1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_pm.h" 7 8 #include <linux/fault-inject.h> 9 #include <linux/pm_runtime.h> 10 #include <linux/suspend.h> 11 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_placement.h> 14 15 #include "display/xe_display.h" 16 #include "xe_bo.h" 17 #include "xe_bo_evict.h" 18 #include "xe_device.h" 19 #include "xe_ggtt.h" 20 #include "xe_gt.h" 21 #include "xe_guc.h" 22 #include "xe_irq.h" 23 #include "xe_pcode.h" 24 #include "xe_pxp.h" 25 #include "xe_trace.h" 26 #include "xe_wa.h" 27 28 /** 29 * DOC: Xe Power Management 30 * 31 * Xe PM implements the main routines for both system level suspend states and 32 * for the opportunistic runtime suspend states. 33 * 34 * System Level Suspend (S-States) - In general this is OS initiated suspend 35 * driven by ACPI for achieving S0ix (a.k.a. S2idle, freeze), S3 (suspend to ram), 36 * S4 (disk). The main functions here are `xe_pm_suspend` and `xe_pm_resume`. They 37 * are the main point for the suspend to and resume from these states. 38 * 39 * PCI Device Suspend (D-States) - This is the opportunistic PCIe device low power 40 * state D3, controlled by the PCI subsystem and ACPI with the help from the 41 * runtime_pm infrastructure. 42 * PCI D3 is special and can mean D3hot, where Vcc power is on for keeping memory 43 * alive and quicker low latency resume or D3Cold where Vcc power is off for 44 * better power savings. 45 * The Vcc control of PCI hierarchy can only be controlled at the PCI root port 46 * level, while the device driver can be behind multiple bridges/switches and 47 * paired with other devices. For this reason, the PCI subsystem cannot perform 48 * the transition towards D3Cold. The lowest runtime PM possible from the PCI 49 * subsystem is D3hot. Then, if all these paired devices in the same root port 50 * are in D3hot, ACPI will assist here and run its own methods (_PR3 and _OFF) 51 * to perform the transition from D3hot to D3cold. Xe may disallow this 52 * transition by calling pci_d3cold_disable(root_pdev) before going to runtime 53 * suspend. It will be based on runtime conditions such as VRAM usage for a 54 * quick and low latency resume for instance. 55 * 56 * Runtime PM - This infrastructure provided by the Linux kernel allows the 57 * device drivers to indicate when the can be runtime suspended, so the device 58 * could be put at D3 (if supported), or allow deeper package sleep states 59 * (PC-states), and/or other low level power states. Xe PM component provides 60 * `xe_pm_runtime_suspend` and `xe_pm_runtime_resume` functions that PCI 61 * subsystem will call before transition to/from runtime suspend. 62 * 63 * Also, Xe PM provides get and put functions that Xe driver will use to 64 * indicate activity. In order to avoid locking complications with the memory 65 * management, whenever possible, these get and put functions needs to be called 66 * from the higher/outer levels. 67 * The main cases that need to be protected from the outer levels are: IOCTL, 68 * sysfs, debugfs, dma-buf sharing, GPU execution. 69 * 70 * This component is not responsible for GT idleness (RC6) nor GT frequency 71 * management (RPS). 72 */ 73 74 #ifdef CONFIG_LOCKDEP 75 static struct lockdep_map xe_pm_runtime_d3cold_map = { 76 .name = "xe_rpm_d3cold_map" 77 }; 78 79 static struct lockdep_map xe_pm_runtime_nod3cold_map = { 80 .name = "xe_rpm_nod3cold_map" 81 }; 82 #endif 83 84 /** 85 * xe_rpm_reclaim_safe() - Whether runtime resume can be done from reclaim context 86 * @xe: The xe device. 87 * 88 * Return: true if it is safe to runtime resume from reclaim context. 89 * false otherwise. 90 */ 91 bool xe_rpm_reclaim_safe(const struct xe_device *xe) 92 { 93 return !xe->d3cold.capable; 94 } 95 96 static void xe_rpm_lockmap_acquire(const struct xe_device *xe) 97 { 98 lock_map_acquire(xe_rpm_reclaim_safe(xe) ? 99 &xe_pm_runtime_nod3cold_map : 100 &xe_pm_runtime_d3cold_map); 101 } 102 103 static void xe_rpm_lockmap_release(const struct xe_device *xe) 104 { 105 lock_map_release(xe_rpm_reclaim_safe(xe) ? 106 &xe_pm_runtime_nod3cold_map : 107 &xe_pm_runtime_d3cold_map); 108 } 109 110 /** 111 * xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle 112 * @xe: xe device instance 113 * 114 * Return: 0 on success 115 */ 116 int xe_pm_suspend(struct xe_device *xe) 117 { 118 struct xe_gt *gt; 119 u8 id; 120 int err; 121 122 drm_dbg(&xe->drm, "Suspending device\n"); 123 trace_xe_pm_suspend(xe, __builtin_return_address(0)); 124 125 err = xe_pxp_pm_suspend(xe->pxp); 126 if (err) 127 goto err; 128 129 for_each_gt(gt, xe, id) 130 xe_gt_suspend_prepare(gt); 131 132 xe_display_pm_suspend(xe); 133 134 /* FIXME: Super racey... */ 135 err = xe_bo_evict_all(xe); 136 if (err) 137 goto err_pxp; 138 139 for_each_gt(gt, xe, id) { 140 err = xe_gt_suspend(gt); 141 if (err) 142 goto err_display; 143 } 144 145 xe_irq_suspend(xe); 146 147 xe_display_pm_suspend_late(xe); 148 149 drm_dbg(&xe->drm, "Device suspended\n"); 150 return 0; 151 152 err_display: 153 xe_display_pm_resume(xe); 154 err_pxp: 155 xe_pxp_pm_resume(xe->pxp); 156 err: 157 drm_dbg(&xe->drm, "Device suspend failed %d\n", err); 158 return err; 159 } 160 161 /** 162 * xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0 163 * @xe: xe device instance 164 * 165 * Return: 0 on success 166 */ 167 int xe_pm_resume(struct xe_device *xe) 168 { 169 struct xe_tile *tile; 170 struct xe_gt *gt; 171 u8 id; 172 int err; 173 174 drm_dbg(&xe->drm, "Resuming device\n"); 175 trace_xe_pm_resume(xe, __builtin_return_address(0)); 176 177 for_each_tile(tile, xe, id) 178 xe_wa_apply_tile_workarounds(tile); 179 180 err = xe_pcode_ready(xe, true); 181 if (err) 182 return err; 183 184 xe_display_pm_resume_early(xe); 185 186 /* 187 * This only restores pinned memory which is the memory required for the 188 * GT(s) to resume. 189 */ 190 err = xe_bo_restore_early(xe); 191 if (err) 192 goto err; 193 194 xe_irq_resume(xe); 195 196 for_each_gt(gt, xe, id) 197 xe_gt_resume(gt); 198 199 xe_display_pm_resume(xe); 200 201 err = xe_bo_restore_late(xe); 202 if (err) 203 goto err; 204 205 xe_pxp_pm_resume(xe->pxp); 206 207 drm_dbg(&xe->drm, "Device resumed\n"); 208 return 0; 209 err: 210 drm_dbg(&xe->drm, "Device resume failed %d\n", err); 211 return err; 212 } 213 214 static bool xe_pm_pci_d3cold_capable(struct xe_device *xe) 215 { 216 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 217 struct pci_dev *root_pdev; 218 219 root_pdev = pcie_find_root_port(pdev); 220 if (!root_pdev) 221 return false; 222 223 /* D3Cold requires PME capability */ 224 if (!pci_pme_capable(root_pdev, PCI_D3cold)) { 225 drm_dbg(&xe->drm, "d3cold: PME# not supported\n"); 226 return false; 227 } 228 229 /* D3Cold requires _PR3 power resource */ 230 if (!pci_pr3_present(root_pdev)) { 231 drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n"); 232 return false; 233 } 234 235 return true; 236 } 237 238 static void xe_pm_runtime_init(struct xe_device *xe) 239 { 240 struct device *dev = xe->drm.dev; 241 242 /* 243 * Disable the system suspend direct complete optimization. 244 * We need to ensure that the regular device suspend/resume functions 245 * are called since our runtime_pm cannot guarantee local memory 246 * eviction for d3cold. 247 * TODO: Check HDA audio dependencies claimed by i915, and then enforce 248 * this option to integrated graphics as well. 249 */ 250 if (IS_DGFX(xe)) 251 dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 252 253 pm_runtime_use_autosuspend(dev); 254 pm_runtime_set_autosuspend_delay(dev, 1000); 255 pm_runtime_set_active(dev); 256 pm_runtime_allow(dev); 257 pm_runtime_mark_last_busy(dev); 258 pm_runtime_put(dev); 259 } 260 261 int xe_pm_init_early(struct xe_device *xe) 262 { 263 int err; 264 265 INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list); 266 267 err = drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock); 268 if (err) 269 return err; 270 271 err = drmm_mutex_init(&xe->drm, &xe->d3cold.lock); 272 if (err) 273 return err; 274 275 xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe); 276 return 0; 277 } 278 ALLOW_ERROR_INJECTION(xe_pm_init_early, ERRNO); /* See xe_pci_probe() */ 279 280 static u32 vram_threshold_value(struct xe_device *xe) 281 { 282 /* FIXME: D3Cold temporarily disabled by default on BMG */ 283 if (xe->info.platform == XE_BATTLEMAGE) 284 return 0; 285 286 return DEFAULT_VRAM_THRESHOLD; 287 } 288 289 static int xe_pm_notifier_callback(struct notifier_block *nb, 290 unsigned long action, void *data) 291 { 292 struct xe_device *xe = container_of(nb, struct xe_device, pm_notifier); 293 int err = 0; 294 295 switch (action) { 296 case PM_HIBERNATION_PREPARE: 297 case PM_SUSPEND_PREPARE: 298 xe_pm_runtime_get(xe); 299 err = xe_bo_evict_all_user(xe); 300 if (err) { 301 drm_dbg(&xe->drm, "Notifier evict user failed (%d)\n", err); 302 xe_pm_runtime_put(xe); 303 break; 304 } 305 306 err = xe_bo_notifier_prepare_all_pinned(xe); 307 if (err) { 308 drm_dbg(&xe->drm, "Notifier prepare pin failed (%d)\n", err); 309 xe_pm_runtime_put(xe); 310 } 311 break; 312 case PM_POST_HIBERNATION: 313 case PM_POST_SUSPEND: 314 xe_bo_notifier_unprepare_all_pinned(xe); 315 xe_pm_runtime_put(xe); 316 break; 317 } 318 319 if (err) 320 return NOTIFY_BAD; 321 322 return NOTIFY_DONE; 323 } 324 325 /** 326 * xe_pm_init - Initialize Xe Power Management 327 * @xe: xe device instance 328 * 329 * This component is responsible for System and Device sleep states. 330 * 331 * Returns 0 for success, negative error code otherwise. 332 */ 333 int xe_pm_init(struct xe_device *xe) 334 { 335 u32 vram_threshold; 336 int err; 337 338 xe->pm_notifier.notifier_call = xe_pm_notifier_callback; 339 err = register_pm_notifier(&xe->pm_notifier); 340 if (err) 341 return err; 342 343 /* For now suspend/resume is only allowed with GuC */ 344 if (!xe_device_uc_enabled(xe)) 345 return 0; 346 347 if (xe->d3cold.capable) { 348 vram_threshold = vram_threshold_value(xe); 349 err = xe_pm_set_vram_threshold(xe, vram_threshold); 350 if (err) 351 goto err_unregister; 352 } 353 354 xe_pm_runtime_init(xe); 355 return 0; 356 357 err_unregister: 358 unregister_pm_notifier(&xe->pm_notifier); 359 return err; 360 } 361 362 static void xe_pm_runtime_fini(struct xe_device *xe) 363 { 364 struct device *dev = xe->drm.dev; 365 366 pm_runtime_get_sync(dev); 367 pm_runtime_forbid(dev); 368 } 369 370 /** 371 * xe_pm_fini - Finalize PM 372 * @xe: xe device instance 373 */ 374 void xe_pm_fini(struct xe_device *xe) 375 { 376 if (xe_device_uc_enabled(xe)) 377 xe_pm_runtime_fini(xe); 378 379 unregister_pm_notifier(&xe->pm_notifier); 380 } 381 382 static void xe_pm_write_callback_task(struct xe_device *xe, 383 struct task_struct *task) 384 { 385 WRITE_ONCE(xe->pm_callback_task, task); 386 387 /* 388 * Just in case it's somehow possible for our writes to be reordered to 389 * the extent that something else re-uses the task written in 390 * pm_callback_task. For example after returning from the callback, but 391 * before the reordered write that resets pm_callback_task back to NULL. 392 */ 393 smp_mb(); /* pairs with xe_pm_read_callback_task */ 394 } 395 396 struct task_struct *xe_pm_read_callback_task(struct xe_device *xe) 397 { 398 smp_mb(); /* pairs with xe_pm_write_callback_task */ 399 400 return READ_ONCE(xe->pm_callback_task); 401 } 402 403 /** 404 * xe_pm_runtime_suspended - Check if runtime_pm state is suspended 405 * @xe: xe device instance 406 * 407 * This does not provide any guarantee that the device is going to remain 408 * suspended as it might be racing with the runtime state transitions. 409 * It can be used only as a non-reliable assertion, to ensure that we are not in 410 * the sleep state while trying to access some memory for instance. 411 * 412 * Returns true if PCI device is suspended, false otherwise. 413 */ 414 bool xe_pm_runtime_suspended(struct xe_device *xe) 415 { 416 return pm_runtime_suspended(xe->drm.dev); 417 } 418 419 /** 420 * xe_pm_runtime_suspend - Prepare our device for D3hot/D3Cold 421 * @xe: xe device instance 422 * 423 * Returns 0 for success, negative error code otherwise. 424 */ 425 int xe_pm_runtime_suspend(struct xe_device *xe) 426 { 427 struct xe_bo *bo, *on; 428 struct xe_gt *gt; 429 u8 id; 430 int err = 0; 431 432 trace_xe_pm_runtime_suspend(xe, __builtin_return_address(0)); 433 /* Disable access_ongoing asserts and prevent recursive pm calls */ 434 xe_pm_write_callback_task(xe, current); 435 436 /* 437 * The actual xe_pm_runtime_put() is always async underneath, so 438 * exactly where that is called should makes no difference to us. However 439 * we still need to be very careful with the locks that this callback 440 * acquires and the locks that are acquired and held by any callers of 441 * xe_runtime_pm_get(). We already have the matching annotation 442 * on that side, but we also need it here. For example lockdep should be 443 * able to tell us if the following scenario is in theory possible: 444 * 445 * CPU0 | CPU1 (kworker) 446 * lock(A) | 447 * | xe_pm_runtime_suspend() 448 * | lock(A) 449 * xe_pm_runtime_get() | 450 * 451 * This will clearly deadlock since rpm core needs to wait for 452 * xe_pm_runtime_suspend() to complete, but here we are holding lock(A) 453 * on CPU0 which prevents CPU1 making forward progress. With the 454 * annotation here and in xe_pm_runtime_get() lockdep will see 455 * the potential lock inversion and give us a nice splat. 456 */ 457 xe_rpm_lockmap_acquire(xe); 458 459 err = xe_pxp_pm_suspend(xe->pxp); 460 if (err) 461 goto out; 462 463 /* 464 * Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify 465 * also checks and deletes bo entry from user fault list. 466 */ 467 mutex_lock(&xe->mem_access.vram_userfault.lock); 468 list_for_each_entry_safe(bo, on, 469 &xe->mem_access.vram_userfault.list, vram_userfault_link) 470 xe_bo_runtime_pm_release_mmap_offset(bo); 471 mutex_unlock(&xe->mem_access.vram_userfault.lock); 472 473 xe_display_pm_runtime_suspend(xe); 474 475 if (xe->d3cold.allowed) { 476 err = xe_bo_evict_all(xe); 477 if (err) 478 goto out_resume; 479 } 480 481 for_each_gt(gt, xe, id) { 482 err = xe_gt_suspend(gt); 483 if (err) 484 goto out_resume; 485 } 486 487 xe_irq_suspend(xe); 488 489 xe_display_pm_runtime_suspend_late(xe); 490 491 xe_rpm_lockmap_release(xe); 492 xe_pm_write_callback_task(xe, NULL); 493 return 0; 494 495 out_resume: 496 xe_display_pm_runtime_resume(xe); 497 xe_pxp_pm_resume(xe->pxp); 498 out: 499 xe_rpm_lockmap_release(xe); 500 xe_pm_write_callback_task(xe, NULL); 501 return err; 502 } 503 504 /** 505 * xe_pm_runtime_resume - Waking up from D3hot/D3Cold 506 * @xe: xe device instance 507 * 508 * Returns 0 for success, negative error code otherwise. 509 */ 510 int xe_pm_runtime_resume(struct xe_device *xe) 511 { 512 struct xe_gt *gt; 513 u8 id; 514 int err = 0; 515 516 trace_xe_pm_runtime_resume(xe, __builtin_return_address(0)); 517 /* Disable access_ongoing asserts and prevent recursive pm calls */ 518 xe_pm_write_callback_task(xe, current); 519 520 xe_rpm_lockmap_acquire(xe); 521 522 if (xe->d3cold.allowed) { 523 err = xe_pcode_ready(xe, true); 524 if (err) 525 goto out; 526 527 xe_display_pm_resume_early(xe); 528 529 /* 530 * This only restores pinned memory which is the memory 531 * required for the GT(s) to resume. 532 */ 533 err = xe_bo_restore_early(xe); 534 if (err) 535 goto out; 536 } 537 538 xe_irq_resume(xe); 539 540 for_each_gt(gt, xe, id) 541 xe_gt_resume(gt); 542 543 xe_display_pm_runtime_resume(xe); 544 545 if (xe->d3cold.allowed) { 546 err = xe_bo_restore_late(xe); 547 if (err) 548 goto out; 549 } 550 551 xe_pxp_pm_resume(xe->pxp); 552 553 out: 554 xe_rpm_lockmap_release(xe); 555 xe_pm_write_callback_task(xe, NULL); 556 return err; 557 } 558 559 /* 560 * For places where resume is synchronous it can be quite easy to deadlock 561 * if we are not careful. Also in practice it might be quite timing 562 * sensitive to ever see the 0 -> 1 transition with the callers locks 563 * held, so deadlocks might exist but are hard for lockdep to ever see. 564 * With this in mind, help lockdep learn about the potentially scary 565 * stuff that can happen inside the runtime_resume callback by acquiring 566 * a dummy lock (it doesn't protect anything and gets compiled out on 567 * non-debug builds). Lockdep then only needs to see the 568 * xe_pm_runtime_xxx_map -> runtime_resume callback once, and then can 569 * hopefully validate all the (callers_locks) -> xe_pm_runtime_xxx_map. 570 * For example if the (callers_locks) are ever grabbed in the 571 * runtime_resume callback, lockdep should give us a nice splat. 572 */ 573 static void xe_rpm_might_enter_cb(const struct xe_device *xe) 574 { 575 xe_rpm_lockmap_acquire(xe); 576 xe_rpm_lockmap_release(xe); 577 } 578 579 /* 580 * Prime the lockdep maps for known locking orders that need to 581 * be supported but that may not always occur on all systems. 582 */ 583 static void xe_pm_runtime_lockdep_prime(void) 584 { 585 struct dma_resv lockdep_resv; 586 587 dma_resv_init(&lockdep_resv); 588 lock_map_acquire(&xe_pm_runtime_d3cold_map); 589 /* D3Cold takes the dma_resv locks to evict bos */ 590 dma_resv_lock(&lockdep_resv, NULL); 591 dma_resv_unlock(&lockdep_resv); 592 lock_map_release(&xe_pm_runtime_d3cold_map); 593 594 /* Shrinkers might like to wake up the device under reclaim. */ 595 fs_reclaim_acquire(GFP_KERNEL); 596 lock_map_acquire(&xe_pm_runtime_nod3cold_map); 597 lock_map_release(&xe_pm_runtime_nod3cold_map); 598 fs_reclaim_release(GFP_KERNEL); 599 } 600 601 /** 602 * xe_pm_runtime_get - Get a runtime_pm reference and resume synchronously 603 * @xe: xe device instance 604 */ 605 void xe_pm_runtime_get(struct xe_device *xe) 606 { 607 trace_xe_pm_runtime_get(xe, __builtin_return_address(0)); 608 pm_runtime_get_noresume(xe->drm.dev); 609 610 if (xe_pm_read_callback_task(xe) == current) 611 return; 612 613 xe_rpm_might_enter_cb(xe); 614 pm_runtime_resume(xe->drm.dev); 615 } 616 617 /** 618 * xe_pm_runtime_put - Put the runtime_pm reference back and mark as idle 619 * @xe: xe device instance 620 */ 621 void xe_pm_runtime_put(struct xe_device *xe) 622 { 623 trace_xe_pm_runtime_put(xe, __builtin_return_address(0)); 624 if (xe_pm_read_callback_task(xe) == current) { 625 pm_runtime_put_noidle(xe->drm.dev); 626 } else { 627 pm_runtime_mark_last_busy(xe->drm.dev); 628 pm_runtime_put(xe->drm.dev); 629 } 630 } 631 632 /** 633 * xe_pm_runtime_get_ioctl - Get a runtime_pm reference before ioctl 634 * @xe: xe device instance 635 * 636 * Returns: Any number greater than or equal to 0 for success, negative error 637 * code otherwise. 638 */ 639 int xe_pm_runtime_get_ioctl(struct xe_device *xe) 640 { 641 trace_xe_pm_runtime_get_ioctl(xe, __builtin_return_address(0)); 642 if (WARN_ON(xe_pm_read_callback_task(xe) == current)) 643 return -ELOOP; 644 645 xe_rpm_might_enter_cb(xe); 646 return pm_runtime_get_sync(xe->drm.dev); 647 } 648 649 /** 650 * xe_pm_runtime_get_if_active - Get a runtime_pm reference if device active 651 * @xe: xe device instance 652 * 653 * Return: True if device is awake (regardless the previous number of references) 654 * and a new reference was taken, false otherwise. 655 */ 656 bool xe_pm_runtime_get_if_active(struct xe_device *xe) 657 { 658 return pm_runtime_get_if_active(xe->drm.dev) > 0; 659 } 660 661 /** 662 * xe_pm_runtime_get_if_in_use - Get a new reference if device is active with previous ref taken 663 * @xe: xe device instance 664 * 665 * Return: True if device is awake, a previous reference had been already taken, 666 * and a new reference was now taken, false otherwise. 667 */ 668 bool xe_pm_runtime_get_if_in_use(struct xe_device *xe) 669 { 670 if (xe_pm_read_callback_task(xe) == current) { 671 /* The device is awake, grab the ref and move on */ 672 pm_runtime_get_noresume(xe->drm.dev); 673 return true; 674 } 675 676 return pm_runtime_get_if_in_use(xe->drm.dev) > 0; 677 } 678 679 /* 680 * Very unreliable! Should only be used to suppress the false positive case 681 * in the missing outer rpm protection warning. 682 */ 683 static bool xe_pm_suspending_or_resuming(struct xe_device *xe) 684 { 685 #ifdef CONFIG_PM 686 struct device *dev = xe->drm.dev; 687 688 return dev->power.runtime_status == RPM_SUSPENDING || 689 dev->power.runtime_status == RPM_RESUMING || 690 pm_suspend_in_progress(); 691 #else 692 return false; 693 #endif 694 } 695 696 /** 697 * xe_pm_runtime_get_noresume - Bump runtime PM usage counter without resuming 698 * @xe: xe device instance 699 * 700 * This function should be used in inner places where it is surely already 701 * protected by outer-bound callers of `xe_pm_runtime_get`. 702 * It will warn if not protected. 703 * The reference should be put back after this function regardless, since it 704 * will always bump the usage counter, regardless. 705 */ 706 void xe_pm_runtime_get_noresume(struct xe_device *xe) 707 { 708 bool ref; 709 710 ref = xe_pm_runtime_get_if_in_use(xe); 711 712 if (!ref) { 713 pm_runtime_get_noresume(xe->drm.dev); 714 drm_WARN(&xe->drm, !xe_pm_suspending_or_resuming(xe), 715 "Missing outer runtime PM protection\n"); 716 } 717 } 718 719 /** 720 * xe_pm_runtime_resume_and_get - Resume, then get a runtime_pm ref if awake. 721 * @xe: xe device instance 722 * 723 * Returns: True if device is awake and the reference was taken, false otherwise. 724 */ 725 bool xe_pm_runtime_resume_and_get(struct xe_device *xe) 726 { 727 if (xe_pm_read_callback_task(xe) == current) { 728 /* The device is awake, grab the ref and move on */ 729 pm_runtime_get_noresume(xe->drm.dev); 730 return true; 731 } 732 733 xe_rpm_might_enter_cb(xe); 734 return pm_runtime_resume_and_get(xe->drm.dev) >= 0; 735 } 736 737 /** 738 * xe_pm_assert_unbounded_bridge - Disable PM on unbounded pcie parent bridge 739 * @xe: xe device instance 740 */ 741 void xe_pm_assert_unbounded_bridge(struct xe_device *xe) 742 { 743 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 744 struct pci_dev *bridge = pci_upstream_bridge(pdev); 745 746 if (!bridge) 747 return; 748 749 if (!bridge->driver) { 750 drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n"); 751 device_set_pm_not_required(&pdev->dev); 752 } 753 } 754 755 /** 756 * xe_pm_set_vram_threshold - Set a vram threshold for allowing/blocking D3Cold 757 * @xe: xe device instance 758 * @threshold: VRAM size in bites for the D3cold threshold 759 * 760 * Returns 0 for success, negative error code otherwise. 761 */ 762 int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold) 763 { 764 struct ttm_resource_manager *man; 765 u32 vram_total_mb = 0; 766 int i; 767 768 for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { 769 man = ttm_manager_type(&xe->ttm, i); 770 if (man) 771 vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024); 772 } 773 774 drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb); 775 776 if (threshold > vram_total_mb) 777 return -EINVAL; 778 779 mutex_lock(&xe->d3cold.lock); 780 xe->d3cold.vram_threshold = threshold; 781 mutex_unlock(&xe->d3cold.lock); 782 783 return 0; 784 } 785 786 /** 787 * xe_pm_d3cold_allowed_toggle - Check conditions to toggle d3cold.allowed 788 * @xe: xe device instance 789 * 790 * To be called during runtime_pm idle callback. 791 * Check for all the D3Cold conditions ahead of runtime suspend. 792 */ 793 void xe_pm_d3cold_allowed_toggle(struct xe_device *xe) 794 { 795 struct ttm_resource_manager *man; 796 u32 total_vram_used_mb = 0; 797 u64 vram_used; 798 int i; 799 800 if (!xe->d3cold.capable) { 801 xe->d3cold.allowed = false; 802 return; 803 } 804 805 for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { 806 man = ttm_manager_type(&xe->ttm, i); 807 if (man) { 808 vram_used = ttm_resource_manager_usage(man); 809 total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024); 810 } 811 } 812 813 mutex_lock(&xe->d3cold.lock); 814 815 if (total_vram_used_mb < xe->d3cold.vram_threshold) 816 xe->d3cold.allowed = true; 817 else 818 xe->d3cold.allowed = false; 819 820 mutex_unlock(&xe->d3cold.lock); 821 } 822 823 /** 824 * xe_pm_module_init() - Perform xe_pm specific module initialization. 825 * 826 * Return: 0 on success. Currently doesn't fail. 827 */ 828 int __init xe_pm_module_init(void) 829 { 830 xe_pm_runtime_lockdep_prime(); 831 return 0; 832 } 833