1210 { 1211 int ret; 1212 1213 trace_xe_gt_tlb_invalidation_fence_create(&ifence->base); 1214 1215 spin_lock_irq(>->tlb_invalidation.lock); 1216 dma_fence_init(&ifence->base.base, &invalidation_fence_ops, 1217 >->tlb_invalidation.lock, 1218 gt->tlb_invalidation.fence_context, 1219 ++gt->tlb_invalidation.fence_seqno); 1220 spin_unlock_irq(>->tlb_invalidation.lock); 1221 1222 INIT_LIST_HEAD(&ifence->base.link); 1223 1224 dma_fence_get(&ifence->base.base); /* Ref for caller */ 1225 ifence->fence = fence; 1226 ifence->gt = gt; 1227 ifence->vma = vma; 1228 1229 INIT_WORK(&ifence->work, invalidation_fence_work_func); 1230 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); 1231 if (ret == -ENOENT) { 1232 dma_fence_put(ifence->fence); /* Usually dropped in CB */ 1233 invalidation_fence_work_func(&ifence->work); 1234 } else if (ret) { 1235 dma_fence_put(&ifence->base.base); /* Caller ref */ 1236 dma_fence_put(&ifence->base.base); /* Creation ref */ 1237 } 1238 1239 XE_WARN_ON(ret && ret != -ENOENT); 1240 1241 return ret && ret != -ENOENT ? ret : 0; 1242 } 1243 1244 /** 1245 * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma 1246 * address range. 1247 * @tile: The tile to bind for. 1248 * @vma: The vma to bind. 1249 * @e: The engine with which to do pipelined page-table updates. 1250 * @syncs: Entries to sync on before binding the built tree to the live vm tree. 1251 * @num_syncs: Number of @sync entries. 1252 * @rebind: Whether we're rebinding this vma to the same address range without 1253 * an unbind in-between. 1254 * 1255 * This function builds a page-table tree (see xe_pt_stage_bind() for more 1256 * information on page-table building), and the xe_vm_pgtable_update entries 1257 * abstracting the operations needed to attach it to the main vm tree. It 1258 * then takes the relevant locks and updates the metadata side of the main 1259 * vm tree and submits the operations for pipelined attachment of the 1260 * gpu page-table to the vm main tree, (which can be done either by the 1261 * cpu and the GPU). 1262 * 1263 * Return: A valid dma-fence representing the pipelined attachment operation 1264 * on success, an error pointer on error. 1265 */ 1266 struct dma_fence * 1267 __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_engine *e, 1268 struct xe_sync_entry *syncs, u32 num_syncs, 1269 bool rebind) 1270 { 1271 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1272 struct xe_pt_migrate_pt_update bind_pt_update = { 1273 .base = { 1274 .ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops, 1275 .vma = vma, 1276 }, 1277 .bind = true, 1278 }; 1279 struct xe_vm *vm = vma->vm; 1280 u32 num_entries; 1281 struct dma_fence *fence; 1282 struct invalidation_fence *ifence = NULL; 1283 int err; 1284 1285 bind_pt_update.locked = false; 1286 xe_bo_assert_held(vma->bo); 1287 xe_vm_assert_held(vm); 1288 1289 vm_dbg(&vma->vm->xe->drm, 1290 "Preparing bind, with range [%llx...%llx) engine %p.\n", 1291 vma->start, vma->end, e); 1292 1293 err = xe_pt_prepare_bind(tile, vma, entries, &num_entries, rebind); 1294 if (err) 1295 goto err; 1296 XE_BUG_ON(num_entries > ARRAY_SIZE(entries)); 1297 1298 xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); 1299 1300 if (rebind && !xe_vm_no_dma_fences(vma->vm)) { 1301 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 1302 if (!ifence) 1303 return ERR_PTR(-ENOMEM); 1304 } 1305 1306 fence = xe_migrate_update_pgtables(tile->migrate, 1307 vm, vma->bo, 1308 e ? e : vm->eng[tile->id], 1309 entries, num_entries, 1310 syncs, num_syncs, 1311 &bind_pt_update.base); 1312 if (!IS_ERR(fence)) { 1313 LLIST_HEAD(deferred); 1314 1315 /* TLB invalidation must be done before signaling rebind */ 1316 if (rebind && !xe_vm_no_dma_fences(vma->vm)) { 1317 int err = invalidation_fence_init(tile->primary_gt, ifence, fence, 1318 vma); 1319 if (err) { 1320 dma_fence_put(fence); 1321 kfree(ifence); 1322 return ERR_PTR(err); 1323 } 1324 fence = &ifence->base.base; 1325 } 1326 1327 /* add shared fence now for pagetable delayed destroy */ 1328 dma_resv_add_fence(&vm->resv, fence, !rebind && 1329 vma->last_munmap_rebind ? 1330 DMA_RESV_USAGE_KERNEL : 1331 DMA_RESV_USAGE_BOOKKEEP); 1332 1333 if (!xe_vma_is_userptr(vma) && !vma->bo->vm) 1334 dma_resv_add_fence(vma->bo->ttm.base.resv, fence, 1335 DMA_RESV_USAGE_BOOKKEEP); 1336 xe_pt_commit_bind(vma, entries, num_entries, rebind, 1337 bind_pt_update.locked ? &deferred : NULL); 1338 1339 /* This vma is live (again?) now */ 1340 vma->tile_present |= BIT(tile->id); 1341 1342 if (bind_pt_update.locked) { 1343 vma->userptr.initial_bind = true; 1344 up_read(&vm->userptr.notifier_lock); 1345 xe_bo_put_commit(&deferred); 1346 } 1347 if (!rebind && vma->last_munmap_rebind && 1348 xe_vm_in_compute_mode(vm)) 1349 queue_work(vm->xe->ordered_wq, 1350 &vm->preempt.rebind_work); 1351 } else { 1352 kfree(ifence); 1353 if (bind_pt_update.locked) 1354 up_read(&vm->userptr.notifier_lock); 1355 xe_pt_abort_bind(vma, entries, num_entries); 1356 } 1357 1358 return fence; 1359 1360 err: 1361 return ERR_PTR(err); 1362 } 1363 1364 struct xe_pt_stage_unbind_walk { 1365 /** @base: The pagewalk base-class. */ 1366 struct xe_pt_walk base; 1367 1368 /* Input parameters for the walk */ 1369 /** @tile: The tile we're unbinding from. */ 1370 struct xe_tile *tile; 1371 1372 /** 1373 * @modified_start: Walk range start, modified to include any 1374 * shared pagetables that we're the only user of and can thus 1375 * treat as private. 1376 */ 1377 u64 modified_start; 1378 /** @modified_end: Walk range start, modified like @modified_start. */ 1379 u64 modified_end; 1380 1381 /* Output */ 1382 /* @wupd: Structure to track the page-table updates we're building */ 1383 struct xe_walk_update wupd; 1384 }; 1385 1386 /* 1387 * Check whether this range is the only one populating this pagetable, 1388 * and in that case, update the walk range checks so that higher levels don't 1389 * view us as a shared pagetable. 1390 */ 1391 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1392 const struct xe_pt *child, 1393 enum page_walk_action *action, 1394 struct xe_pt_walk *walk) 1395 { 1396 struct xe_pt_stage_unbind_walk *xe_walk = 1397 container_of(walk, typeof(*xe_walk), base); 1398 unsigned int shift = walk->shifts[level]; 1399 u64 size = 1ull << shift; 1400 1401 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1402 ((next - addr) >> shift) == child->num_live) { 1403 u64 size = 1ull << walk->shifts[level + 1]; 1404 1405 *action = ACTION_CONTINUE; 1406 1407 if (xe_walk->modified_start >= addr) 1408 xe_walk->modified_start = round_down(addr, size); 1409 if (xe_walk->modified_end <= next) 1410 xe_walk->modified_end = round_up(next, size); 1411 1412 return true; 1413 } 1414 1415 return false; 1416 } 1417 1418 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1419 unsigned int level, u64 addr, u64 next, 1420 struct xe_ptw **child, 1421 enum page_walk_action *action, 1422 struct xe_pt_walk *walk) 1423 { 1424 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1425 1426 XE_BUG_ON(!*child); 1427 XE_BUG_ON(!level && xe_child->is_compact); 1428 1429 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1430 1431 return 0; 1432 } 1433 1434 static int 1435 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1436 unsigned int level, u64 addr, u64 next, 1437 struct xe_ptw **child, 1438 enum page_walk_action *action, 1439 struct xe_pt_walk *walk) 1440 { 1441 struct xe_pt_stage_unbind_walk *xe_walk = 1442 container_of(walk, typeof(*xe_walk), base); 1443 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1444 pgoff_t end_offset; 1445 u64 size = 1ull << walk->shifts[--level]; 1446 1447 if (!IS_ALIGNED(addr, size)) 1448 addr = xe_walk->modified_start; 1449 if (!IS_ALIGNED(next, size)) 1450 next = xe_walk->modified_end; 1451 1452 /* Parent == *child is the root pt. Don't kill it. */ 1453 if (parent != *child && 1454 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1455 return 0; 1456 1457 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1458 &end_offset)) 1459 return 0; 1460 1461 (void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false); 1462 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1463 1464 return 0; 1465 } 1466 1467 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1468 .pt_entry = xe_pt_stage_unbind_entry, 1469 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1470 }; 1471 1472 /** 1473 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1474 * operation 1475 * @tile: The tile we're unbinding for. 1476 * @vma: The vma we're unbinding. 1477 * @entries: Caller-provided storage for the update structures. 1478 * 1479 * Builds page-table update structures for an unbind operation. The function 1480 * will attempt to remove all page-tables that we're the only user 1481 * of, and for that to work, the unbind operation must be committed in the 1482 * same critical section that blocks racing binds to the same page-table tree. 1483 * 1484 * Return: The number of entries used. 1485 */ 1486 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma, 1487 struct xe_vm_pgtable_update *entries) 1488 { 1489 struct xe_pt_stage_unbind_walk xe_walk = { 1490 .base = { 1491 .ops = &xe_pt_stage_unbind_ops, 1492 .shifts = xe_normal_pt_shifts, 1493 .max_level = XE_PT_HIGHEST_LEVEL, 1494 }, 1495 .tile = tile, 1496 .modified_start = vma->start, 1497 .modified_end = vma->end + 1, 1498 .wupd.entries = entries, 1499 }; 1500 struct xe_pt *pt = vma->vm->pt_root[tile->id]; 1501 1502 (void)xe_pt_walk_shared(&pt->base, pt->level, vma->start, vma->end + 1, 1503 &xe_walk.base); 1504 1505 return xe_walk.wupd.num_used_entries; 1506 } 1507 1508 static void 1509 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1510 struct xe_tile *tile, struct iosys_map *map, 1511 void *ptr, u32 qword_ofs, u32 num_qwords, 1512 const struct xe_vm_pgtable_update *update) 1513 { 1514 struct xe_vma *vma = pt_update->vma; 1515 u64 empty = __xe_pt_empty_pte(tile, vma->vm, update->pt->level); 1516 int i; 1517 1518 if (map && map->is_iomem) 1519 for (i = 0; i < num_qwords; ++i) 1520 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1521 sizeof(u64), u64, empty); 1522 else if (map) 1523 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1524 num_qwords); 1525 else 1526 memset64(ptr, empty, num_qwords); 1527 } 1528 1529 static void 1530 xe_pt_commit_unbind(struct xe_vma *vma, 1531 struct xe_vm_pgtable_update *entries, u32 num_entries, 1532 struct llist_head *deferred) 1533 { 1534 u32 j; 1535 1536 xe_pt_commit_locks_assert(vma); 1537 1538 for (j = 0; j < num_entries; ++j) { 1539 struct xe_vm_pgtable_update *entry = &entries[j]; 1540 struct xe_pt *pt = entry->pt; 1541 1542 pt->num_live -= entry->qwords; 1543 if (pt->level) { 1544 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1545 u32 i; 1546 1547 for (i = entry->ofs; i < entry->ofs + entry->qwords; 1548 i++) { 1549 if (xe_pt_entry(pt_dir, i)) 1550 xe_pt_destroy(xe_pt_entry(pt_dir, i), 1551 vma->vm->flags, deferred); 1552 1553 pt_dir->dir.entries[i] = NULL; 1554 } 1555 } 1556 } 1557 } 1558 1559 static const struct xe_migrate_pt_update_ops unbind_ops = { 1560 .populate = xe_migrate_clear_pgtable_callback, 1561 }; 1562 1563 static const struct xe_migrate_pt_update_ops userptr_unbind_ops = { 1564 .populate = xe_migrate_clear_pgtable_callback, 1565 .pre_commit = xe_pt_userptr_pre_commit, 1566 }; 1567 1568 /** 1569 * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma 1570 * address range. 1571 * @tile: The tile to unbind for. 1572 * @vma: The vma to unbind. 1573 * @e: The engine with which to do pipelined page-table updates. 1574 * @syncs: Entries to sync on before disconnecting the tree to be destroyed. 1575 * @num_syncs: Number of @sync entries. 1576 * 1577 * This function builds a the xe_vm_pgtable_update entries abstracting the 1578 * operations needed to detach the page-table tree to be destroyed from the 1579 * man vm tree. 1580 * It then takes the relevant locks and submits the operations for 1581 * pipelined detachment of the gpu page-table from the vm main tree, 1582 * (which can be done either by the cpu and the GPU), Finally it frees the 1583 * detached page-table tree. 1584 * 1585 * Return: A valid dma-fence representing the pipelined detachment operation 1586 * on success, an error pointer on error. 1587 */ 1588 struct dma_fence * 1589 __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_engine *e, 1590 struct xe_sync_entry *syncs, u32 num_syncs) 1591 { 1592 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1593 struct xe_pt_migrate_pt_update unbind_pt_update = { 1594 .base = { 1595 .ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops : 1596 &unbind_ops, 1597 .vma = vma, 1598 }, 1599 }; 1600 struct xe_vm *vm = vma->vm; 1601 u32 num_entries; 1602 struct dma_fence *fence = NULL; 1603 struct invalidation_fence *ifence; 1604 LLIST_HEAD(deferred); 1605 1606 xe_bo_assert_held(vma->bo); 1607 xe_vm_assert_held(vm); 1608 1609 vm_dbg(&vma->vm->xe->drm, 1610 "Preparing unbind, with range [%llx...%llx) engine %p.\n", 1611 vma->start, vma->end, e); 1612 1613 num_entries = xe_pt_stage_unbind(tile, vma, entries); 1614 XE_BUG_ON(num_entries > ARRAY_SIZE(entries)); 1615 1616 xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); 1617 1618 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 1619 if (!ifence) 1620 return ERR_PTR(-ENOMEM); 1621 1622 /* 1623 * Even if we were already evicted and unbind to destroy, we need to 1624 * clear again here. The eviction may have updated pagetables at a 1625 * lower level, because it needs to be more conservative. 1626 */ 1627 fence = xe_migrate_update_pgtables(tile->migrate, 1628 vm, NULL, e ? e : 1629 vm->eng[tile->id], 1630 entries, num_entries, 1631 syncs, num_syncs, 1632 &unbind_pt_update.base); 1633 if (!IS_ERR(fence)) { 1634 int err; 1635 1636 /* TLB invalidation must be done before signaling unbind */ 1637 err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma); 1638 if (err) { 1639 dma_fence_put(fence); 1640 kfree(ifence); 1641 return ERR_PTR(err); 1642 } 1643 fence = &ifence->base.base; 1644 1645 /* add shared fence now for pagetable delayed destroy */ 1646 dma_resv_add_fence(&vm->resv, fence, 1647 DMA_RESV_USAGE_BOOKKEEP); 1648 1649 /* This fence will be installed by caller when doing eviction */ 1650 if (!xe_vma_is_userptr(vma) && !vma->bo->vm) 1651 dma_resv_add_fence(vma->bo->ttm.base.resv, fence, 1652 DMA_RESV_USAGE_BOOKKEEP); 1653 xe_pt_commit_unbind(vma, entries, num_entries, 1654 unbind_pt_update.locked ? &deferred : NULL); 1655 vma->tile_present &= ~BIT(tile->id); 1656 } else { 1657 kfree(ifence); 1658 } 1659 1660 if (!vma->tile_present) 1661 list_del_init(&vma->rebind_link); 1662 1663 if (unbind_pt_update.locked) { 1664 XE_WARN_ON(!xe_vma_is_userptr(vma)); 1665 1666 if (!vma->tile_present) { 1667 spin_lock(&vm->userptr.invalidated_lock); 1668 list_del_init(&vma->userptr.invalidate_link); 1669 spin_unlock(&vm->userptr.invalidated_lock); 1670 } 1671 up_read(&vm->userptr.notifier_lock); 1672 xe_bo_put_commit(&deferred); 1673 } 1674 1675 return fence; 1676 } 1677