1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_pt.h" 7 8 #include "regs/xe_gtt_defs.h" 9 #include "xe_bo.h" 10 #include "xe_device.h" 11 #include "xe_drm_client.h" 12 #include "xe_gt.h" 13 #include "xe_gt_tlb_invalidation.h" 14 #include "xe_migrate.h" 15 #include "xe_pt_types.h" 16 #include "xe_pt_walk.h" 17 #include "xe_res_cursor.h" 18 #include "xe_trace.h" 19 #include "xe_ttm_stolen_mgr.h" 20 #include "xe_vm.h" 21 22 struct xe_pt_dir { 23 struct xe_pt pt; 24 /** @children: Array of page-table child nodes */ 25 struct xe_ptw *children[XE_PDES]; 26 }; 27 28 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 29 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 30 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 31 #else 32 #define xe_pt_set_addr(__xe_pt, __addr) 33 #define xe_pt_addr(__xe_pt) 0ull 34 #endif 35 36 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 37 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 38 39 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 40 41 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 42 { 43 return container_of(pt, struct xe_pt_dir, pt); 44 } 45 46 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) 47 { 48 return container_of(pt_dir->children[index], struct xe_pt, base); 49 } 50 51 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 52 unsigned int level) 53 { 54 struct xe_device *xe = tile_to_xe(tile); 55 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 56 u8 id = tile->id; 57 58 if (!xe_vm_has_scratch(vm)) 59 return 0; 60 61 if (level > MAX_HUGEPTE_LEVEL) 62 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 63 0, pat_index); 64 65 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 66 XE_PTE_NULL; 67 } 68 69 static void xe_pt_free(struct xe_pt *pt) 70 { 71 if (pt->level) 72 kfree(as_xe_pt_dir(pt)); 73 else 74 kfree(pt); 75 } 76 77 /** 78 * xe_pt_create() - Create a page-table. 79 * @vm: The vm to create for. 80 * @tile: The tile to create for. 81 * @level: The page-table level. 82 * 83 * Allocate and initialize a single struct xe_pt metadata structure. Also 84 * create the corresponding page-table bo, but don't initialize it. If the 85 * level is grater than zero, then it's assumed to be a directory page- 86 * table and the directory structure is also allocated and initialized to 87 * NULL pointers. 88 * 89 * Return: A valid struct xe_pt pointer on success, Pointer error code on 90 * error. 91 */ 92 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 93 unsigned int level) 94 { 95 struct xe_pt *pt; 96 struct xe_bo *bo; 97 int err; 98 99 if (level) { 100 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 101 102 pt = (dir) ? &dir->pt : NULL; 103 } else { 104 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 105 } 106 if (!pt) 107 return ERR_PTR(-ENOMEM); 108 109 pt->level = level; 110 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 111 ttm_bo_type_kernel, 112 XE_BO_FLAG_VRAM_IF_DGFX(tile) | 113 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 114 XE_BO_FLAG_PINNED | 115 XE_BO_FLAG_NO_RESV_EVICT | 116 XE_BO_FLAG_PAGETABLE); 117 if (IS_ERR(bo)) { 118 err = PTR_ERR(bo); 119 goto err_kfree; 120 } 121 pt->bo = bo; 122 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 123 124 if (vm->xef) 125 xe_drm_client_add_bo(vm->xef->client, pt->bo); 126 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 127 128 return pt; 129 130 err_kfree: 131 xe_pt_free(pt); 132 return ERR_PTR(err); 133 } 134 135 /** 136 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 137 * entries. 138 * @tile: The tile the scratch pagetable of which to use. 139 * @vm: The vm we populate for. 140 * @pt: The pagetable the bo of which to initialize. 141 * 142 * Populate the page-table bo of @pt with entries pointing into the tile's 143 * scratch page-table tree if any. Otherwise populate with zeros. 144 */ 145 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 146 struct xe_pt *pt) 147 { 148 struct iosys_map *map = &pt->bo->vmap; 149 u64 empty; 150 int i; 151 152 if (!xe_vm_has_scratch(vm)) { 153 /* 154 * FIXME: Some memory is allocated already allocated to zero? 155 * Find out which memory that is and avoid this memset... 156 */ 157 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 158 } else { 159 empty = __xe_pt_empty_pte(tile, vm, pt->level); 160 for (i = 0; i < XE_PDES; i++) 161 xe_pt_write(vm->xe, map, i, empty); 162 } 163 } 164 165 /** 166 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 167 * a page-table at a certain level. 168 * @level: The level. 169 * 170 * Return: The ilog2 value of the size of the address range of a page-table 171 * at level @level. 172 */ 173 unsigned int xe_pt_shift(unsigned int level) 174 { 175 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 176 } 177 178 /** 179 * xe_pt_destroy() - Destroy a page-table tree. 180 * @pt: The root of the page-table tree to destroy. 181 * @flags: vm flags. Currently unused. 182 * @deferred: List head of lockless list for deferred putting. NULL for 183 * immediate putting. 184 * 185 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 186 * and finally frees @pt. TODO: Can we remove the @flags argument? 187 */ 188 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 189 { 190 int i; 191 192 if (!pt) 193 return; 194 195 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 196 xe_bo_unpin(pt->bo); 197 xe_bo_put_deferred(pt->bo, deferred); 198 199 if (pt->level > 0 && pt->num_live) { 200 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 201 202 for (i = 0; i < XE_PDES; i++) { 203 if (xe_pt_entry(pt_dir, i)) 204 xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, 205 deferred); 206 } 207 } 208 xe_pt_free(pt); 209 } 210 211 /** 212 * DOC: Pagetable building 213 * 214 * Below we use the term "page-table" for both page-directories, containing 215 * pointers to lower level page-directories or page-tables, and level 0 216 * page-tables that contain only page-table-entries pointing to memory pages. 217 * 218 * When inserting an address range in an already existing page-table tree 219 * there will typically be a set of page-tables that are shared with other 220 * address ranges, and a set that are private to this address range. 221 * The set of shared page-tables can be at most two per level, 222 * and those can't be updated immediately because the entries of those 223 * page-tables may still be in use by the gpu for other mappings. Therefore 224 * when inserting entries into those, we instead stage those insertions by 225 * adding insertion data into struct xe_vm_pgtable_update structures. This 226 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 227 * added in a separate commit step. CPU-data is committed while still under the 228 * vm lock, the object lock and for userptr, the notifier lock in read mode. 229 * The GPU async data is committed either by the GPU or CPU after fulfilling 230 * relevant dependencies. 231 * For non-shared page-tables (and, in fact, for shared ones that aren't 232 * existing at the time of staging), we add the data in-place without the 233 * special update structures. This private part of the page-table tree will 234 * remain disconnected from the vm page-table tree until data is committed to 235 * the shared page tables of the vm tree in the commit phase. 236 */ 237 238 struct xe_pt_update { 239 /** @update: The update structure we're building for this parent. */ 240 struct xe_vm_pgtable_update *update; 241 /** @parent: The parent. Used to detect a parent change. */ 242 struct xe_pt *parent; 243 /** @preexisting: Whether the parent was pre-existing or allocated */ 244 bool preexisting; 245 }; 246 247 struct xe_pt_stage_bind_walk { 248 /** base: The base class. */ 249 struct xe_pt_walk base; 250 251 /* Input parameters for the walk */ 252 /** @vm: The vm we're building for. */ 253 struct xe_vm *vm; 254 /** @tile: The tile we're building for. */ 255 struct xe_tile *tile; 256 /** @default_pte: PTE flag only template. No address is associated */ 257 u64 default_pte; 258 /** @dma_offset: DMA offset to add to the PTE. */ 259 u64 dma_offset; 260 /** 261 * @needs_64k: This address range enforces 64K alignment and 262 * granularity. 263 */ 264 bool needs_64K; 265 /** 266 * @vma: VMA being mapped 267 */ 268 struct xe_vma *vma; 269 270 /* Also input, but is updated during the walk*/ 271 /** @curs: The DMA address cursor. */ 272 struct xe_res_cursor *curs; 273 /** @va_curs_start: The Virtual address coresponding to @curs->start */ 274 u64 va_curs_start; 275 276 /* Output */ 277 struct xe_walk_update { 278 /** @wupd.entries: Caller provided storage. */ 279 struct xe_vm_pgtable_update *entries; 280 /** @wupd.num_used_entries: Number of update @entries used. */ 281 unsigned int num_used_entries; 282 /** @wupd.updates: Tracks the update entry at a given level */ 283 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 284 } wupd; 285 286 /* Walk state */ 287 /** 288 * @l0_end_addr: The end address of the current l0 leaf. Used for 289 * 64K granularity detection. 290 */ 291 u64 l0_end_addr; 292 /** @addr_64K: The start address of the current 64K chunk. */ 293 u64 addr_64K; 294 /** @found_64: Whether @add_64K actually points to a 64K chunk. */ 295 bool found_64K; 296 }; 297 298 static int 299 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 300 pgoff_t offset, bool alloc_entries) 301 { 302 struct xe_pt_update *upd = &wupd->updates[parent->level]; 303 struct xe_vm_pgtable_update *entry; 304 305 /* 306 * For *each level*, we could only have one active 307 * struct xt_pt_update at any one time. Once we move on to a 308 * new parent and page-directory, the old one is complete, and 309 * updates are either already stored in the build tree or in 310 * @wupd->entries 311 */ 312 if (likely(upd->parent == parent)) 313 return 0; 314 315 upd->parent = parent; 316 upd->preexisting = true; 317 318 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 319 return -EINVAL; 320 321 entry = wupd->entries + wupd->num_used_entries++; 322 upd->update = entry; 323 entry->ofs = offset; 324 entry->pt_bo = parent->bo; 325 entry->pt = parent; 326 entry->flags = 0; 327 entry->qwords = 0; 328 329 if (alloc_entries) { 330 entry->pt_entries = kmalloc_array(XE_PDES, 331 sizeof(*entry->pt_entries), 332 GFP_KERNEL); 333 if (!entry->pt_entries) 334 return -ENOMEM; 335 } 336 337 return 0; 338 } 339 340 /* 341 * NOTE: This is a very frequently called function so we allow ourselves 342 * to annotate (using branch prediction hints) the fastpath of updating a 343 * non-pre-existing pagetable with leaf ptes. 344 */ 345 static int 346 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 347 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 348 { 349 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 350 struct xe_pt_update *child_upd = xe_child ? 351 &xe_walk->wupd.updates[xe_child->level] : NULL; 352 int ret; 353 354 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 355 if (unlikely(ret)) 356 return ret; 357 358 /* 359 * Register this new pagetable so that it won't be recognized as 360 * a shared pagetable by a subsequent insertion. 361 */ 362 if (unlikely(child_upd)) { 363 child_upd->update = NULL; 364 child_upd->parent = xe_child; 365 child_upd->preexisting = false; 366 } 367 368 if (likely(!upd->preexisting)) { 369 /* Continue building a non-connected subtree. */ 370 struct iosys_map *map = &parent->bo->vmap; 371 372 if (unlikely(xe_child)) 373 parent->base.children[offset] = &xe_child->base; 374 375 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 376 parent->num_live++; 377 } else { 378 /* Shared pt. Stage update. */ 379 unsigned int idx; 380 struct xe_vm_pgtable_update *entry = upd->update; 381 382 idx = offset - entry->ofs; 383 entry->pt_entries[idx].pt = xe_child; 384 entry->pt_entries[idx].pte = pte; 385 entry->qwords++; 386 } 387 388 return 0; 389 } 390 391 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 392 struct xe_pt_stage_bind_walk *xe_walk) 393 { 394 u64 size, dma; 395 396 if (level > MAX_HUGEPTE_LEVEL) 397 return false; 398 399 /* Does the virtual range requested cover a huge pte? */ 400 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 401 return false; 402 403 /* Does the DMA segment cover the whole pte? */ 404 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 405 return false; 406 407 /* null VMA's do not have dma addresses */ 408 if (xe_vma_is_null(xe_walk->vma)) 409 return true; 410 411 /* Is the DMA address huge PTE size aligned? */ 412 size = next - addr; 413 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 414 415 return IS_ALIGNED(dma, size); 416 } 417 418 /* 419 * Scan the requested mapping to check whether it can be done entirely 420 * with 64K PTEs. 421 */ 422 static bool 423 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 424 { 425 struct xe_res_cursor curs = *xe_walk->curs; 426 427 if (!IS_ALIGNED(addr, SZ_64K)) 428 return false; 429 430 if (next > xe_walk->l0_end_addr) 431 return false; 432 433 /* null VMA's do not have dma addresses */ 434 if (xe_vma_is_null(xe_walk->vma)) 435 return true; 436 437 xe_res_next(&curs, addr - xe_walk->va_curs_start); 438 for (; addr < next; addr += SZ_64K) { 439 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 440 return false; 441 442 xe_res_next(&curs, SZ_64K); 443 } 444 445 return addr == next; 446 } 447 448 /* 449 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 450 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 451 * device to the PTE. 452 * This function determines whether the address is part of such a 453 * segment. For VRAM in normal pagetables, this is strictly necessary on 454 * some devices. 455 */ 456 static bool 457 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 458 { 459 /* Address is within an already found 64k region */ 460 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 461 return true; 462 463 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 464 xe_walk->addr_64K = addr; 465 466 return xe_walk->found_64K; 467 } 468 469 static int 470 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 471 unsigned int level, u64 addr, u64 next, 472 struct xe_ptw **child, 473 enum page_walk_action *action, 474 struct xe_pt_walk *walk) 475 { 476 struct xe_pt_stage_bind_walk *xe_walk = 477 container_of(walk, typeof(*xe_walk), base); 478 u16 pat_index = xe_walk->vma->pat_index; 479 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 480 struct xe_vm *vm = xe_walk->vm; 481 struct xe_pt *xe_child; 482 bool covers; 483 int ret = 0; 484 u64 pte; 485 486 /* Is this a leaf entry ?*/ 487 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 488 struct xe_res_cursor *curs = xe_walk->curs; 489 bool is_null = xe_vma_is_null(xe_walk->vma); 490 491 XE_WARN_ON(xe_walk->va_curs_start != addr); 492 493 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 494 xe_res_dma(curs) + xe_walk->dma_offset, 495 xe_walk->vma, pat_index, level); 496 pte |= xe_walk->default_pte; 497 498 /* 499 * Set the XE_PTE_PS64 hint if possible, otherwise if 500 * this device *requires* 64K PTE size for VRAM, fail. 501 */ 502 if (level == 0 && !xe_parent->is_compact) { 503 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 504 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K; 505 pte |= XE_PTE_PS64; 506 } else if (XE_WARN_ON(xe_walk->needs_64K)) { 507 return -EINVAL; 508 } 509 } 510 511 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 512 if (unlikely(ret)) 513 return ret; 514 515 if (!is_null) 516 xe_res_next(curs, next - addr); 517 xe_walk->va_curs_start = next; 518 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 519 *action = ACTION_CONTINUE; 520 521 return ret; 522 } 523 524 /* 525 * Descending to lower level. Determine if we need to allocate a 526 * new page table or -directory, which we do if there is no 527 * previous one or there is one we can completely replace. 528 */ 529 if (level == 1) { 530 walk->shifts = xe_normal_pt_shifts; 531 xe_walk->l0_end_addr = next; 532 } 533 534 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 535 if (covers || !*child) { 536 u64 flags = 0; 537 538 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); 539 if (IS_ERR(xe_child)) 540 return PTR_ERR(xe_child); 541 542 xe_pt_set_addr(xe_child, 543 round_down(addr, 1ull << walk->shifts[level])); 544 545 if (!covers) 546 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 547 548 *child = &xe_child->base; 549 550 /* 551 * Prefer the compact pagetable layout for L0 if possible. Only 552 * possible if VMA covers entire 2MB region as compact 64k and 553 * 4k pages cannot be mixed within a 2MB region. 554 * TODO: Suballocate the pt bo to avoid wasting a lot of 555 * memory. 556 */ 557 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 558 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 559 walk->shifts = xe_compact_pt_shifts; 560 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 561 flags |= XE_PDE_64K; 562 xe_child->is_compact = true; 563 } 564 565 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; 566 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 567 pte); 568 } 569 570 *action = ACTION_SUBTREE; 571 return ret; 572 } 573 574 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 575 .pt_entry = xe_pt_stage_bind_entry, 576 }; 577 578 /** 579 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 580 * range. 581 * @tile: The tile we're building for. 582 * @vma: The vma indicating the address range. 583 * @entries: Storage for the update entries used for connecting the tree to 584 * the main tree at commit time. 585 * @num_entries: On output contains the number of @entries used. 586 * 587 * This function builds a disconnected page-table tree for a given address 588 * range. The tree is connected to the main vm tree for the gpu using 589 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 590 * The function builds xe_vm_pgtable_update structures for already existing 591 * shared page-tables, and non-existing shared and non-shared page-tables 592 * are built and populated directly. 593 * 594 * Return 0 on success, negative error code on error. 595 */ 596 static int 597 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 598 struct xe_vm_pgtable_update *entries, u32 *num_entries) 599 { 600 struct xe_device *xe = tile_to_xe(tile); 601 struct xe_bo *bo = xe_vma_bo(vma); 602 bool is_devmem = !xe_vma_is_userptr(vma) && bo && 603 (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)); 604 struct xe_res_cursor curs; 605 struct xe_pt_stage_bind_walk xe_walk = { 606 .base = { 607 .ops = &xe_pt_stage_bind_ops, 608 .shifts = xe_normal_pt_shifts, 609 .max_level = XE_PT_HIGHEST_LEVEL, 610 }, 611 .vm = xe_vma_vm(vma), 612 .tile = tile, 613 .curs = &curs, 614 .va_curs_start = xe_vma_start(vma), 615 .vma = vma, 616 .wupd.entries = entries, 617 .needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem, 618 }; 619 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 620 int ret; 621 622 if ((vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) && 623 (is_devmem || !IS_DGFX(xe))) 624 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; 625 626 if (is_devmem) { 627 xe_walk.default_pte |= XE_PPGTT_PTE_DM; 628 xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource); 629 } 630 631 if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo)) 632 xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); 633 634 xe_bo_assert_held(bo); 635 636 if (!xe_vma_is_null(vma)) { 637 if (xe_vma_is_userptr(vma)) 638 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, 639 xe_vma_size(vma), &curs); 640 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 641 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 642 xe_vma_size(vma), &curs); 643 else 644 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 645 xe_vma_size(vma), &curs); 646 } else { 647 curs.size = xe_vma_size(vma); 648 } 649 650 ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma), 651 xe_vma_end(vma), &xe_walk.base); 652 653 *num_entries = xe_walk.wupd.num_used_entries; 654 return ret; 655 } 656 657 /** 658 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 659 * shared pagetable. 660 * @addr: The start address within the non-shared pagetable. 661 * @end: The end address within the non-shared pagetable. 662 * @level: The level of the non-shared pagetable. 663 * @walk: Walk info. The function adjusts the walk action. 664 * @action: next action to perform (see enum page_walk_action) 665 * @offset: Ignored on input, First non-shared entry on output. 666 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 667 * 668 * A non-shared page-table has some entries that belong to the address range 669 * and others that don't. This function determines the entries that belong 670 * fully to the address range. Depending on level, some entries may 671 * partially belong to the address range (that can't happen at level 0). 672 * The function detects that and adjust those offsets to not include those 673 * partial entries. Iff it does detect partial entries, we know that there must 674 * be shared page tables also at lower levels, so it adjusts the walk action 675 * accordingly. 676 * 677 * Return: true if there were non-shared entries, false otherwise. 678 */ 679 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 680 struct xe_pt_walk *walk, 681 enum page_walk_action *action, 682 pgoff_t *offset, pgoff_t *end_offset) 683 { 684 u64 size = 1ull << walk->shifts[level]; 685 686 *offset = xe_pt_offset(addr, level, walk); 687 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 688 689 if (!level) 690 return true; 691 692 /* 693 * If addr or next are not size aligned, there are shared pts at lower 694 * level, so in that case traverse down the subtree 695 */ 696 *action = ACTION_CONTINUE; 697 if (!IS_ALIGNED(addr, size)) { 698 *action = ACTION_SUBTREE; 699 (*offset)++; 700 } 701 702 if (!IS_ALIGNED(end, size)) { 703 *action = ACTION_SUBTREE; 704 (*end_offset)--; 705 } 706 707 return *end_offset > *offset; 708 } 709 710 struct xe_pt_zap_ptes_walk { 711 /** @base: The walk base-class */ 712 struct xe_pt_walk base; 713 714 /* Input parameters for the walk */ 715 /** @tile: The tile we're building for */ 716 struct xe_tile *tile; 717 718 /* Output */ 719 /** @needs_invalidate: Whether we need to invalidate TLB*/ 720 bool needs_invalidate; 721 }; 722 723 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 724 unsigned int level, u64 addr, u64 next, 725 struct xe_ptw **child, 726 enum page_walk_action *action, 727 struct xe_pt_walk *walk) 728 { 729 struct xe_pt_zap_ptes_walk *xe_walk = 730 container_of(walk, typeof(*xe_walk), base); 731 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 732 pgoff_t end_offset; 733 734 XE_WARN_ON(!*child); 735 XE_WARN_ON(!level && xe_child->is_compact); 736 737 /* 738 * Note that we're called from an entry callback, and we're dealing 739 * with the child of that entry rather than the parent, so need to 740 * adjust level down. 741 */ 742 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 743 &end_offset)) { 744 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 745 offset * sizeof(u64), 0, 746 (end_offset - offset) * sizeof(u64)); 747 xe_walk->needs_invalidate = true; 748 } 749 750 return 0; 751 } 752 753 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 754 .pt_entry = xe_pt_zap_ptes_entry, 755 }; 756 757 /** 758 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 759 * @tile: The tile we're zapping for. 760 * @vma: GPU VMA detailing address range. 761 * 762 * Eviction and Userptr invalidation needs to be able to zap the 763 * gpu ptes of a given address range in pagefaulting mode. 764 * In order to be able to do that, that function needs access to the shared 765 * page-table entrieaso it can either clear the leaf PTEs or 766 * clear the pointers to lower-level page-tables. The caller is required 767 * to hold the necessary locks to ensure neither the page-table connectivity 768 * nor the page-table entries of the range is updated from under us. 769 * 770 * Return: Whether ptes were actually updated and a TLB invalidation is 771 * required. 772 */ 773 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 774 { 775 struct xe_pt_zap_ptes_walk xe_walk = { 776 .base = { 777 .ops = &xe_pt_zap_ptes_ops, 778 .shifts = xe_normal_pt_shifts, 779 .max_level = XE_PT_HIGHEST_LEVEL, 780 }, 781 .tile = tile, 782 }; 783 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 784 785 if (!(vma->tile_present & BIT(tile->id))) 786 return false; 787 788 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 789 xe_vma_end(vma), &xe_walk.base); 790 791 return xe_walk.needs_invalidate; 792 } 793 794 static void 795 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 796 struct iosys_map *map, void *data, 797 u32 qword_ofs, u32 num_qwords, 798 const struct xe_vm_pgtable_update *update) 799 { 800 struct xe_pt_entry *ptes = update->pt_entries; 801 u64 *ptr = data; 802 u32 i; 803 804 for (i = 0; i < num_qwords; i++) { 805 if (map) 806 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 807 sizeof(u64), u64, ptes[i].pte); 808 else 809 ptr[i] = ptes[i].pte; 810 } 811 } 812 813 static void xe_pt_abort_bind(struct xe_vma *vma, 814 struct xe_vm_pgtable_update *entries, 815 u32 num_entries) 816 { 817 u32 i, j; 818 819 for (i = 0; i < num_entries; i++) { 820 if (!entries[i].pt_entries) 821 continue; 822 823 for (j = 0; j < entries[i].qwords; j++) 824 xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL); 825 kfree(entries[i].pt_entries); 826 } 827 } 828 829 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 830 { 831 struct xe_vm *vm = xe_vma_vm(vma); 832 833 lockdep_assert_held(&vm->lock); 834 835 if (xe_vma_is_userptr(vma)) 836 lockdep_assert_held_read(&vm->userptr.notifier_lock); 837 else if (!xe_vma_is_null(vma)) 838 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 839 840 xe_vm_assert_held(vm); 841 } 842 843 static void xe_pt_commit_bind(struct xe_vma *vma, 844 struct xe_vm_pgtable_update *entries, 845 u32 num_entries, bool rebind, 846 struct llist_head *deferred) 847 { 848 u32 i, j; 849 850 xe_pt_commit_locks_assert(vma); 851 852 for (i = 0; i < num_entries; i++) { 853 struct xe_pt *pt = entries[i].pt; 854 struct xe_pt_dir *pt_dir; 855 856 if (!rebind) 857 pt->num_live += entries[i].qwords; 858 859 if (!pt->level) { 860 kfree(entries[i].pt_entries); 861 continue; 862 } 863 864 pt_dir = as_xe_pt_dir(pt); 865 for (j = 0; j < entries[i].qwords; j++) { 866 u32 j_ = j + entries[i].ofs; 867 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 868 869 if (xe_pt_entry(pt_dir, j_)) 870 xe_pt_destroy(xe_pt_entry(pt_dir, j_), 871 xe_vma_vm(vma)->flags, deferred); 872 873 pt_dir->children[j_] = &newpte->base; 874 } 875 kfree(entries[i].pt_entries); 876 } 877 } 878 879 static int 880 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 881 struct xe_vm_pgtable_update *entries, u32 *num_entries) 882 { 883 int err; 884 885 *num_entries = 0; 886 err = xe_pt_stage_bind(tile, vma, entries, num_entries); 887 if (!err) 888 xe_tile_assert(tile, *num_entries); 889 else /* abort! */ 890 xe_pt_abort_bind(vma, entries, *num_entries); 891 892 return err; 893 } 894 895 static void xe_vm_dbg_print_entries(struct xe_device *xe, 896 const struct xe_vm_pgtable_update *entries, 897 unsigned int num_entries) 898 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 899 { 900 unsigned int i; 901 902 vm_dbg(&xe->drm, "%u entries to update\n", num_entries); 903 for (i = 0; i < num_entries; i++) { 904 const struct xe_vm_pgtable_update *entry = &entries[i]; 905 struct xe_pt *xe_pt = entry->pt; 906 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 907 u64 end; 908 u64 start; 909 910 xe_assert(xe, !entry->pt->is_compact); 911 start = entry->ofs * page_size; 912 end = start + page_size * entry->qwords; 913 vm_dbg(&xe->drm, 914 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 915 i, xe_pt->level, entry->ofs, entry->qwords, 916 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 917 } 918 } 919 #else 920 {} 921 #endif 922 923 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 924 925 static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 926 { 927 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 928 static u32 count; 929 930 if (count++ % divisor == divisor - 1) { 931 struct xe_vm *vm = xe_vma_vm(&uvma->vma); 932 933 uvma->userptr.divisor = divisor << 1; 934 spin_lock(&vm->userptr.invalidated_lock); 935 list_move_tail(&uvma->userptr.invalidate_link, 936 &vm->userptr.invalidated); 937 spin_unlock(&vm->userptr.invalidated_lock); 938 return true; 939 } 940 941 return false; 942 } 943 944 #else 945 946 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 947 { 948 return false; 949 } 950 951 #endif 952 953 /** 954 * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks 955 * @base: Base we derive from. 956 * @bind: Whether this is a bind or an unbind operation. A bind operation 957 * makes the pre-commit callback error with -EAGAIN if it detects a 958 * pending invalidation. 959 * @locked: Whether the pre-commit callback locked the userptr notifier lock 960 * and it needs unlocking. 961 */ 962 struct xe_pt_migrate_pt_update { 963 struct xe_migrate_pt_update base; 964 bool bind; 965 bool locked; 966 }; 967 968 /* 969 * This function adds the needed dependencies to a page-table update job 970 * to make sure racing jobs for separate bind engines don't race writing 971 * to the same page-table range, wreaking havoc. Initially use a single 972 * fence for the entire VM. An optimization would use smaller granularity. 973 */ 974 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 975 struct xe_range_fence_tree *rftree, 976 u64 start, u64 last) 977 { 978 struct xe_range_fence *rtfence; 979 struct dma_fence *fence; 980 int err; 981 982 rtfence = xe_range_fence_tree_first(rftree, start, last); 983 while (rtfence) { 984 fence = rtfence->fence; 985 986 if (!dma_fence_is_signaled(fence)) { 987 /* 988 * Is this a CPU update? GPU is busy updating, so return 989 * an error 990 */ 991 if (!job) 992 return -ETIME; 993 994 dma_fence_get(fence); 995 err = drm_sched_job_add_dependency(&job->drm, fence); 996 if (err) 997 return err; 998 } 999 1000 rtfence = xe_range_fence_tree_next(rtfence, start, last); 1001 } 1002 1003 return 0; 1004 } 1005 1006 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1007 { 1008 struct xe_range_fence_tree *rftree = 1009 &xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id]; 1010 1011 return xe_pt_vm_dependencies(pt_update->job, rftree, 1012 pt_update->start, pt_update->last); 1013 } 1014 1015 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1016 { 1017 struct xe_pt_migrate_pt_update *userptr_update = 1018 container_of(pt_update, typeof(*userptr_update), base); 1019 struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma); 1020 unsigned long notifier_seq = uvma->userptr.notifier_seq; 1021 struct xe_vm *vm = xe_vma_vm(&uvma->vma); 1022 int err = xe_pt_vm_dependencies(pt_update->job, 1023 &vm->rftree[pt_update->tile_id], 1024 pt_update->start, 1025 pt_update->last); 1026 1027 if (err) 1028 return err; 1029 1030 userptr_update->locked = false; 1031 1032 /* 1033 * Wait until nobody is running the invalidation notifier, and 1034 * since we're exiting the loop holding the notifier lock, 1035 * nobody can proceed invalidating either. 1036 * 1037 * Note that we don't update the vma->userptr.notifier_seq since 1038 * we don't update the userptr pages. 1039 */ 1040 do { 1041 down_read(&vm->userptr.notifier_lock); 1042 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1043 notifier_seq)) 1044 break; 1045 1046 up_read(&vm->userptr.notifier_lock); 1047 1048 if (userptr_update->bind) 1049 return -EAGAIN; 1050 1051 notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier); 1052 } while (true); 1053 1054 /* Inject errors to test_whether they are handled correctly */ 1055 if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) { 1056 up_read(&vm->userptr.notifier_lock); 1057 return -EAGAIN; 1058 } 1059 1060 userptr_update->locked = true; 1061 1062 return 0; 1063 } 1064 1065 static const struct xe_migrate_pt_update_ops bind_ops = { 1066 .populate = xe_vm_populate_pgtable, 1067 .pre_commit = xe_pt_pre_commit, 1068 }; 1069 1070 static const struct xe_migrate_pt_update_ops userptr_bind_ops = { 1071 .populate = xe_vm_populate_pgtable, 1072 .pre_commit = xe_pt_userptr_pre_commit, 1073 }; 1074 1075 struct invalidation_fence { 1076 struct xe_gt_tlb_invalidation_fence base; 1077 struct xe_gt *gt; 1078 struct xe_vma *vma; 1079 struct dma_fence *fence; 1080 struct dma_fence_cb cb; 1081 struct work_struct work; 1082 }; 1083 1084 static const char * 1085 invalidation_fence_get_driver_name(struct dma_fence *dma_fence) 1086 { 1087 return "xe"; 1088 } 1089 1090 static const char * 1091 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence) 1092 { 1093 return "invalidation_fence"; 1094 } 1095 1096 static const struct dma_fence_ops invalidation_fence_ops = { 1097 .get_driver_name = invalidation_fence_get_driver_name, 1098 .get_timeline_name = invalidation_fence_get_timeline_name, 1099 }; 1100 1101 static void invalidation_fence_cb(struct dma_fence *fence, 1102 struct dma_fence_cb *cb) 1103 { 1104 struct invalidation_fence *ifence = 1105 container_of(cb, struct invalidation_fence, cb); 1106 1107 trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base); 1108 if (!ifence->fence->error) { 1109 queue_work(system_wq, &ifence->work); 1110 } else { 1111 ifence->base.base.error = ifence->fence->error; 1112 dma_fence_signal(&ifence->base.base); 1113 dma_fence_put(&ifence->base.base); 1114 } 1115 dma_fence_put(ifence->fence); 1116 } 1117 1118 static void invalidation_fence_work_func(struct work_struct *w) 1119 { 1120 struct invalidation_fence *ifence = 1121 container_of(w, struct invalidation_fence, work); 1122 1123 trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base); 1124 xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma); 1125 } 1126 1127 static int invalidation_fence_init(struct xe_gt *gt, 1128 struct invalidation_fence *ifence, 1129 struct dma_fence *fence, 1130 struct xe_vma *vma) 1131 { 1132 int ret; 1133 1134 trace_xe_gt_tlb_invalidation_fence_create(&ifence->base); 1135 1136 spin_lock_irq(>->tlb_invalidation.lock); 1137 dma_fence_init(&ifence->base.base, &invalidation_fence_ops, 1138 >->tlb_invalidation.lock, 1139 dma_fence_context_alloc(1), 1); 1140 spin_unlock_irq(>->tlb_invalidation.lock); 1141 1142 INIT_LIST_HEAD(&ifence->base.link); 1143 1144 dma_fence_get(&ifence->base.base); /* Ref for caller */ 1145 ifence->fence = fence; 1146 ifence->gt = gt; 1147 ifence->vma = vma; 1148 1149 INIT_WORK(&ifence->work, invalidation_fence_work_func); 1150 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); 1151 if (ret == -ENOENT) { 1152 dma_fence_put(ifence->fence); /* Usually dropped in CB */ 1153 invalidation_fence_work_func(&ifence->work); 1154 } else if (ret) { 1155 dma_fence_put(&ifence->base.base); /* Caller ref */ 1156 dma_fence_put(&ifence->base.base); /* Creation ref */ 1157 } 1158 1159 xe_gt_assert(gt, !ret || ret == -ENOENT); 1160 1161 return ret && ret != -ENOENT ? ret : 0; 1162 } 1163 1164 static void xe_pt_calc_rfence_interval(struct xe_vma *vma, 1165 struct xe_pt_migrate_pt_update *update, 1166 struct xe_vm_pgtable_update *entries, 1167 u32 num_entries) 1168 { 1169 int i, level = 0; 1170 1171 for (i = 0; i < num_entries; i++) { 1172 const struct xe_vm_pgtable_update *entry = &entries[i]; 1173 1174 if (entry->pt->level > level) 1175 level = entry->pt->level; 1176 } 1177 1178 /* Greedy (non-optimal) calculation but simple */ 1179 update->base.start = ALIGN_DOWN(xe_vma_start(vma), 1180 0x1ull << xe_pt_shift(level)); 1181 update->base.last = ALIGN(xe_vma_end(vma), 1182 0x1ull << xe_pt_shift(level)) - 1; 1183 } 1184 1185 /** 1186 * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma 1187 * address range. 1188 * @tile: The tile to bind for. 1189 * @vma: The vma to bind. 1190 * @q: The exec_queue with which to do pipelined page-table updates. 1191 * @syncs: Entries to sync on before binding the built tree to the live vm tree. 1192 * @num_syncs: Number of @sync entries. 1193 * @rebind: Whether we're rebinding this vma to the same address range without 1194 * an unbind in-between. 1195 * 1196 * This function builds a page-table tree (see xe_pt_stage_bind() for more 1197 * information on page-table building), and the xe_vm_pgtable_update entries 1198 * abstracting the operations needed to attach it to the main vm tree. It 1199 * then takes the relevant locks and updates the metadata side of the main 1200 * vm tree and submits the operations for pipelined attachment of the 1201 * gpu page-table to the vm main tree, (which can be done either by the 1202 * cpu and the GPU). 1203 * 1204 * Return: A valid dma-fence representing the pipelined attachment operation 1205 * on success, an error pointer on error. 1206 */ 1207 struct dma_fence * 1208 __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, 1209 struct xe_sync_entry *syncs, u32 num_syncs, 1210 bool rebind) 1211 { 1212 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1213 struct xe_pt_migrate_pt_update bind_pt_update = { 1214 .base = { 1215 .ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops, 1216 .vma = vma, 1217 .tile_id = tile->id, 1218 }, 1219 .bind = true, 1220 }; 1221 struct xe_vm *vm = xe_vma_vm(vma); 1222 u32 num_entries; 1223 struct dma_fence *fence; 1224 struct invalidation_fence *ifence = NULL; 1225 struct xe_range_fence *rfence; 1226 int err; 1227 1228 bind_pt_update.locked = false; 1229 xe_bo_assert_held(xe_vma_bo(vma)); 1230 xe_vm_assert_held(vm); 1231 1232 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1233 "Preparing bind, with range [%llx...%llx) engine %p.\n", 1234 xe_vma_start(vma), xe_vma_end(vma), q); 1235 1236 err = xe_pt_prepare_bind(tile, vma, entries, &num_entries); 1237 if (err) 1238 goto err; 1239 1240 err = dma_resv_reserve_fences(xe_vm_resv(vm), 1); 1241 if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1242 err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1); 1243 if (err) 1244 goto err; 1245 1246 xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); 1247 1248 xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); 1249 xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries, 1250 num_entries); 1251 1252 /* 1253 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1254 * cached PTEs point to freed memory. on LR vms this is done 1255 * automatically when the context is re-enabled by the rebind worker, 1256 * or in fault mode it was invalidated on PTE zapping. 1257 * 1258 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1259 * PTE is already cached in the TLB so it needs to be invalidated. 1260 * on !LR VMs this is done in the ring ops preceding a batch, but on 1261 * non-faulting LR, in particular on user-space batch buffer chaining, 1262 * it needs to be done here. 1263 */ 1264 if ((!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) { 1265 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 1266 if (!ifence) 1267 return ERR_PTR(-ENOMEM); 1268 } else if (rebind && !xe_vm_in_lr_mode(vm)) { 1269 /* We bump also if batch_invalidate_tlb is true */ 1270 vm->tlb_flush_seqno++; 1271 } 1272 1273 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 1274 if (!rfence) { 1275 kfree(ifence); 1276 return ERR_PTR(-ENOMEM); 1277 } 1278 1279 fence = xe_migrate_update_pgtables(tile->migrate, 1280 vm, xe_vma_bo(vma), q, 1281 entries, num_entries, 1282 syncs, num_syncs, 1283 &bind_pt_update.base); 1284 if (!IS_ERR(fence)) { 1285 bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND; 1286 LLIST_HEAD(deferred); 1287 int err; 1288 1289 err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, 1290 &xe_range_fence_kfree_ops, 1291 bind_pt_update.base.start, 1292 bind_pt_update.base.last, fence); 1293 if (err) 1294 dma_fence_wait(fence, false); 1295 1296 /* TLB invalidation must be done before signaling rebind */ 1297 if (ifence) { 1298 int err = invalidation_fence_init(tile->primary_gt, ifence, fence, 1299 vma); 1300 if (err) { 1301 dma_fence_put(fence); 1302 kfree(ifence); 1303 return ERR_PTR(err); 1304 } 1305 fence = &ifence->base.base; 1306 } 1307 1308 /* add shared fence now for pagetable delayed destroy */ 1309 dma_resv_add_fence(xe_vm_resv(vm), fence, rebind || 1310 last_munmap_rebind ? 1311 DMA_RESV_USAGE_KERNEL : 1312 DMA_RESV_USAGE_BOOKKEEP); 1313 1314 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1315 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1316 DMA_RESV_USAGE_BOOKKEEP); 1317 xe_pt_commit_bind(vma, entries, num_entries, rebind, 1318 bind_pt_update.locked ? &deferred : NULL); 1319 1320 /* This vma is live (again?) now */ 1321 vma->tile_present |= BIT(tile->id); 1322 1323 if (bind_pt_update.locked) { 1324 to_userptr_vma(vma)->userptr.initial_bind = true; 1325 up_read(&vm->userptr.notifier_lock); 1326 xe_bo_put_commit(&deferred); 1327 } 1328 if (!rebind && last_munmap_rebind && 1329 xe_vm_in_preempt_fence_mode(vm)) 1330 xe_vm_queue_rebind_worker(vm); 1331 } else { 1332 kfree(rfence); 1333 kfree(ifence); 1334 if (bind_pt_update.locked) 1335 up_read(&vm->userptr.notifier_lock); 1336 xe_pt_abort_bind(vma, entries, num_entries); 1337 } 1338 1339 return fence; 1340 1341 err: 1342 return ERR_PTR(err); 1343 } 1344 1345 struct xe_pt_stage_unbind_walk { 1346 /** @base: The pagewalk base-class. */ 1347 struct xe_pt_walk base; 1348 1349 /* Input parameters for the walk */ 1350 /** @tile: The tile we're unbinding from. */ 1351 struct xe_tile *tile; 1352 1353 /** 1354 * @modified_start: Walk range start, modified to include any 1355 * shared pagetables that we're the only user of and can thus 1356 * treat as private. 1357 */ 1358 u64 modified_start; 1359 /** @modified_end: Walk range start, modified like @modified_start. */ 1360 u64 modified_end; 1361 1362 /* Output */ 1363 /* @wupd: Structure to track the page-table updates we're building */ 1364 struct xe_walk_update wupd; 1365 }; 1366 1367 /* 1368 * Check whether this range is the only one populating this pagetable, 1369 * and in that case, update the walk range checks so that higher levels don't 1370 * view us as a shared pagetable. 1371 */ 1372 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1373 const struct xe_pt *child, 1374 enum page_walk_action *action, 1375 struct xe_pt_walk *walk) 1376 { 1377 struct xe_pt_stage_unbind_walk *xe_walk = 1378 container_of(walk, typeof(*xe_walk), base); 1379 unsigned int shift = walk->shifts[level]; 1380 u64 size = 1ull << shift; 1381 1382 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1383 ((next - addr) >> shift) == child->num_live) { 1384 u64 size = 1ull << walk->shifts[level + 1]; 1385 1386 *action = ACTION_CONTINUE; 1387 1388 if (xe_walk->modified_start >= addr) 1389 xe_walk->modified_start = round_down(addr, size); 1390 if (xe_walk->modified_end <= next) 1391 xe_walk->modified_end = round_up(next, size); 1392 1393 return true; 1394 } 1395 1396 return false; 1397 } 1398 1399 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1400 unsigned int level, u64 addr, u64 next, 1401 struct xe_ptw **child, 1402 enum page_walk_action *action, 1403 struct xe_pt_walk *walk) 1404 { 1405 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1406 1407 XE_WARN_ON(!*child); 1408 XE_WARN_ON(!level && xe_child->is_compact); 1409 1410 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1411 1412 return 0; 1413 } 1414 1415 static int 1416 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1417 unsigned int level, u64 addr, u64 next, 1418 struct xe_ptw **child, 1419 enum page_walk_action *action, 1420 struct xe_pt_walk *walk) 1421 { 1422 struct xe_pt_stage_unbind_walk *xe_walk = 1423 container_of(walk, typeof(*xe_walk), base); 1424 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1425 pgoff_t end_offset; 1426 u64 size = 1ull << walk->shifts[--level]; 1427 1428 if (!IS_ALIGNED(addr, size)) 1429 addr = xe_walk->modified_start; 1430 if (!IS_ALIGNED(next, size)) 1431 next = xe_walk->modified_end; 1432 1433 /* Parent == *child is the root pt. Don't kill it. */ 1434 if (parent != *child && 1435 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1436 return 0; 1437 1438 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1439 &end_offset)) 1440 return 0; 1441 1442 (void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false); 1443 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1444 1445 return 0; 1446 } 1447 1448 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1449 .pt_entry = xe_pt_stage_unbind_entry, 1450 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1451 }; 1452 1453 /** 1454 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1455 * operation 1456 * @tile: The tile we're unbinding for. 1457 * @vma: The vma we're unbinding. 1458 * @entries: Caller-provided storage for the update structures. 1459 * 1460 * Builds page-table update structures for an unbind operation. The function 1461 * will attempt to remove all page-tables that we're the only user 1462 * of, and for that to work, the unbind operation must be committed in the 1463 * same critical section that blocks racing binds to the same page-table tree. 1464 * 1465 * Return: The number of entries used. 1466 */ 1467 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma, 1468 struct xe_vm_pgtable_update *entries) 1469 { 1470 struct xe_pt_stage_unbind_walk xe_walk = { 1471 .base = { 1472 .ops = &xe_pt_stage_unbind_ops, 1473 .shifts = xe_normal_pt_shifts, 1474 .max_level = XE_PT_HIGHEST_LEVEL, 1475 }, 1476 .tile = tile, 1477 .modified_start = xe_vma_start(vma), 1478 .modified_end = xe_vma_end(vma), 1479 .wupd.entries = entries, 1480 }; 1481 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 1482 1483 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 1484 xe_vma_end(vma), &xe_walk.base); 1485 1486 return xe_walk.wupd.num_used_entries; 1487 } 1488 1489 static void 1490 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1491 struct xe_tile *tile, struct iosys_map *map, 1492 void *ptr, u32 qword_ofs, u32 num_qwords, 1493 const struct xe_vm_pgtable_update *update) 1494 { 1495 struct xe_vma *vma = pt_update->vma; 1496 u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level); 1497 int i; 1498 1499 if (map && map->is_iomem) 1500 for (i = 0; i < num_qwords; ++i) 1501 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1502 sizeof(u64), u64, empty); 1503 else if (map) 1504 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1505 num_qwords); 1506 else 1507 memset64(ptr, empty, num_qwords); 1508 } 1509 1510 static void 1511 xe_pt_commit_unbind(struct xe_vma *vma, 1512 struct xe_vm_pgtable_update *entries, u32 num_entries, 1513 struct llist_head *deferred) 1514 { 1515 u32 j; 1516 1517 xe_pt_commit_locks_assert(vma); 1518 1519 for (j = 0; j < num_entries; ++j) { 1520 struct xe_vm_pgtable_update *entry = &entries[j]; 1521 struct xe_pt *pt = entry->pt; 1522 1523 pt->num_live -= entry->qwords; 1524 if (pt->level) { 1525 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1526 u32 i; 1527 1528 for (i = entry->ofs; i < entry->ofs + entry->qwords; 1529 i++) { 1530 if (xe_pt_entry(pt_dir, i)) 1531 xe_pt_destroy(xe_pt_entry(pt_dir, i), 1532 xe_vma_vm(vma)->flags, deferred); 1533 1534 pt_dir->children[i] = NULL; 1535 } 1536 } 1537 } 1538 } 1539 1540 static const struct xe_migrate_pt_update_ops unbind_ops = { 1541 .populate = xe_migrate_clear_pgtable_callback, 1542 .pre_commit = xe_pt_pre_commit, 1543 }; 1544 1545 static const struct xe_migrate_pt_update_ops userptr_unbind_ops = { 1546 .populate = xe_migrate_clear_pgtable_callback, 1547 .pre_commit = xe_pt_userptr_pre_commit, 1548 }; 1549 1550 /** 1551 * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma 1552 * address range. 1553 * @tile: The tile to unbind for. 1554 * @vma: The vma to unbind. 1555 * @q: The exec_queue with which to do pipelined page-table updates. 1556 * @syncs: Entries to sync on before disconnecting the tree to be destroyed. 1557 * @num_syncs: Number of @sync entries. 1558 * 1559 * This function builds a the xe_vm_pgtable_update entries abstracting the 1560 * operations needed to detach the page-table tree to be destroyed from the 1561 * man vm tree. 1562 * It then takes the relevant locks and submits the operations for 1563 * pipelined detachment of the gpu page-table from the vm main tree, 1564 * (which can be done either by the cpu and the GPU), Finally it frees the 1565 * detached page-table tree. 1566 * 1567 * Return: A valid dma-fence representing the pipelined detachment operation 1568 * on success, an error pointer on error. 1569 */ 1570 struct dma_fence * 1571 __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, 1572 struct xe_sync_entry *syncs, u32 num_syncs) 1573 { 1574 struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; 1575 struct xe_pt_migrate_pt_update unbind_pt_update = { 1576 .base = { 1577 .ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops : 1578 &unbind_ops, 1579 .vma = vma, 1580 .tile_id = tile->id, 1581 }, 1582 }; 1583 struct xe_vm *vm = xe_vma_vm(vma); 1584 u32 num_entries; 1585 struct dma_fence *fence = NULL; 1586 struct invalidation_fence *ifence; 1587 struct xe_range_fence *rfence; 1588 int err; 1589 1590 LLIST_HEAD(deferred); 1591 1592 xe_bo_assert_held(xe_vma_bo(vma)); 1593 xe_vm_assert_held(vm); 1594 1595 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1596 "Preparing unbind, with range [%llx...%llx) engine %p.\n", 1597 xe_vma_start(vma), xe_vma_end(vma), q); 1598 1599 num_entries = xe_pt_stage_unbind(tile, vma, entries); 1600 xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); 1601 1602 xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); 1603 xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries, 1604 num_entries); 1605 1606 err = dma_resv_reserve_fences(xe_vm_resv(vm), 1); 1607 if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1608 err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1); 1609 if (err) 1610 return ERR_PTR(err); 1611 1612 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); 1613 if (!ifence) 1614 return ERR_PTR(-ENOMEM); 1615 1616 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 1617 if (!rfence) { 1618 kfree(ifence); 1619 return ERR_PTR(-ENOMEM); 1620 } 1621 1622 /* 1623 * Even if we were already evicted and unbind to destroy, we need to 1624 * clear again here. The eviction may have updated pagetables at a 1625 * lower level, because it needs to be more conservative. 1626 */ 1627 fence = xe_migrate_update_pgtables(tile->migrate, 1628 vm, NULL, q ? q : 1629 vm->q[tile->id], 1630 entries, num_entries, 1631 syncs, num_syncs, 1632 &unbind_pt_update.base); 1633 if (!IS_ERR(fence)) { 1634 int err; 1635 1636 err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, 1637 &xe_range_fence_kfree_ops, 1638 unbind_pt_update.base.start, 1639 unbind_pt_update.base.last, fence); 1640 if (err) 1641 dma_fence_wait(fence, false); 1642 1643 /* TLB invalidation must be done before signaling unbind */ 1644 err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma); 1645 if (err) { 1646 dma_fence_put(fence); 1647 kfree(ifence); 1648 return ERR_PTR(err); 1649 } 1650 fence = &ifence->base.base; 1651 1652 /* add shared fence now for pagetable delayed destroy */ 1653 dma_resv_add_fence(xe_vm_resv(vm), fence, 1654 DMA_RESV_USAGE_BOOKKEEP); 1655 1656 /* This fence will be installed by caller when doing eviction */ 1657 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1658 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 1659 DMA_RESV_USAGE_BOOKKEEP); 1660 xe_pt_commit_unbind(vma, entries, num_entries, 1661 unbind_pt_update.locked ? &deferred : NULL); 1662 vma->tile_present &= ~BIT(tile->id); 1663 } else { 1664 kfree(rfence); 1665 kfree(ifence); 1666 } 1667 1668 if (!vma->tile_present) 1669 list_del_init(&vma->combined_links.rebind); 1670 1671 if (unbind_pt_update.locked) { 1672 xe_tile_assert(tile, xe_vma_is_userptr(vma)); 1673 1674 if (!vma->tile_present) { 1675 spin_lock(&vm->userptr.invalidated_lock); 1676 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 1677 spin_unlock(&vm->userptr.invalidated_lock); 1678 } 1679 up_read(&vm->userptr.notifier_lock); 1680 xe_bo_put_commit(&deferred); 1681 } 1682 1683 return fence; 1684 } 1685