1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_pm.h" 7 8 #include <linux/fault-inject.h> 9 #include <linux/pm_runtime.h> 10 #include <linux/suspend.h> 11 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_placement.h> 14 15 #include "display/xe_display.h" 16 #include "xe_bo.h" 17 #include "xe_bo_evict.h" 18 #include "xe_device.h" 19 #include "xe_ggtt.h" 20 #include "xe_gt.h" 21 #include "xe_guc.h" 22 #include "xe_i2c.h" 23 #include "xe_irq.h" 24 #include "xe_pcode.h" 25 #include "xe_pxp.h" 26 #include "xe_sriov_vf_ccs.h" 27 #include "xe_trace.h" 28 #include "xe_wa.h" 29 30 /** 31 * DOC: Xe Power Management 32 * 33 * Xe PM implements the main routines for both system level suspend states and 34 * for the opportunistic runtime suspend states. 35 * 36 * System Level Suspend (S-States) - In general this is OS initiated suspend 37 * driven by ACPI for achieving S0ix (a.k.a. S2idle, freeze), S3 (suspend to ram), 38 * S4 (disk). The main functions here are `xe_pm_suspend` and `xe_pm_resume`. They 39 * are the main point for the suspend to and resume from these states. 40 * 41 * PCI Device Suspend (D-States) - This is the opportunistic PCIe device low power 42 * state D3, controlled by the PCI subsystem and ACPI with the help from the 43 * runtime_pm infrastructure. 44 * PCI D3 is special and can mean D3hot, where Vcc power is on for keeping memory 45 * alive and quicker low latency resume or D3Cold where Vcc power is off for 46 * better power savings. 47 * The Vcc control of PCI hierarchy can only be controlled at the PCI root port 48 * level, while the device driver can be behind multiple bridges/switches and 49 * paired with other devices. For this reason, the PCI subsystem cannot perform 50 * the transition towards D3Cold. The lowest runtime PM possible from the PCI 51 * subsystem is D3hot. Then, if all these paired devices in the same root port 52 * are in D3hot, ACPI will assist here and run its own methods (_PR3 and _OFF) 53 * to perform the transition from D3hot to D3cold. Xe may disallow this 54 * transition by calling pci_d3cold_disable(root_pdev) before going to runtime 55 * suspend. It will be based on runtime conditions such as VRAM usage for a 56 * quick and low latency resume for instance. 57 * 58 * Runtime PM - This infrastructure provided by the Linux kernel allows the 59 * device drivers to indicate when the can be runtime suspended, so the device 60 * could be put at D3 (if supported), or allow deeper package sleep states 61 * (PC-states), and/or other low level power states. Xe PM component provides 62 * `xe_pm_runtime_suspend` and `xe_pm_runtime_resume` functions that PCI 63 * subsystem will call before transition to/from runtime suspend. 64 * 65 * Also, Xe PM provides get and put functions that Xe driver will use to 66 * indicate activity. In order to avoid locking complications with the memory 67 * management, whenever possible, these get and put functions needs to be called 68 * from the higher/outer levels. 69 * The main cases that need to be protected from the outer levels are: IOCTL, 70 * sysfs, debugfs, dma-buf sharing, GPU execution. 71 * 72 * This component is not responsible for GT idleness (RC6) nor GT frequency 73 * management (RPS). 74 */ 75 76 #ifdef CONFIG_LOCKDEP 77 static struct lockdep_map xe_pm_runtime_d3cold_map = { 78 .name = "xe_rpm_d3cold_map" 79 }; 80 81 static struct lockdep_map xe_pm_runtime_nod3cold_map = { 82 .name = "xe_rpm_nod3cold_map" 83 }; 84 #endif 85 86 /** 87 * xe_rpm_reclaim_safe() - Whether runtime resume can be done from reclaim context 88 * @xe: The xe device. 89 * 90 * Return: true if it is safe to runtime resume from reclaim context. 91 * false otherwise. 92 */ 93 bool xe_rpm_reclaim_safe(const struct xe_device *xe) 94 { 95 return !xe->d3cold.capable; 96 } 97 98 static void xe_rpm_lockmap_acquire(const struct xe_device *xe) 99 { 100 lock_map_acquire(xe_rpm_reclaim_safe(xe) ? 101 &xe_pm_runtime_nod3cold_map : 102 &xe_pm_runtime_d3cold_map); 103 } 104 105 static void xe_rpm_lockmap_release(const struct xe_device *xe) 106 { 107 lock_map_release(xe_rpm_reclaim_safe(xe) ? 108 &xe_pm_runtime_nod3cold_map : 109 &xe_pm_runtime_d3cold_map); 110 } 111 112 /** 113 * xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle 114 * @xe: xe device instance 115 * 116 * Return: 0 on success 117 */ 118 int xe_pm_suspend(struct xe_device *xe) 119 { 120 struct xe_gt *gt; 121 u8 id; 122 int err; 123 124 drm_dbg(&xe->drm, "Suspending device\n"); 125 trace_xe_pm_suspend(xe, __builtin_return_address(0)); 126 127 err = xe_pxp_pm_suspend(xe->pxp); 128 if (err) 129 goto err; 130 131 for_each_gt(gt, xe, id) 132 xe_gt_suspend_prepare(gt); 133 134 xe_display_pm_suspend(xe); 135 136 /* FIXME: Super racey... */ 137 err = xe_bo_evict_all(xe); 138 if (err) 139 goto err_display; 140 141 for_each_gt(gt, xe, id) { 142 err = xe_gt_suspend(gt); 143 if (err) 144 goto err_display; 145 } 146 147 xe_irq_suspend(xe); 148 149 xe_display_pm_suspend_late(xe); 150 151 xe_i2c_pm_suspend(xe); 152 153 drm_dbg(&xe->drm, "Device suspended\n"); 154 return 0; 155 156 err_display: 157 xe_display_pm_resume(xe); 158 xe_pxp_pm_resume(xe->pxp); 159 err: 160 drm_dbg(&xe->drm, "Device suspend failed %d\n", err); 161 return err; 162 } 163 164 /** 165 * xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0 166 * @xe: xe device instance 167 * 168 * Return: 0 on success 169 */ 170 int xe_pm_resume(struct xe_device *xe) 171 { 172 struct xe_tile *tile; 173 struct xe_gt *gt; 174 u8 id; 175 int err; 176 177 drm_dbg(&xe->drm, "Resuming device\n"); 178 trace_xe_pm_resume(xe, __builtin_return_address(0)); 179 180 for_each_tile(tile, xe, id) 181 xe_wa_apply_tile_workarounds(tile); 182 183 err = xe_pcode_ready(xe, true); 184 if (err) 185 return err; 186 187 xe_display_pm_resume_early(xe); 188 189 /* 190 * This only restores pinned memory which is the memory required for the 191 * GT(s) to resume. 192 */ 193 err = xe_bo_restore_early(xe); 194 if (err) 195 goto err; 196 197 xe_i2c_pm_resume(xe, xe->d3cold.allowed); 198 199 xe_irq_resume(xe); 200 201 for_each_gt(gt, xe, id) 202 xe_gt_resume(gt); 203 204 xe_display_pm_resume(xe); 205 206 err = xe_bo_restore_late(xe); 207 if (err) 208 goto err; 209 210 xe_pxp_pm_resume(xe->pxp); 211 212 if (IS_SRIOV_VF(xe)) 213 xe_sriov_vf_ccs_register_context(xe); 214 215 drm_dbg(&xe->drm, "Device resumed\n"); 216 return 0; 217 err: 218 drm_dbg(&xe->drm, "Device resume failed %d\n", err); 219 return err; 220 } 221 222 static bool xe_pm_pci_d3cold_capable(struct xe_device *xe) 223 { 224 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 225 struct pci_dev *root_pdev; 226 227 root_pdev = pcie_find_root_port(pdev); 228 if (!root_pdev) 229 return false; 230 231 /* D3Cold requires PME capability */ 232 if (!pci_pme_capable(root_pdev, PCI_D3cold)) { 233 drm_dbg(&xe->drm, "d3cold: PME# not supported\n"); 234 return false; 235 } 236 237 /* D3Cold requires _PR3 power resource */ 238 if (!pci_pr3_present(root_pdev)) { 239 drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n"); 240 return false; 241 } 242 243 return true; 244 } 245 246 static void xe_pm_runtime_init(struct xe_device *xe) 247 { 248 struct device *dev = xe->drm.dev; 249 250 /* Our current VFs do not support RPM. so, disable it */ 251 if (IS_SRIOV_VF(xe)) 252 return; 253 254 /* 255 * Disable the system suspend direct complete optimization. 256 * We need to ensure that the regular device suspend/resume functions 257 * are called since our runtime_pm cannot guarantee local memory 258 * eviction for d3cold. 259 * TODO: Check HDA audio dependencies claimed by i915, and then enforce 260 * this option to integrated graphics as well. 261 */ 262 if (IS_DGFX(xe)) 263 dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 264 265 pm_runtime_use_autosuspend(dev); 266 pm_runtime_set_autosuspend_delay(dev, 1000); 267 pm_runtime_set_active(dev); 268 pm_runtime_allow(dev); 269 pm_runtime_mark_last_busy(dev); 270 pm_runtime_put(dev); 271 } 272 273 int xe_pm_init_early(struct xe_device *xe) 274 { 275 int err; 276 277 INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list); 278 279 err = drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock); 280 if (err) 281 return err; 282 283 err = drmm_mutex_init(&xe->drm, &xe->d3cold.lock); 284 if (err) 285 return err; 286 287 xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe); 288 return 0; 289 } 290 ALLOW_ERROR_INJECTION(xe_pm_init_early, ERRNO); /* See xe_pci_probe() */ 291 292 static u32 vram_threshold_value(struct xe_device *xe) 293 { 294 /* FIXME: D3Cold temporarily disabled by default on BMG */ 295 if (xe->info.platform == XE_BATTLEMAGE) 296 return 0; 297 298 return DEFAULT_VRAM_THRESHOLD; 299 } 300 301 static int xe_pm_notifier_callback(struct notifier_block *nb, 302 unsigned long action, void *data) 303 { 304 struct xe_device *xe = container_of(nb, struct xe_device, pm_notifier); 305 int err = 0; 306 307 switch (action) { 308 case PM_HIBERNATION_PREPARE: 309 case PM_SUSPEND_PREPARE: 310 xe_pm_runtime_get(xe); 311 err = xe_bo_evict_all_user(xe); 312 if (err) { 313 drm_dbg(&xe->drm, "Notifier evict user failed (%d)\n", err); 314 xe_pm_runtime_put(xe); 315 break; 316 } 317 318 err = xe_bo_notifier_prepare_all_pinned(xe); 319 if (err) { 320 drm_dbg(&xe->drm, "Notifier prepare pin failed (%d)\n", err); 321 xe_pm_runtime_put(xe); 322 } 323 break; 324 case PM_POST_HIBERNATION: 325 case PM_POST_SUSPEND: 326 xe_bo_notifier_unprepare_all_pinned(xe); 327 xe_pm_runtime_put(xe); 328 break; 329 } 330 331 if (err) 332 return NOTIFY_BAD; 333 334 return NOTIFY_DONE; 335 } 336 337 /** 338 * xe_pm_init - Initialize Xe Power Management 339 * @xe: xe device instance 340 * 341 * This component is responsible for System and Device sleep states. 342 * 343 * Returns 0 for success, negative error code otherwise. 344 */ 345 int xe_pm_init(struct xe_device *xe) 346 { 347 u32 vram_threshold; 348 int err; 349 350 xe->pm_notifier.notifier_call = xe_pm_notifier_callback; 351 err = register_pm_notifier(&xe->pm_notifier); 352 if (err) 353 return err; 354 355 /* For now suspend/resume is only allowed with GuC */ 356 if (!xe_device_uc_enabled(xe)) 357 return 0; 358 359 if (xe->d3cold.capable) { 360 vram_threshold = vram_threshold_value(xe); 361 err = xe_pm_set_vram_threshold(xe, vram_threshold); 362 if (err) 363 goto err_unregister; 364 } 365 366 xe_pm_runtime_init(xe); 367 return 0; 368 369 err_unregister: 370 unregister_pm_notifier(&xe->pm_notifier); 371 return err; 372 } 373 374 static void xe_pm_runtime_fini(struct xe_device *xe) 375 { 376 struct device *dev = xe->drm.dev; 377 378 /* Our current VFs do not support RPM. so, disable it */ 379 if (IS_SRIOV_VF(xe)) 380 return; 381 382 pm_runtime_get_sync(dev); 383 pm_runtime_forbid(dev); 384 } 385 386 /** 387 * xe_pm_fini - Finalize PM 388 * @xe: xe device instance 389 */ 390 void xe_pm_fini(struct xe_device *xe) 391 { 392 if (xe_device_uc_enabled(xe)) 393 xe_pm_runtime_fini(xe); 394 395 unregister_pm_notifier(&xe->pm_notifier); 396 } 397 398 static void xe_pm_write_callback_task(struct xe_device *xe, 399 struct task_struct *task) 400 { 401 WRITE_ONCE(xe->pm_callback_task, task); 402 403 /* 404 * Just in case it's somehow possible for our writes to be reordered to 405 * the extent that something else re-uses the task written in 406 * pm_callback_task. For example after returning from the callback, but 407 * before the reordered write that resets pm_callback_task back to NULL. 408 */ 409 smp_mb(); /* pairs with xe_pm_read_callback_task */ 410 } 411 412 struct task_struct *xe_pm_read_callback_task(struct xe_device *xe) 413 { 414 smp_mb(); /* pairs with xe_pm_write_callback_task */ 415 416 return READ_ONCE(xe->pm_callback_task); 417 } 418 419 /** 420 * xe_pm_runtime_suspended - Check if runtime_pm state is suspended 421 * @xe: xe device instance 422 * 423 * This does not provide any guarantee that the device is going to remain 424 * suspended as it might be racing with the runtime state transitions. 425 * It can be used only as a non-reliable assertion, to ensure that we are not in 426 * the sleep state while trying to access some memory for instance. 427 * 428 * Returns true if PCI device is suspended, false otherwise. 429 */ 430 bool xe_pm_runtime_suspended(struct xe_device *xe) 431 { 432 return pm_runtime_suspended(xe->drm.dev); 433 } 434 435 /** 436 * xe_pm_runtime_suspend - Prepare our device for D3hot/D3Cold 437 * @xe: xe device instance 438 * 439 * Returns 0 for success, negative error code otherwise. 440 */ 441 int xe_pm_runtime_suspend(struct xe_device *xe) 442 { 443 struct xe_bo *bo, *on; 444 struct xe_gt *gt; 445 u8 id; 446 int err = 0; 447 448 trace_xe_pm_runtime_suspend(xe, __builtin_return_address(0)); 449 /* Disable access_ongoing asserts and prevent recursive pm calls */ 450 xe_pm_write_callback_task(xe, current); 451 452 /* 453 * The actual xe_pm_runtime_put() is always async underneath, so 454 * exactly where that is called should makes no difference to us. However 455 * we still need to be very careful with the locks that this callback 456 * acquires and the locks that are acquired and held by any callers of 457 * xe_runtime_pm_get(). We already have the matching annotation 458 * on that side, but we also need it here. For example lockdep should be 459 * able to tell us if the following scenario is in theory possible: 460 * 461 * CPU0 | CPU1 (kworker) 462 * lock(A) | 463 * | xe_pm_runtime_suspend() 464 * | lock(A) 465 * xe_pm_runtime_get() | 466 * 467 * This will clearly deadlock since rpm core needs to wait for 468 * xe_pm_runtime_suspend() to complete, but here we are holding lock(A) 469 * on CPU0 which prevents CPU1 making forward progress. With the 470 * annotation here and in xe_pm_runtime_get() lockdep will see 471 * the potential lock inversion and give us a nice splat. 472 */ 473 xe_rpm_lockmap_acquire(xe); 474 475 err = xe_pxp_pm_suspend(xe->pxp); 476 if (err) 477 goto out; 478 479 /* 480 * Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify 481 * also checks and deletes bo entry from user fault list. 482 */ 483 mutex_lock(&xe->mem_access.vram_userfault.lock); 484 list_for_each_entry_safe(bo, on, 485 &xe->mem_access.vram_userfault.list, vram_userfault_link) 486 xe_bo_runtime_pm_release_mmap_offset(bo); 487 mutex_unlock(&xe->mem_access.vram_userfault.lock); 488 489 xe_display_pm_runtime_suspend(xe); 490 491 if (xe->d3cold.allowed) { 492 err = xe_bo_evict_all(xe); 493 if (err) 494 goto out_resume; 495 } 496 497 for_each_gt(gt, xe, id) { 498 err = xe_gt_suspend(gt); 499 if (err) 500 goto out_resume; 501 } 502 503 xe_irq_suspend(xe); 504 505 xe_display_pm_runtime_suspend_late(xe); 506 507 xe_i2c_pm_suspend(xe); 508 509 xe_rpm_lockmap_release(xe); 510 xe_pm_write_callback_task(xe, NULL); 511 return 0; 512 513 out_resume: 514 xe_display_pm_runtime_resume(xe); 515 xe_pxp_pm_resume(xe->pxp); 516 out: 517 xe_rpm_lockmap_release(xe); 518 xe_pm_write_callback_task(xe, NULL); 519 return err; 520 } 521 522 /** 523 * xe_pm_runtime_resume - Waking up from D3hot/D3Cold 524 * @xe: xe device instance 525 * 526 * Returns 0 for success, negative error code otherwise. 527 */ 528 int xe_pm_runtime_resume(struct xe_device *xe) 529 { 530 struct xe_gt *gt; 531 u8 id; 532 int err = 0; 533 534 trace_xe_pm_runtime_resume(xe, __builtin_return_address(0)); 535 /* Disable access_ongoing asserts and prevent recursive pm calls */ 536 xe_pm_write_callback_task(xe, current); 537 538 xe_rpm_lockmap_acquire(xe); 539 540 if (xe->d3cold.allowed) { 541 err = xe_pcode_ready(xe, true); 542 if (err) 543 goto out; 544 545 xe_display_pm_resume_early(xe); 546 547 /* 548 * This only restores pinned memory which is the memory 549 * required for the GT(s) to resume. 550 */ 551 err = xe_bo_restore_early(xe); 552 if (err) 553 goto out; 554 } 555 556 xe_i2c_pm_resume(xe, xe->d3cold.allowed); 557 558 xe_irq_resume(xe); 559 560 for_each_gt(gt, xe, id) 561 xe_gt_resume(gt); 562 563 xe_display_pm_runtime_resume(xe); 564 565 if (xe->d3cold.allowed) { 566 err = xe_bo_restore_late(xe); 567 if (err) 568 goto out; 569 } 570 571 xe_pxp_pm_resume(xe->pxp); 572 573 if (IS_SRIOV_VF(xe)) 574 xe_sriov_vf_ccs_register_context(xe); 575 576 out: 577 xe_rpm_lockmap_release(xe); 578 xe_pm_write_callback_task(xe, NULL); 579 return err; 580 } 581 582 /* 583 * For places where resume is synchronous it can be quite easy to deadlock 584 * if we are not careful. Also in practice it might be quite timing 585 * sensitive to ever see the 0 -> 1 transition with the callers locks 586 * held, so deadlocks might exist but are hard for lockdep to ever see. 587 * With this in mind, help lockdep learn about the potentially scary 588 * stuff that can happen inside the runtime_resume callback by acquiring 589 * a dummy lock (it doesn't protect anything and gets compiled out on 590 * non-debug builds). Lockdep then only needs to see the 591 * xe_pm_runtime_xxx_map -> runtime_resume callback once, and then can 592 * hopefully validate all the (callers_locks) -> xe_pm_runtime_xxx_map. 593 * For example if the (callers_locks) are ever grabbed in the 594 * runtime_resume callback, lockdep should give us a nice splat. 595 */ 596 static void xe_rpm_might_enter_cb(const struct xe_device *xe) 597 { 598 xe_rpm_lockmap_acquire(xe); 599 xe_rpm_lockmap_release(xe); 600 } 601 602 /* 603 * Prime the lockdep maps for known locking orders that need to 604 * be supported but that may not always occur on all systems. 605 */ 606 static void xe_pm_runtime_lockdep_prime(void) 607 { 608 struct dma_resv lockdep_resv; 609 610 dma_resv_init(&lockdep_resv); 611 lock_map_acquire(&xe_pm_runtime_d3cold_map); 612 /* D3Cold takes the dma_resv locks to evict bos */ 613 dma_resv_lock(&lockdep_resv, NULL); 614 dma_resv_unlock(&lockdep_resv); 615 lock_map_release(&xe_pm_runtime_d3cold_map); 616 617 /* Shrinkers might like to wake up the device under reclaim. */ 618 fs_reclaim_acquire(GFP_KERNEL); 619 lock_map_acquire(&xe_pm_runtime_nod3cold_map); 620 lock_map_release(&xe_pm_runtime_nod3cold_map); 621 fs_reclaim_release(GFP_KERNEL); 622 } 623 624 /** 625 * xe_pm_runtime_get - Get a runtime_pm reference and resume synchronously 626 * @xe: xe device instance 627 */ 628 void xe_pm_runtime_get(struct xe_device *xe) 629 { 630 trace_xe_pm_runtime_get(xe, __builtin_return_address(0)); 631 pm_runtime_get_noresume(xe->drm.dev); 632 633 if (xe_pm_read_callback_task(xe) == current) 634 return; 635 636 xe_rpm_might_enter_cb(xe); 637 pm_runtime_resume(xe->drm.dev); 638 } 639 640 /** 641 * xe_pm_runtime_put - Put the runtime_pm reference back and mark as idle 642 * @xe: xe device instance 643 */ 644 void xe_pm_runtime_put(struct xe_device *xe) 645 { 646 trace_xe_pm_runtime_put(xe, __builtin_return_address(0)); 647 if (xe_pm_read_callback_task(xe) == current) { 648 pm_runtime_put_noidle(xe->drm.dev); 649 } else { 650 pm_runtime_mark_last_busy(xe->drm.dev); 651 pm_runtime_put(xe->drm.dev); 652 } 653 } 654 655 /** 656 * xe_pm_runtime_get_ioctl - Get a runtime_pm reference before ioctl 657 * @xe: xe device instance 658 * 659 * Returns: Any number greater than or equal to 0 for success, negative error 660 * code otherwise. 661 */ 662 int xe_pm_runtime_get_ioctl(struct xe_device *xe) 663 { 664 trace_xe_pm_runtime_get_ioctl(xe, __builtin_return_address(0)); 665 if (WARN_ON(xe_pm_read_callback_task(xe) == current)) 666 return -ELOOP; 667 668 xe_rpm_might_enter_cb(xe); 669 return pm_runtime_get_sync(xe->drm.dev); 670 } 671 672 /** 673 * xe_pm_runtime_get_if_active - Get a runtime_pm reference if device active 674 * @xe: xe device instance 675 * 676 * Return: True if device is awake (regardless the previous number of references) 677 * and a new reference was taken, false otherwise. 678 */ 679 bool xe_pm_runtime_get_if_active(struct xe_device *xe) 680 { 681 return pm_runtime_get_if_active(xe->drm.dev) > 0; 682 } 683 684 /** 685 * xe_pm_runtime_get_if_in_use - Get a new reference if device is active with previous ref taken 686 * @xe: xe device instance 687 * 688 * Return: True if device is awake, a previous reference had been already taken, 689 * and a new reference was now taken, false otherwise. 690 */ 691 bool xe_pm_runtime_get_if_in_use(struct xe_device *xe) 692 { 693 if (xe_pm_read_callback_task(xe) == current) { 694 /* The device is awake, grab the ref and move on */ 695 pm_runtime_get_noresume(xe->drm.dev); 696 return true; 697 } 698 699 return pm_runtime_get_if_in_use(xe->drm.dev) > 0; 700 } 701 702 /* 703 * Very unreliable! Should only be used to suppress the false positive case 704 * in the missing outer rpm protection warning. 705 */ 706 static bool xe_pm_suspending_or_resuming(struct xe_device *xe) 707 { 708 #ifdef CONFIG_PM 709 struct device *dev = xe->drm.dev; 710 711 return dev->power.runtime_status == RPM_SUSPENDING || 712 dev->power.runtime_status == RPM_RESUMING || 713 pm_suspend_in_progress(); 714 #else 715 return false; 716 #endif 717 } 718 719 /** 720 * xe_pm_runtime_get_noresume - Bump runtime PM usage counter without resuming 721 * @xe: xe device instance 722 * 723 * This function should be used in inner places where it is surely already 724 * protected by outer-bound callers of `xe_pm_runtime_get`. 725 * It will warn if not protected. 726 * The reference should be put back after this function regardless, since it 727 * will always bump the usage counter, regardless. 728 */ 729 void xe_pm_runtime_get_noresume(struct xe_device *xe) 730 { 731 bool ref; 732 733 ref = xe_pm_runtime_get_if_in_use(xe); 734 735 if (!ref) { 736 pm_runtime_get_noresume(xe->drm.dev); 737 drm_WARN(&xe->drm, !xe_pm_suspending_or_resuming(xe), 738 "Missing outer runtime PM protection\n"); 739 } 740 } 741 742 /** 743 * xe_pm_runtime_resume_and_get - Resume, then get a runtime_pm ref if awake. 744 * @xe: xe device instance 745 * 746 * Returns: True if device is awake and the reference was taken, false otherwise. 747 */ 748 bool xe_pm_runtime_resume_and_get(struct xe_device *xe) 749 { 750 if (xe_pm_read_callback_task(xe) == current) { 751 /* The device is awake, grab the ref and move on */ 752 pm_runtime_get_noresume(xe->drm.dev); 753 return true; 754 } 755 756 xe_rpm_might_enter_cb(xe); 757 return pm_runtime_resume_and_get(xe->drm.dev) >= 0; 758 } 759 760 /** 761 * xe_pm_assert_unbounded_bridge - Disable PM on unbounded pcie parent bridge 762 * @xe: xe device instance 763 */ 764 void xe_pm_assert_unbounded_bridge(struct xe_device *xe) 765 { 766 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 767 struct pci_dev *bridge = pci_upstream_bridge(pdev); 768 769 if (!bridge) 770 return; 771 772 if (!bridge->driver) { 773 drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n"); 774 device_set_pm_not_required(&pdev->dev); 775 } 776 } 777 778 /** 779 * xe_pm_set_vram_threshold - Set a VRAM threshold for allowing/blocking D3Cold 780 * @xe: xe device instance 781 * @threshold: VRAM size in MiB for the D3cold threshold 782 * 783 * Return: 784 * * 0 - success 785 * * -EINVAL - invalid argument 786 */ 787 int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold) 788 { 789 struct ttm_resource_manager *man; 790 u32 vram_total_mb = 0; 791 int i; 792 793 for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { 794 man = ttm_manager_type(&xe->ttm, i); 795 if (man) 796 vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024); 797 } 798 799 drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb); 800 801 if (threshold > vram_total_mb) 802 return -EINVAL; 803 804 mutex_lock(&xe->d3cold.lock); 805 xe->d3cold.vram_threshold = threshold; 806 mutex_unlock(&xe->d3cold.lock); 807 808 return 0; 809 } 810 811 /** 812 * xe_pm_d3cold_allowed_toggle - Check conditions to toggle d3cold.allowed 813 * @xe: xe device instance 814 * 815 * To be called during runtime_pm idle callback. 816 * Check for all the D3Cold conditions ahead of runtime suspend. 817 */ 818 void xe_pm_d3cold_allowed_toggle(struct xe_device *xe) 819 { 820 struct ttm_resource_manager *man; 821 u32 total_vram_used_mb = 0; 822 u64 vram_used; 823 int i; 824 825 if (!xe->d3cold.capable) { 826 xe->d3cold.allowed = false; 827 return; 828 } 829 830 for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) { 831 man = ttm_manager_type(&xe->ttm, i); 832 if (man) { 833 vram_used = ttm_resource_manager_usage(man); 834 total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024); 835 } 836 } 837 838 mutex_lock(&xe->d3cold.lock); 839 840 if (total_vram_used_mb < xe->d3cold.vram_threshold) 841 xe->d3cold.allowed = true; 842 else 843 xe->d3cold.allowed = false; 844 845 mutex_unlock(&xe->d3cold.lock); 846 } 847 848 /** 849 * xe_pm_module_init() - Perform xe_pm specific module initialization. 850 * 851 * Return: 0 on success. Currently doesn't fail. 852 */ 853 int __init xe_pm_module_init(void) 854 { 855 xe_pm_runtime_lockdep_prime(); 856 return 0; 857 } 858