xref: /linux/drivers/gpu/drm/xe/xe_preempt_fence.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_preempt_fence.h"
7 
8 #include <linux/slab.h>
9 
10 #include "xe_exec_queue.h"
11 #include "xe_vm.h"
12 
13 static void preempt_fence_work_func(struct work_struct *w)
14 {
15 	bool cookie = dma_fence_begin_signalling();
16 	struct xe_preempt_fence *pfence =
17 		container_of(w, typeof(*pfence), preempt_work);
18 	struct xe_exec_queue *q = pfence->q;
19 
20 	if (pfence->error) {
21 		dma_fence_set_error(&pfence->base, pfence->error);
22 	} else if (!q->ops->reset_status(q)) {
23 		int err = q->ops->suspend_wait(q);
24 
25 		if (err)
26 			dma_fence_set_error(&pfence->base, err);
27 	} else {
28 		dma_fence_set_error(&pfence->base, -ENOENT);
29 	}
30 
31 	dma_fence_signal(&pfence->base);
32 	/*
33 	 * Opt for keep everything in the fence critical section. This looks really strange since we
34 	 * have just signalled the fence, however the preempt fences are all signalled via single
35 	 * global ordered-wq, therefore anything that happens in this callback can easily block
36 	 * progress on the entire wq, which itself may prevent other published preempt fences from
37 	 * ever signalling.  Therefore try to keep everything here in the callback in the fence
38 	 * critical section. For example if something below grabs a scary lock like vm->lock,
39 	 * lockdep should complain since we also hold that lock whilst waiting on preempt fences to
40 	 * complete.
41 	 */
42 	xe_vm_queue_rebind_worker(q->vm);
43 	xe_exec_queue_put(q);
44 	dma_fence_end_signalling(cookie);
45 }
46 
47 static const char *
48 preempt_fence_get_driver_name(struct dma_fence *fence)
49 {
50 	return "xe";
51 }
52 
53 static const char *
54 preempt_fence_get_timeline_name(struct dma_fence *fence)
55 {
56 	return "preempt";
57 }
58 
59 static bool preempt_fence_enable_signaling(struct dma_fence *fence)
60 {
61 	struct xe_preempt_fence *pfence =
62 		container_of(fence, typeof(*pfence), base);
63 	struct xe_exec_queue *q = pfence->q;
64 
65 	pfence->error = q->ops->suspend(q);
66 	queue_work(q->vm->xe->preempt_fence_wq, &pfence->preempt_work);
67 	return true;
68 }
69 
70 static const struct dma_fence_ops preempt_fence_ops = {
71 	.get_driver_name = preempt_fence_get_driver_name,
72 	.get_timeline_name = preempt_fence_get_timeline_name,
73 	.enable_signaling = preempt_fence_enable_signaling,
74 };
75 
76 /**
77  * xe_preempt_fence_alloc() - Allocate a preempt fence with minimal
78  * initialization
79  *
80  * Allocate a preempt fence, and initialize its list head.
81  * If the preempt_fence allocated has been armed with
82  * xe_preempt_fence_arm(), it must be freed using dma_fence_put(). If not,
83  * it must be freed using xe_preempt_fence_free().
84  *
85  * Return: A struct xe_preempt_fence pointer used for calling into
86  * xe_preempt_fence_arm() or xe_preempt_fence_free().
87  * An error pointer on error.
88  */
89 struct xe_preempt_fence *xe_preempt_fence_alloc(void)
90 {
91 	struct xe_preempt_fence *pfence;
92 
93 	pfence = kmalloc(sizeof(*pfence), GFP_KERNEL);
94 	if (!pfence)
95 		return ERR_PTR(-ENOMEM);
96 
97 	INIT_LIST_HEAD(&pfence->link);
98 	INIT_WORK(&pfence->preempt_work, preempt_fence_work_func);
99 
100 	return pfence;
101 }
102 
103 /**
104  * xe_preempt_fence_free() - Free a preempt fence allocated using
105  * xe_preempt_fence_alloc().
106  * @pfence: pointer obtained from xe_preempt_fence_alloc();
107  *
108  * Free a preempt fence that has not yet been armed.
109  */
110 void xe_preempt_fence_free(struct xe_preempt_fence *pfence)
111 {
112 	list_del(&pfence->link);
113 	kfree(pfence);
114 }
115 
116 /**
117  * xe_preempt_fence_arm() - Arm a preempt fence allocated using
118  * xe_preempt_fence_alloc().
119  * @pfence: The struct xe_preempt_fence pointer returned from
120  *          xe_preempt_fence_alloc().
121  * @q: The struct xe_exec_queue used for arming.
122  * @context: The dma-fence context used for arming.
123  * @seqno: The dma-fence seqno used for arming.
124  *
125  * Inserts the preempt fence into @context's timeline, takes @link off any
126  * list, and registers the struct xe_exec_queue as the xe_engine to be preempted.
127  *
128  * Return: A pointer to a struct dma_fence embedded into the preempt fence.
129  * This function doesn't error.
130  */
131 struct dma_fence *
132 xe_preempt_fence_arm(struct xe_preempt_fence *pfence, struct xe_exec_queue *q,
133 		     u64 context, u32 seqno)
134 {
135 	list_del_init(&pfence->link);
136 	pfence->q = xe_exec_queue_get(q);
137 	spin_lock_init(&pfence->lock);
138 	dma_fence_init(&pfence->base, &preempt_fence_ops,
139 		      &pfence->lock, context, seqno);
140 
141 	return &pfence->base;
142 }
143 
144 /**
145  * xe_preempt_fence_create() - Helper to create and arm a preempt fence.
146  * @q: The struct xe_exec_queue used for arming.
147  * @context: The dma-fence context used for arming.
148  * @seqno: The dma-fence seqno used for arming.
149  *
150  * Allocates and inserts the preempt fence into @context's timeline,
151  * and registers @e as the struct xe_exec_queue to be preempted.
152  *
153  * Return: A pointer to the resulting struct dma_fence on success. An error
154  * pointer on error. In particular if allocation fails it returns
155  * ERR_PTR(-ENOMEM);
156  */
157 struct dma_fence *
158 xe_preempt_fence_create(struct xe_exec_queue *q,
159 			u64 context, u32 seqno)
160 {
161 	struct xe_preempt_fence *pfence;
162 
163 	pfence = xe_preempt_fence_alloc();
164 	if (IS_ERR(pfence))
165 		return ERR_CAST(pfence);
166 
167 	return xe_preempt_fence_arm(pfence, q, context, seqno);
168 }
169 
170 bool xe_fence_is_xe_preempt(const struct dma_fence *fence)
171 {
172 	return fence->ops == &preempt_fence_ops;
173 }
174