1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_pm.h" 7 8 #include <linux/pm_runtime.h> 9 10 #include <drm/drm_managed.h> 11 #include <drm/ttm/ttm_placement.h> 12 13 #include "display/xe_display.h" 14 #include "xe_bo.h" 15 #include "xe_bo_evict.h" 16 #include "xe_device.h" 17 #include "xe_device_sysfs.h" 18 #include "xe_ggtt.h" 19 #include "xe_gt.h" 20 #include "xe_guc.h" 21 #include "xe_irq.h" 22 #include "xe_pcode.h" 23 #include "xe_wa.h" 24 25 /** 26 * DOC: Xe Power Management 27 * 28 * Xe PM implements the main routines for both system level suspend states and 29 * for the opportunistic runtime suspend states. 30 * 31 * System Level Suspend (S-States) - In general this is OS initiated suspend 32 * driven by ACPI for achieving S0ix (a.k.a. S2idle, freeze), S3 (suspend to ram), 33 * S4 (disk). The main functions here are `xe_pm_suspend` and `xe_pm_resume`. They 34 * are the main point for the suspend to and resume from these states. 35 * 36 * PCI Device Suspend (D-States) - This is the opportunistic PCIe device low power 37 * state D3, controlled by the PCI subsystem and ACPI with the help from the 38 * runtime_pm infrastructure. 39 * PCI D3 is special and can mean D3hot, where Vcc power is on for keeping memory 40 * alive and quicker low latency resume or D3Cold where Vcc power is off for 41 * better power savings. 42 * The Vcc control of PCI hierarchy can only be controlled at the PCI root port 43 * level, while the device driver can be behind multiple bridges/switches and 44 * paired with other devices. For this reason, the PCI subsystem cannot perform 45 * the transition towards D3Cold. The lowest runtime PM possible from the PCI 46 * subsystem is D3hot. Then, if all these paired devices in the same root port 47 * are in D3hot, ACPI will assist here and run its own methods (_PR3 and _OFF) 48 * to perform the transition from D3hot to D3cold. Xe may disallow this 49 * transition by calling pci_d3cold_disable(root_pdev) before going to runtime 50 * suspend. It will be based on runtime conditions such as VRAM usage for a 51 * quick and low latency resume for instance. 52 * 53 * Runtime PM - This infrastructure provided by the Linux kernel allows the 54 * device drivers to indicate when the can be runtime suspended, so the device 55 * could be put at D3 (if supported), or allow deeper package sleep states 56 * (PC-states), and/or other low level power states. Xe PM component provides 57 * `xe_pm_runtime_suspend` and `xe_pm_runtime_resume` functions that PCI 58 * subsystem will call before transition to/from runtime suspend. 59 * 60 * Also, Xe PM provides get and put functions that Xe driver will use to 61 * indicate activity. In order to avoid locking complications with the memory 62 * management, whenever possible, these get and put functions needs to be called 63 * from the higher/outer levels. 64 * The main cases that need to be protected from the outer levels are: IOCTL, 65 * sysfs, debugfs, dma-buf sharing, GPU execution. 66 * 67 * This component is not responsible for GT idleness (RC6) nor GT frequency 68 * management (RPS). 69 */ 70 71 /** 72 * xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle 73 * @xe: xe device instance 74 * 75 * Return: 0 on success 76 */ 77 int xe_pm_suspend(struct xe_device *xe) 78 { 79 struct xe_gt *gt; 80 u8 id; 81 int err; 82 83 drm_dbg(&xe->drm, "Suspending device\n"); 84 85 for_each_gt(gt, xe, id) 86 xe_gt_suspend_prepare(gt); 87 88 /* FIXME: Super racey... */ 89 err = xe_bo_evict_all(xe); 90 if (err) 91 goto err; 92 93 xe_display_pm_suspend(xe); 94 95 for_each_gt(gt, xe, id) { 96 err = xe_gt_suspend(gt); 97 if (err) { 98 xe_display_pm_resume(xe); 99 goto err; 100 } 101 } 102 103 xe_irq_suspend(xe); 104 105 xe_display_pm_suspend_late(xe); 106 107 drm_dbg(&xe->drm, "Device suspended\n"); 108 return 0; 109 err: 110 drm_dbg(&xe->drm, "Device suspend failed %d\n", err); 111 return err; 112 } 113 114 /** 115 * xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0 116 * @xe: xe device instance 117 * 118 * Return: 0 on success 119 */ 120 int xe_pm_resume(struct xe_device *xe) 121 { 122 struct xe_tile *tile; 123 struct xe_gt *gt; 124 u8 id; 125 int err; 126 127 drm_dbg(&xe->drm, "Resuming device\n"); 128 129 for_each_tile(tile, xe, id) 130 xe_wa_apply_tile_workarounds(tile); 131 132 err = xe_pcode_ready(xe, true); 133 if (err) 134 return err; 135 136 xe_display_pm_resume_early(xe); 137 138 /* 139 * This only restores pinned memory which is the memory required for the 140 * GT(s) to resume. 141 */ 142 err = xe_bo_restore_kernel(xe); 143 if (err) 144 goto err; 145 146 xe_irq_resume(xe); 147 148 xe_display_pm_resume(xe); 149 150 for_each_gt(gt, xe, id) 151 xe_gt_resume(gt); 152 153 err = xe_bo_restore_user(xe); 154 if (err) 155 goto err; 156 157 drm_dbg(&xe->drm, "Device resumed\n"); 158 return 0; 159 err: 160 drm_dbg(&xe->drm, "Device resume failed %d\n", err); 161 return err; 162 } 163 164 static bool xe_pm_pci_d3cold_capable(struct xe_device *xe) 165 { 166 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 167 struct pci_dev *root_pdev; 168 169 root_pdev = pcie_find_root_port(pdev); 170 if (!root_pdev) 171 return false; 172 173 /* D3Cold requires PME capability */ 174 if (!pci_pme_capable(root_pdev, PCI_D3cold)) { 175 drm_dbg(&xe->drm, "d3cold: PME# not supported\n"); 176 return false; 177 } 178 179 /* D3Cold requires _PR3 power resource */ 180 if (!pci_pr3_present(root_pdev)) { 181 drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n"); 182 return false; 183 } 184 185 return true; 186 } 187 188 static void xe_pm_runtime_init(struct xe_device *xe) 189 { 190 struct device *dev = xe->drm.dev; 191 192 /* 193 * Disable the system suspend direct complete optimization. 194 * We need to ensure that the regular device suspend/resume functions 195 * are called since our runtime_pm cannot guarantee local memory 196 * eviction for d3cold. 197 * TODO: Check HDA audio dependencies claimed by i915, and then enforce 198 * this option to integrated graphics as well. 199 */ 200 if (IS_DGFX(xe)) 201 dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 202 203 pm_runtime_use_autosuspend(dev); 204 pm_runtime_set_autosuspend_delay(dev, 1000); 205 pm_runtime_set_active(dev); 206 pm_runtime_allow(dev); 207 pm_runtime_mark_last_busy(dev); 208 pm_runtime_put(dev); 209 } 210 211 void xe_pm_init_early(struct xe_device *xe) 212 { 213 INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list); 214 drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock); 215 } 216 217 /** 218 * xe_pm_init - Initialize Xe Power Management 219 * @xe: xe device instance 220 * 221 * This component is responsible for System and Device sleep states. 222 */ 223 void xe_pm_init(struct xe_device *xe) 224 { 225 /* For now suspend/resume is only allowed with GuC */ 226 if (!xe_device_uc_enabled(xe)) 227 return; 228 229 drmm_mutex_init(&xe->drm, &xe->d3cold.lock); 230 231 xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe); 232 233 if (xe->d3cold.capable) { 234 xe_device_sysfs_init(xe); 235 xe_pm_set_vram_threshold(xe, DEFAULT_VRAM_THRESHOLD); 236 } 237 238 xe_pm_runtime_init(xe); 239 } 240 241 /** 242 * xe_pm_runtime_fini - Finalize Runtime PM 243 * @xe: xe device instance 244 */ 245 void xe_pm_runtime_fini(struct xe_device *xe) 246 { 247 struct device *dev = xe->drm.dev; 248 249 pm_runtime_get_sync(dev); 250 pm_runtime_forbid(dev); 251 } 252 253 static void xe_pm_write_callback_task(struct xe_device *xe, 254 struct task_struct *task) 255 { 256 WRITE_ONCE(xe->pm_callback_task, task); 257 258 /* 259 * Just in case it's somehow possible for our writes to be reordered to 260 * the extent that something else re-uses the task written in 261 * pm_callback_task. For example after returning from the callback, but 262 * before the reordered write that resets pm_callback_task back to NULL. 263 */ 264 smp_mb(); /* pairs with xe_pm_read_callback_task */ 265 } 266 267 struct task_struct *xe_pm_read_callback_task(struct xe_device *xe) 268 { 269 smp_mb(); /* pairs with xe_pm_write_callback_task */ 270 271 return READ_ONCE(xe->pm_callback_task); 272 } 273 274 /** 275 * xe_pm_runtime_suspended - Check if runtime_pm state is suspended 276 * @xe: xe device instance 277 * 278 * This does not provide any guarantee that the device is going to remain 279 * suspended as it might be racing with the runtime state transitions. 280 * It can be used only as a non-reliable assertion, to ensure that we are not in 281 * the sleep state while trying to access some memory for instance. 282 * 283 * Returns true if PCI device is suspended, false otherwise. 284 */ 285 bool xe_pm_runtime_suspended(struct xe_device *xe) 286 { 287 return pm_runtime_suspended(xe->drm.dev); 288 } 289 290 /** 291 * xe_pm_runtime_suspend - Prepare our device for D3hot/D3Cold 292 * @xe: xe device instance 293 * 294 * Returns 0 for success, negative error code otherwise. 295 */ 296 int xe_pm_runtime_suspend(struct xe_device *xe) 297 { 298 struct xe_bo *bo, *on; 299 struct xe_gt *gt; 300 u8 id; 301 int err = 0; 302 303 if (xe->d3cold.allowed && xe_device_mem_access_ongoing(xe)) 304 return -EBUSY; 305 306 /* Disable access_ongoing asserts and prevent recursive pm calls */ 307 xe_pm_write_callback_task(xe, current); 308 309 /* 310 * The actual xe_device_mem_access_put() is always async underneath, so 311 * exactly where that is called should makes no difference to us. However 312 * we still need to be very careful with the locks that this callback 313 * acquires and the locks that are acquired and held by any callers of 314 * xe_device_mem_access_get(). We already have the matching annotation 315 * on that side, but we also need it here. For example lockdep should be 316 * able to tell us if the following scenario is in theory possible: 317 * 318 * CPU0 | CPU1 (kworker) 319 * lock(A) | 320 * | xe_pm_runtime_suspend() 321 * | lock(A) 322 * xe_device_mem_access_get() | 323 * 324 * This will clearly deadlock since rpm core needs to wait for 325 * xe_pm_runtime_suspend() to complete, but here we are holding lock(A) 326 * on CPU0 which prevents CPU1 making forward progress. With the 327 * annotation here and in xe_device_mem_access_get() lockdep will see 328 * the potential lock inversion and give us a nice splat. 329 */ 330 lock_map_acquire(&xe_device_mem_access_lockdep_map); 331 332 /* 333 * Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify 334 * also checks and delets bo entry from user fault list. 335 */ 336 mutex_lock(&xe->mem_access.vram_userfault.lock); 337 list_for_each_entry_safe(bo, on, 338 &xe->mem_access.vram_userfault.list, vram_userfault_link) 339 xe_bo_runtime_pm_release_mmap_offset(bo); 340 mutex_unlock(&xe->mem_access.vram_userfault.lock); 341 342 if (xe->d3cold.allowed) { 343 err = xe_bo_evict_all(xe); 344 if (err) 345 goto out; 346 } 347 348 for_each_gt(gt, xe, id) { 349 err = xe_gt_suspend(gt); 350 if (err) 351 goto out; 352 } 353 354 xe_irq_suspend(xe); 355 out: 356 lock_map_release(&xe_device_mem_access_lockdep_map); 357 xe_pm_write_callback_task(xe, NULL); 358 return err; 359 } 360 361 /** 362 * xe_pm_runtime_resume - Waking up from D3hot/D3Cold 363 * @xe: xe device instance 364 * 365 * Returns 0 for success, negative error code otherwise. 366 */ 367 int xe_pm_runtime_resume(struct xe_device *xe) 368 { 369 struct xe_gt *gt; 370 u8 id; 371 int err = 0; 372 373 /* Disable access_ongoing asserts and prevent recursive pm calls */ 374 xe_pm_write_callback_task(xe, current); 375 376 lock_map_acquire(&xe_device_mem_access_lockdep_map); 377 378 /* 379 * It can be possible that xe has allowed d3cold but other pcie devices 380 * in gfx card soc would have blocked d3cold, therefore card has not 381 * really lost power. Detecting primary Gt power is sufficient. 382 */ 383 gt = xe_device_get_gt(xe, 0); 384 xe->d3cold.power_lost = xe_guc_in_reset(>->uc.guc); 385 386 if (xe->d3cold.allowed && xe->d3cold.power_lost) { 387 err = xe_pcode_ready(xe, true); 388 if (err) 389 goto out; 390 391 /* 392 * This only restores pinned memory which is the memory 393 * required for the GT(s) to resume. 394 */ 395 err = xe_bo_restore_kernel(xe); 396 if (err) 397 goto out; 398 } 399 400 xe_irq_resume(xe); 401 402 for_each_gt(gt, xe, id) 403 xe_gt_resume(gt); 404 405 if (xe->d3cold.allowed && xe->d3cold.power_lost) { 406 err = xe_bo_restore_user(xe); 407 if (err) 408 goto out; 409 } 410 out: 411 lock_map_release(&xe_device_mem_access_lockdep_map); 412 xe_pm_write_callback_task(xe, NULL); 413 return err; 414 } 415 416 /** 417 * xe_pm_runtime_get - Get a runtime_pm reference and resume synchronously 418 * @xe: xe device instance 419 */ 420 void xe_pm_runtime_get(struct xe_device *xe) 421 { 422 pm_runtime_get_noresume(xe->drm.dev); 423 424 if (xe_pm_read_callback_task(xe) == current) 425 return; 426 427 pm_runtime_resume(xe->drm.dev); 428 } 429 430 /** 431 * xe_pm_runtime_put - Put the runtime_pm reference back and mark as idle 432 * @xe: xe device instance 433 */ 434 void xe_pm_runtime_put(struct xe_device *xe) 435 { 436 if (xe_pm_read_callback_task(xe) == current) { 437 pm_runtime_put_noidle(xe->drm.dev); 438 } else { 439 pm_runtime_mark_last_busy(xe->drm.dev); 440 pm_runtime_put(xe->drm.dev); 441 } 442 } 443 444 /** 445 * xe_pm_runtime_get_ioctl - Get a runtime_pm reference before ioctl 446 * @xe: xe device instance 447 * 448 * Returns: Any number greater than or equal to 0 for success, negative error 449 * code otherwise. 450 */ 451 int xe_pm_runtime_get_ioctl(struct xe_device *xe) 452 { 453 if (WARN_ON(xe_pm_read_callback_task(xe) == current)) 454 return -ELOOP; 455 456 return pm_runtime_get_sync(xe->drm.dev); 457 } 458 459 /** 460 * xe_pm_runtime_get_if_active - Get a runtime_pm reference if device active 461 * @xe: xe device instance 462 * 463 * Returns: Any number greater than or equal to 0 for success, negative error 464 * code otherwise. 465 */ 466 int xe_pm_runtime_get_if_active(struct xe_device *xe) 467 { 468 return pm_runtime_get_if_active(xe->drm.dev); 469 } 470 471 /** 472 * xe_pm_runtime_get_if_in_use - Get a runtime_pm reference and resume if needed 473 * @xe: xe device instance 474 * 475 * Returns: True if device is awake and the reference was taken, false otherwise. 476 */ 477 bool xe_pm_runtime_get_if_in_use(struct xe_device *xe) 478 { 479 if (xe_pm_read_callback_task(xe) == current) { 480 /* The device is awake, grab the ref and move on */ 481 pm_runtime_get_noresume(xe->drm.dev); 482 return true; 483 } 484 485 return pm_runtime_get_if_in_use(xe->drm.dev) > 0; 486 } 487 488 /** 489 * xe_pm_runtime_resume_and_get - Resume, then get a runtime_pm ref if awake. 490 * @xe: xe device instance 491 * 492 * Returns: True if device is awake and the reference was taken, false otherwise. 493 */ 494 bool xe_pm_runtime_resume_and_get(struct xe_device *xe) 495 { 496 if (xe_pm_read_callback_task(xe) == current) { 497 /* The device is awake, grab the ref and move on */ 498 pm_runtime_get_noresume(xe->drm.dev); 499 return true; 500 } 501 502 return pm_runtime_resume_and_get(xe->drm.dev) >= 0; 503 } 504 505 /** 506 * xe_pm_assert_unbounded_bridge - Disable PM on unbounded pcie parent bridge 507 * @xe: xe device instance 508 */ 509 void xe_pm_assert_unbounded_bridge(struct xe_device *xe) 510 { 511 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 512 struct pci_dev *bridge = pci_upstream_bridge(pdev); 513 514 if (!bridge) 515 return; 516 517 if (!bridge->driver) { 518 drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n"); 519 device_set_pm_not_required(&pdev->dev); 520 } 521 } 522 523 /** 524 * xe_pm_set_vram_threshold - Set a vram threshold for allowing/blocking D3Cold 525 * @xe: xe device instance 526 * @threshold: VRAM size in bites for the D3cold threshold 527 * 528 * Returns 0 for success, negative error code otherwise. 529 */ 530 int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold) 531 { 532 struct ttm_resource_manager *man; 533 u32 vram_total_mb = 0; 534 int i; 535 536 for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { 537 man = ttm_manager_type(&xe->ttm, i); 538 if (man) 539 vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024); 540 } 541 542 drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb); 543 544 if (threshold > vram_total_mb) 545 return -EINVAL; 546 547 mutex_lock(&xe->d3cold.lock); 548 xe->d3cold.vram_threshold = threshold; 549 mutex_unlock(&xe->d3cold.lock); 550 551 return 0; 552 } 553 554 /** 555 * xe_pm_d3cold_allowed_toggle - Check conditions to toggle d3cold.allowed 556 * @xe: xe device instance 557 * 558 * To be called during runtime_pm idle callback. 559 * Check for all the D3Cold conditions ahead of runtime suspend. 560 */ 561 void xe_pm_d3cold_allowed_toggle(struct xe_device *xe) 562 { 563 struct ttm_resource_manager *man; 564 u32 total_vram_used_mb = 0; 565 u64 vram_used; 566 int i; 567 568 if (!xe->d3cold.capable) { 569 xe->d3cold.allowed = false; 570 return; 571 } 572 573 for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { 574 man = ttm_manager_type(&xe->ttm, i); 575 if (man) { 576 vram_used = ttm_resource_manager_usage(man); 577 total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024); 578 } 579 } 580 581 mutex_lock(&xe->d3cold.lock); 582 583 if (total_vram_used_mb < xe->d3cold.vram_threshold) 584 xe->d3cold.allowed = true; 585 else 586 xe->d3cold.allowed = false; 587 588 mutex_unlock(&xe->d3cold.lock); 589 590 drm_dbg(&xe->drm, 591 "d3cold: allowed=%s\n", str_yes_no(xe->d3cold.allowed)); 592 } 593