1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_pci.h" 7 8 #include <kunit/static_stub.h> 9 #include <linux/device/driver.h> 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/pm_runtime.h> 13 14 #include <drm/drm_color_mgmt.h> 15 #include <drm/drm_drv.h> 16 #include <drm/intel/pciids.h> 17 18 #include "display/xe_display.h" 19 #include "regs/xe_gt_regs.h" 20 #include "xe_device.h" 21 #include "xe_drv.h" 22 #include "xe_gt.h" 23 #include "xe_gt_sriov_vf.h" 24 #include "xe_guc.h" 25 #include "xe_macros.h" 26 #include "xe_mmio.h" 27 #include "xe_module.h" 28 #include "xe_pci_sriov.h" 29 #include "xe_pci_types.h" 30 #include "xe_pm.h" 31 #include "xe_sriov.h" 32 #include "xe_step.h" 33 #include "xe_tile.h" 34 35 enum toggle_d3cold { 36 D3COLD_DISABLE, 37 D3COLD_ENABLE, 38 }; 39 40 struct xe_subplatform_desc { 41 enum xe_subplatform subplatform; 42 const char *name; 43 const u16 *pciidlist; 44 }; 45 46 struct xe_device_desc { 47 /* Should only ever be set for platforms without GMD_ID */ 48 const struct xe_graphics_desc *graphics; 49 /* Should only ever be set for platforms without GMD_ID */ 50 const struct xe_media_desc *media; 51 52 const char *platform_name; 53 const struct xe_subplatform_desc *subplatforms; 54 55 enum xe_platform platform; 56 57 u8 require_force_probe:1; 58 u8 is_dgfx:1; 59 60 u8 has_display:1; 61 u8 has_heci_gscfi:1; 62 u8 has_heci_cscfi:1; 63 u8 has_llc:1; 64 u8 has_mmio_ext:1; 65 u8 has_sriov:1; 66 u8 skip_guc_pc:1; 67 u8 skip_mtcfg:1; 68 u8 skip_pcode:1; 69 }; 70 71 __diag_push(); 72 __diag_ignore_all("-Woverride-init", "Allow field overrides in table"); 73 74 #define PLATFORM(x) \ 75 .platform = XE_##x, \ 76 .platform_name = #x 77 78 #define NOP(x) x 79 80 static const struct xe_graphics_desc graphics_xelp = { 81 .name = "Xe_LP", 82 .ver = 12, 83 .rel = 0, 84 85 .hw_engine_mask = BIT(XE_HW_ENGINE_RCS0) | BIT(XE_HW_ENGINE_BCS0), 86 87 .dma_mask_size = 39, 88 .va_bits = 48, 89 .vm_max_level = 3, 90 }; 91 92 static const struct xe_graphics_desc graphics_xelpp = { 93 .name = "Xe_LP+", 94 .ver = 12, 95 .rel = 10, 96 97 .hw_engine_mask = BIT(XE_HW_ENGINE_RCS0) | BIT(XE_HW_ENGINE_BCS0), 98 99 .dma_mask_size = 39, 100 .va_bits = 48, 101 .vm_max_level = 3, 102 }; 103 104 #define XE_HP_FEATURES \ 105 .has_range_tlb_invalidation = true, \ 106 .dma_mask_size = 46, \ 107 .va_bits = 48, \ 108 .vm_max_level = 3 109 110 static const struct xe_graphics_desc graphics_xehpg = { 111 .name = "Xe_HPG", 112 .ver = 12, 113 .rel = 55, 114 115 .hw_engine_mask = 116 BIT(XE_HW_ENGINE_RCS0) | BIT(XE_HW_ENGINE_BCS0) | 117 BIT(XE_HW_ENGINE_CCS0) | BIT(XE_HW_ENGINE_CCS1) | 118 BIT(XE_HW_ENGINE_CCS2) | BIT(XE_HW_ENGINE_CCS3), 119 120 XE_HP_FEATURES, 121 .vram_flags = XE_VRAM_FLAGS_NEED64K, 122 123 .has_flat_ccs = 1, 124 }; 125 126 static const struct xe_graphics_desc graphics_xehpc = { 127 .name = "Xe_HPC", 128 .ver = 12, 129 .rel = 60, 130 131 .hw_engine_mask = 132 BIT(XE_HW_ENGINE_BCS0) | BIT(XE_HW_ENGINE_BCS1) | 133 BIT(XE_HW_ENGINE_BCS2) | BIT(XE_HW_ENGINE_BCS3) | 134 BIT(XE_HW_ENGINE_BCS4) | BIT(XE_HW_ENGINE_BCS5) | 135 BIT(XE_HW_ENGINE_BCS6) | BIT(XE_HW_ENGINE_BCS7) | 136 BIT(XE_HW_ENGINE_BCS8) | 137 BIT(XE_HW_ENGINE_CCS0) | BIT(XE_HW_ENGINE_CCS1) | 138 BIT(XE_HW_ENGINE_CCS2) | BIT(XE_HW_ENGINE_CCS3), 139 140 XE_HP_FEATURES, 141 .dma_mask_size = 52, 142 .max_remote_tiles = 1, 143 .va_bits = 57, 144 .vm_max_level = 4, 145 .vram_flags = XE_VRAM_FLAGS_NEED64K, 146 147 .has_asid = 1, 148 .has_atomic_enable_pte_bit = 1, 149 .has_usm = 1, 150 }; 151 152 static const struct xe_graphics_desc graphics_xelpg = { 153 .name = "Xe_LPG", 154 .hw_engine_mask = 155 BIT(XE_HW_ENGINE_RCS0) | BIT(XE_HW_ENGINE_BCS0) | 156 BIT(XE_HW_ENGINE_CCS0), 157 158 XE_HP_FEATURES, 159 }; 160 161 #define XE2_GFX_FEATURES \ 162 .dma_mask_size = 46, \ 163 .has_asid = 1, \ 164 .has_atomic_enable_pte_bit = 1, \ 165 .has_flat_ccs = 1, \ 166 .has_indirect_ring_state = 1, \ 167 .has_range_tlb_invalidation = 1, \ 168 .has_usm = 1, \ 169 .va_bits = 48, \ 170 .vm_max_level = 4, \ 171 .hw_engine_mask = \ 172 BIT(XE_HW_ENGINE_RCS0) | \ 173 BIT(XE_HW_ENGINE_BCS8) | BIT(XE_HW_ENGINE_BCS0) | \ 174 GENMASK(XE_HW_ENGINE_CCS3, XE_HW_ENGINE_CCS0) 175 176 static const struct xe_graphics_desc graphics_xe2 = { 177 .name = "Xe2_LPG / Xe2_HPG / Xe3_LPG", 178 179 XE2_GFX_FEATURES, 180 }; 181 182 static const struct xe_media_desc media_xem = { 183 .name = "Xe_M", 184 .ver = 12, 185 .rel = 0, 186 187 .hw_engine_mask = 188 GENMASK(XE_HW_ENGINE_VCS7, XE_HW_ENGINE_VCS0) | 189 GENMASK(XE_HW_ENGINE_VECS3, XE_HW_ENGINE_VECS0), 190 }; 191 192 static const struct xe_media_desc media_xehpm = { 193 .name = "Xe_HPM", 194 .ver = 12, 195 .rel = 55, 196 197 .hw_engine_mask = 198 GENMASK(XE_HW_ENGINE_VCS7, XE_HW_ENGINE_VCS0) | 199 GENMASK(XE_HW_ENGINE_VECS3, XE_HW_ENGINE_VECS0), 200 }; 201 202 static const struct xe_media_desc media_xelpmp = { 203 .name = "Xe_LPM+", 204 .hw_engine_mask = 205 GENMASK(XE_HW_ENGINE_VCS7, XE_HW_ENGINE_VCS0) | 206 GENMASK(XE_HW_ENGINE_VECS3, XE_HW_ENGINE_VECS0) | 207 BIT(XE_HW_ENGINE_GSCCS0) 208 }; 209 210 static const struct xe_media_desc media_xe2 = { 211 .name = "Xe2_LPM / Xe2_HPM / Xe3_LPM", 212 .hw_engine_mask = 213 GENMASK(XE_HW_ENGINE_VCS7, XE_HW_ENGINE_VCS0) | 214 GENMASK(XE_HW_ENGINE_VECS3, XE_HW_ENGINE_VECS0) | 215 BIT(XE_HW_ENGINE_GSCCS0) 216 }; 217 218 static const struct xe_device_desc tgl_desc = { 219 .graphics = &graphics_xelp, 220 .media = &media_xem, 221 PLATFORM(TIGERLAKE), 222 .has_display = true, 223 .has_llc = true, 224 .require_force_probe = true, 225 }; 226 227 static const struct xe_device_desc rkl_desc = { 228 .graphics = &graphics_xelp, 229 .media = &media_xem, 230 PLATFORM(ROCKETLAKE), 231 .has_display = true, 232 .has_llc = true, 233 .require_force_probe = true, 234 }; 235 236 static const u16 adls_rpls_ids[] = { INTEL_RPLS_IDS(NOP), 0 }; 237 238 static const struct xe_device_desc adl_s_desc = { 239 .graphics = &graphics_xelp, 240 .media = &media_xem, 241 PLATFORM(ALDERLAKE_S), 242 .has_display = true, 243 .has_llc = true, 244 .require_force_probe = true, 245 .subplatforms = (const struct xe_subplatform_desc[]) { 246 { XE_SUBPLATFORM_ALDERLAKE_S_RPLS, "RPLS", adls_rpls_ids }, 247 {}, 248 }, 249 }; 250 251 static const u16 adlp_rplu_ids[] = { INTEL_RPLU_IDS(NOP), 0 }; 252 253 static const struct xe_device_desc adl_p_desc = { 254 .graphics = &graphics_xelp, 255 .media = &media_xem, 256 PLATFORM(ALDERLAKE_P), 257 .has_display = true, 258 .has_llc = true, 259 .require_force_probe = true, 260 .subplatforms = (const struct xe_subplatform_desc[]) { 261 { XE_SUBPLATFORM_ALDERLAKE_P_RPLU, "RPLU", adlp_rplu_ids }, 262 {}, 263 }, 264 }; 265 266 static const struct xe_device_desc adl_n_desc = { 267 .graphics = &graphics_xelp, 268 .media = &media_xem, 269 PLATFORM(ALDERLAKE_N), 270 .has_display = true, 271 .has_llc = true, 272 .require_force_probe = true, 273 }; 274 275 #define DGFX_FEATURES \ 276 .is_dgfx = 1 277 278 static const struct xe_device_desc dg1_desc = { 279 .graphics = &graphics_xelpp, 280 .media = &media_xem, 281 DGFX_FEATURES, 282 PLATFORM(DG1), 283 .has_display = true, 284 .has_heci_gscfi = 1, 285 .require_force_probe = true, 286 }; 287 288 static const u16 dg2_g10_ids[] = { INTEL_DG2_G10_IDS(NOP), INTEL_ATS_M150_IDS(NOP), 0 }; 289 static const u16 dg2_g11_ids[] = { INTEL_DG2_G11_IDS(NOP), INTEL_ATS_M75_IDS(NOP), 0 }; 290 static const u16 dg2_g12_ids[] = { INTEL_DG2_G12_IDS(NOP), 0 }; 291 292 #define DG2_FEATURES \ 293 DGFX_FEATURES, \ 294 PLATFORM(DG2), \ 295 .has_heci_gscfi = 1, \ 296 .subplatforms = (const struct xe_subplatform_desc[]) { \ 297 { XE_SUBPLATFORM_DG2_G10, "G10", dg2_g10_ids }, \ 298 { XE_SUBPLATFORM_DG2_G11, "G11", dg2_g11_ids }, \ 299 { XE_SUBPLATFORM_DG2_G12, "G12", dg2_g12_ids }, \ 300 { } \ 301 } 302 303 static const struct xe_device_desc ats_m_desc = { 304 .graphics = &graphics_xehpg, 305 .media = &media_xehpm, 306 .require_force_probe = true, 307 308 DG2_FEATURES, 309 .has_display = false, 310 }; 311 312 static const struct xe_device_desc dg2_desc = { 313 .graphics = &graphics_xehpg, 314 .media = &media_xehpm, 315 .require_force_probe = true, 316 317 DG2_FEATURES, 318 .has_display = true, 319 }; 320 321 static const __maybe_unused struct xe_device_desc pvc_desc = { 322 .graphics = &graphics_xehpc, 323 DGFX_FEATURES, 324 PLATFORM(PVC), 325 .has_display = false, 326 .has_heci_gscfi = 1, 327 .require_force_probe = true, 328 }; 329 330 static const struct xe_device_desc mtl_desc = { 331 /* .graphics and .media determined via GMD_ID */ 332 .require_force_probe = true, 333 PLATFORM(METEORLAKE), 334 .has_display = true, 335 }; 336 337 static const struct xe_device_desc lnl_desc = { 338 PLATFORM(LUNARLAKE), 339 .has_display = true, 340 }; 341 342 static const struct xe_device_desc bmg_desc = { 343 DGFX_FEATURES, 344 PLATFORM(BATTLEMAGE), 345 .has_display = true, 346 .has_heci_cscfi = 1, 347 }; 348 349 static const struct xe_device_desc ptl_desc = { 350 PLATFORM(PANTHERLAKE), 351 .has_display = true, 352 .require_force_probe = true, 353 }; 354 355 #undef PLATFORM 356 __diag_pop(); 357 358 /* Map of GMD_ID values to graphics IP */ 359 static const struct gmdid_map graphics_ip_map[] = { 360 { 1270, &graphics_xelpg }, 361 { 1271, &graphics_xelpg }, 362 { 1274, &graphics_xelpg }, /* Xe_LPG+ */ 363 { 2001, &graphics_xe2 }, 364 { 2004, &graphics_xe2 }, 365 { 3000, &graphics_xe2 }, 366 { 3001, &graphics_xe2 }, 367 }; 368 369 /* Map of GMD_ID values to media IP */ 370 static const struct gmdid_map media_ip_map[] = { 371 { 1300, &media_xelpmp }, 372 { 1301, &media_xe2 }, 373 { 2000, &media_xe2 }, 374 { 3000, &media_xe2 }, 375 }; 376 377 /* 378 * Make sure any device matches here are from most specific to most 379 * general. For example, since the Quanta match is based on the subsystem 380 * and subvendor IDs, we need it to come before the more general IVB 381 * PCI ID matches, otherwise we'll use the wrong info struct above. 382 */ 383 static const struct pci_device_id pciidlist[] = { 384 INTEL_TGL_IDS(INTEL_VGA_DEVICE, &tgl_desc), 385 INTEL_RKL_IDS(INTEL_VGA_DEVICE, &rkl_desc), 386 INTEL_ADLS_IDS(INTEL_VGA_DEVICE, &adl_s_desc), 387 INTEL_ADLP_IDS(INTEL_VGA_DEVICE, &adl_p_desc), 388 INTEL_ADLN_IDS(INTEL_VGA_DEVICE, &adl_n_desc), 389 INTEL_RPLU_IDS(INTEL_VGA_DEVICE, &adl_p_desc), 390 INTEL_RPLP_IDS(INTEL_VGA_DEVICE, &adl_p_desc), 391 INTEL_RPLS_IDS(INTEL_VGA_DEVICE, &adl_s_desc), 392 INTEL_DG1_IDS(INTEL_VGA_DEVICE, &dg1_desc), 393 INTEL_ATS_M_IDS(INTEL_VGA_DEVICE, &ats_m_desc), 394 INTEL_ARL_IDS(INTEL_VGA_DEVICE, &mtl_desc), 395 INTEL_DG2_IDS(INTEL_VGA_DEVICE, &dg2_desc), 396 INTEL_MTL_IDS(INTEL_VGA_DEVICE, &mtl_desc), 397 INTEL_LNL_IDS(INTEL_VGA_DEVICE, &lnl_desc), 398 INTEL_BMG_IDS(INTEL_VGA_DEVICE, &bmg_desc), 399 INTEL_PTL_IDS(INTEL_VGA_DEVICE, &ptl_desc), 400 { } 401 }; 402 MODULE_DEVICE_TABLE(pci, pciidlist); 403 404 /* is device_id present in comma separated list of ids */ 405 static bool device_id_in_list(u16 device_id, const char *devices, bool negative) 406 { 407 char *s, *p, *tok; 408 bool ret; 409 410 if (!devices || !*devices) 411 return false; 412 413 /* match everything */ 414 if (negative && strcmp(devices, "!*") == 0) 415 return true; 416 if (!negative && strcmp(devices, "*") == 0) 417 return true; 418 419 s = kstrdup(devices, GFP_KERNEL); 420 if (!s) 421 return false; 422 423 for (p = s, ret = false; (tok = strsep(&p, ",")) != NULL; ) { 424 u16 val; 425 426 if (negative && tok[0] == '!') 427 tok++; 428 else if ((negative && tok[0] != '!') || 429 (!negative && tok[0] == '!')) 430 continue; 431 432 if (kstrtou16(tok, 16, &val) == 0 && val == device_id) { 433 ret = true; 434 break; 435 } 436 } 437 438 kfree(s); 439 440 return ret; 441 } 442 443 static bool id_forced(u16 device_id) 444 { 445 return device_id_in_list(device_id, xe_modparam.force_probe, false); 446 } 447 448 static bool id_blocked(u16 device_id) 449 { 450 return device_id_in_list(device_id, xe_modparam.force_probe, true); 451 } 452 453 static const struct xe_subplatform_desc * 454 find_subplatform(const struct xe_device *xe, const struct xe_device_desc *desc) 455 { 456 const struct xe_subplatform_desc *sp; 457 const u16 *id; 458 459 for (sp = desc->subplatforms; sp && sp->subplatform; sp++) 460 for (id = sp->pciidlist; *id; id++) 461 if (*id == xe->info.devid) 462 return sp; 463 464 return NULL; 465 } 466 467 enum xe_gmdid_type { 468 GMDID_GRAPHICS, 469 GMDID_MEDIA 470 }; 471 472 static void read_gmdid(struct xe_device *xe, enum xe_gmdid_type type, u32 *ver, u32 *revid) 473 { 474 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 475 struct xe_reg gmdid_reg = GMD_ID; 476 u32 val; 477 478 KUNIT_STATIC_STUB_REDIRECT(read_gmdid, xe, type, ver, revid); 479 480 if (IS_SRIOV_VF(xe)) { 481 struct xe_gt *gt = xe_root_mmio_gt(xe); 482 483 /* 484 * To get the value of the GMDID register, VFs must obtain it 485 * from the GuC using MMIO communication. 486 * 487 * Note that at this point the xe_gt is not fully uninitialized 488 * and only basic access to MMIO registers is possible. To use 489 * our existing GuC communication functions we must perform at 490 * least basic xe_gt and xe_guc initialization. 491 * 492 * Since to obtain the value of GMDID_MEDIA we need to use the 493 * media GuC, temporarly tweak the gt type. 494 */ 495 xe_gt_assert(gt, gt->info.type == XE_GT_TYPE_UNINITIALIZED); 496 497 if (type == GMDID_MEDIA) { 498 gt->info.id = 1; 499 gt->info.type = XE_GT_TYPE_MEDIA; 500 } else { 501 gt->info.id = 0; 502 gt->info.type = XE_GT_TYPE_MAIN; 503 } 504 505 xe_guc_comm_init_early(>->uc.guc); 506 507 /* Don't bother with GMDID if failed to negotiate the GuC ABI */ 508 val = xe_gt_sriov_vf_bootstrap(gt) ? 0 : xe_gt_sriov_vf_gmdid(gt); 509 510 /* 511 * Only undo xe_gt.info here, the remaining changes made above 512 * will be overwritten as part of the regular initialization. 513 */ 514 gt->info.id = 0; 515 gt->info.type = XE_GT_TYPE_UNINITIALIZED; 516 } else { 517 /* 518 * GMD_ID is a GT register, but at this point in the driver 519 * init we haven't fully initialized the GT yet so we need to 520 * read the register with the tile's MMIO accessor. That means 521 * we need to apply the GSI offset manually since it won't get 522 * automatically added as it would if we were using a GT mmio 523 * accessor. 524 */ 525 if (type == GMDID_MEDIA) 526 gmdid_reg.addr += MEDIA_GT_GSI_OFFSET; 527 528 val = xe_mmio_read32(mmio, gmdid_reg); 529 } 530 531 *ver = REG_FIELD_GET(GMD_ID_ARCH_MASK, val) * 100 + REG_FIELD_GET(GMD_ID_RELEASE_MASK, val); 532 *revid = REG_FIELD_GET(GMD_ID_REVID, val); 533 } 534 535 /* 536 * Pre-GMD_ID platform: device descriptor already points to the appropriate 537 * graphics descriptor. Simply forward the description and calculate the version 538 * appropriately. "graphics" should be present in all such platforms, while 539 * media is optional. 540 */ 541 static void handle_pre_gmdid(struct xe_device *xe, 542 const struct xe_graphics_desc *graphics, 543 const struct xe_media_desc *media) 544 { 545 xe->info.graphics_verx100 = graphics->ver * 100 + graphics->rel; 546 547 if (media) 548 xe->info.media_verx100 = media->ver * 100 + media->rel; 549 550 } 551 552 /* 553 * GMD_ID platform: read IP version from hardware and select graphics descriptor 554 * based on the result. 555 */ 556 static void handle_gmdid(struct xe_device *xe, 557 const struct xe_graphics_desc **graphics, 558 const struct xe_media_desc **media, 559 u32 *graphics_revid, 560 u32 *media_revid) 561 { 562 u32 ver; 563 564 read_gmdid(xe, GMDID_GRAPHICS, &ver, graphics_revid); 565 566 for (int i = 0; i < ARRAY_SIZE(graphics_ip_map); i++) { 567 if (ver == graphics_ip_map[i].ver) { 568 xe->info.graphics_verx100 = ver; 569 *graphics = graphics_ip_map[i].ip; 570 571 break; 572 } 573 } 574 575 if (!xe->info.graphics_verx100) { 576 drm_err(&xe->drm, "Hardware reports unknown graphics version %u.%02u\n", 577 ver / 100, ver % 100); 578 } 579 580 read_gmdid(xe, GMDID_MEDIA, &ver, media_revid); 581 582 /* Media may legitimately be fused off / not present */ 583 if (ver == 0) 584 return; 585 586 for (int i = 0; i < ARRAY_SIZE(media_ip_map); i++) { 587 if (ver == media_ip_map[i].ver) { 588 xe->info.media_verx100 = ver; 589 *media = media_ip_map[i].ip; 590 591 break; 592 } 593 } 594 595 if (!xe->info.media_verx100) { 596 drm_err(&xe->drm, "Hardware reports unknown media version %u.%02u\n", 597 ver / 100, ver % 100); 598 } 599 } 600 601 /* 602 * Initialize device info content that only depends on static driver_data 603 * passed to the driver at probe time from PCI ID table. 604 */ 605 static int xe_info_init_early(struct xe_device *xe, 606 const struct xe_device_desc *desc, 607 const struct xe_subplatform_desc *subplatform_desc) 608 { 609 int err; 610 611 xe->info.platform_name = desc->platform_name; 612 xe->info.platform = desc->platform; 613 xe->info.subplatform = subplatform_desc ? 614 subplatform_desc->subplatform : XE_SUBPLATFORM_NONE; 615 616 xe->info.is_dgfx = desc->is_dgfx; 617 xe->info.has_heci_gscfi = desc->has_heci_gscfi; 618 xe->info.has_heci_cscfi = desc->has_heci_cscfi; 619 xe->info.has_llc = desc->has_llc; 620 xe->info.has_mmio_ext = desc->has_mmio_ext; 621 xe->info.has_sriov = desc->has_sriov; 622 xe->info.skip_guc_pc = desc->skip_guc_pc; 623 xe->info.skip_mtcfg = desc->skip_mtcfg; 624 xe->info.skip_pcode = desc->skip_pcode; 625 626 xe->info.probe_display = IS_ENABLED(CONFIG_DRM_XE_DISPLAY) && 627 xe_modparam.probe_display && 628 desc->has_display; 629 630 err = xe_tile_init_early(xe_device_get_root_tile(xe), xe, 0); 631 if (err) 632 return err; 633 634 return 0; 635 } 636 637 /* 638 * Initialize device info content that does require knowledge about 639 * graphics / media IP version. 640 * Make sure that GT / tile structures allocated by the driver match the data 641 * present in device info. 642 */ 643 static int xe_info_init(struct xe_device *xe, 644 const struct xe_graphics_desc *graphics_desc, 645 const struct xe_media_desc *media_desc) 646 { 647 u32 graphics_gmdid_revid = 0, media_gmdid_revid = 0; 648 struct xe_tile *tile; 649 struct xe_gt *gt; 650 u8 id; 651 652 /* 653 * If this platform supports GMD_ID, we'll detect the proper IP 654 * descriptor to use from hardware registers. desc->graphics will only 655 * ever be set at this point for platforms before GMD_ID. In that case 656 * the IP descriptions and versions are simply derived from that. 657 */ 658 if (graphics_desc) { 659 handle_pre_gmdid(xe, graphics_desc, media_desc); 660 xe->info.step = xe_step_pre_gmdid_get(xe); 661 } else { 662 xe_assert(xe, !media_desc); 663 handle_gmdid(xe, &graphics_desc, &media_desc, 664 &graphics_gmdid_revid, &media_gmdid_revid); 665 xe->info.step = xe_step_gmdid_get(xe, 666 graphics_gmdid_revid, 667 media_gmdid_revid); 668 } 669 670 /* 671 * If we couldn't detect the graphics IP, that's considered a fatal 672 * error and we should abort driver load. Failing to detect media 673 * IP is non-fatal; we'll just proceed without enabling media support. 674 */ 675 if (!graphics_desc) 676 return -ENODEV; 677 678 xe->info.graphics_name = graphics_desc->name; 679 xe->info.media_name = media_desc ? media_desc->name : "none"; 680 xe->info.tile_mmio_ext_size = graphics_desc->tile_mmio_ext_size; 681 682 xe->info.dma_mask_size = graphics_desc->dma_mask_size; 683 xe->info.vram_flags = graphics_desc->vram_flags; 684 xe->info.va_bits = graphics_desc->va_bits; 685 xe->info.vm_max_level = graphics_desc->vm_max_level; 686 xe->info.has_asid = graphics_desc->has_asid; 687 xe->info.has_atomic_enable_pte_bit = graphics_desc->has_atomic_enable_pte_bit; 688 if (xe->info.platform != XE_PVC) 689 xe->info.has_device_atomics_on_smem = 1; 690 691 /* Runtime detection may change this later */ 692 xe->info.has_flat_ccs = graphics_desc->has_flat_ccs; 693 694 xe->info.has_range_tlb_invalidation = graphics_desc->has_range_tlb_invalidation; 695 xe->info.has_usm = graphics_desc->has_usm; 696 697 /* 698 * All platforms have at least one primary GT. Any platform with media 699 * version 13 or higher has an additional dedicated media GT. And 700 * depending on the graphics IP there may be additional "remote tiles." 701 * All of these together determine the overall GT count. 702 * 703 * FIXME: 'tile_count' here is misnamed since the rest of the driver 704 * treats it as the number of GTs rather than just the number of tiles. 705 */ 706 xe->info.tile_count = 1 + graphics_desc->max_remote_tiles; 707 708 for_each_remote_tile(tile, xe, id) { 709 int err; 710 711 err = xe_tile_init_early(tile, xe, id); 712 if (err) 713 return err; 714 } 715 716 for_each_tile(tile, xe, id) { 717 gt = tile->primary_gt; 718 gt->info.id = xe->info.gt_count++; 719 gt->info.type = XE_GT_TYPE_MAIN; 720 gt->info.has_indirect_ring_state = graphics_desc->has_indirect_ring_state; 721 gt->info.engine_mask = graphics_desc->hw_engine_mask; 722 723 if (MEDIA_VER(xe) < 13 && media_desc) 724 gt->info.engine_mask |= media_desc->hw_engine_mask; 725 726 if (MEDIA_VER(xe) < 13 || !media_desc) 727 continue; 728 729 /* 730 * Allocate and setup media GT for platforms with standalone 731 * media. 732 */ 733 tile->media_gt = xe_gt_alloc(tile); 734 if (IS_ERR(tile->media_gt)) 735 return PTR_ERR(tile->media_gt); 736 737 gt = tile->media_gt; 738 gt->info.type = XE_GT_TYPE_MEDIA; 739 gt->info.has_indirect_ring_state = media_desc->has_indirect_ring_state; 740 gt->info.engine_mask = media_desc->hw_engine_mask; 741 742 /* 743 * FIXME: At the moment multi-tile and standalone media are 744 * mutually exclusive on current platforms. We'll need to 745 * come up with a better way to number GTs if we ever wind 746 * up with platforms that support both together. 747 */ 748 drm_WARN_ON(&xe->drm, id != 0); 749 gt->info.id = xe->info.gt_count++; 750 } 751 752 return 0; 753 } 754 755 static void xe_pci_remove(struct pci_dev *pdev) 756 { 757 struct xe_device *xe; 758 759 xe = pdev_to_xe_device(pdev); 760 if (!xe) /* driver load aborted, nothing to cleanup */ 761 return; 762 763 if (IS_SRIOV_PF(xe)) 764 xe_pci_sriov_configure(pdev, 0); 765 766 xe_device_remove(xe); 767 xe_pm_runtime_fini(xe); 768 pci_set_drvdata(pdev, NULL); 769 } 770 771 /* 772 * Probe the PCI device, initialize various parts of the driver. 773 * 774 * Fault injection is used to test the error paths of some initialization 775 * functions called either directly from xe_pci_probe() or indirectly for 776 * example through xe_device_probe(). Those functions use the kernel fault 777 * injection capabilities infrastructure, see 778 * Documentation/fault-injection/fault-injection.rst for details. The macro 779 * ALLOW_ERROR_INJECTION() is used to conditionally skip function execution 780 * at runtime and use a provided return value. The first requirement for 781 * error injectable functions is proper handling of the error code by the 782 * caller for recovery, which is always the case here. The second 783 * requirement is that no state is changed before the first error return. 784 * It is not strictly fullfilled for all initialization functions using the 785 * ALLOW_ERROR_INJECTION() macro but this is acceptable because for those 786 * error cases at probe time, the error code is simply propagated up by the 787 * caller. Therefore there is no consequence on those specific callers when 788 * function error injection skips the whole function. 789 */ 790 static int xe_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 791 { 792 const struct xe_device_desc *desc = (const void *)ent->driver_data; 793 const struct xe_subplatform_desc *subplatform_desc; 794 struct xe_device *xe; 795 int err; 796 797 if (desc->require_force_probe && !id_forced(pdev->device)) { 798 dev_info(&pdev->dev, 799 "Your graphics device %04x is not officially supported\n" 800 "by xe driver in this kernel version. To force Xe probe,\n" 801 "use xe.force_probe='%04x' and i915.force_probe='!%04x'\n" 802 "module parameters or CONFIG_DRM_XE_FORCE_PROBE='%04x' and\n" 803 "CONFIG_DRM_I915_FORCE_PROBE='!%04x' configuration options.\n", 804 pdev->device, pdev->device, pdev->device, 805 pdev->device, pdev->device); 806 return -ENODEV; 807 } 808 809 if (id_blocked(pdev->device)) { 810 dev_info(&pdev->dev, "Probe blocked for device [%04x:%04x].\n", 811 pdev->vendor, pdev->device); 812 return -ENODEV; 813 } 814 815 if (xe_display_driver_probe_defer(pdev)) 816 return -EPROBE_DEFER; 817 818 err = pcim_enable_device(pdev); 819 if (err) 820 return err; 821 822 xe = xe_device_create(pdev, ent); 823 if (IS_ERR(xe)) 824 return PTR_ERR(xe); 825 826 pci_set_drvdata(pdev, &xe->drm); 827 828 xe_pm_assert_unbounded_bridge(xe); 829 subplatform_desc = find_subplatform(xe, desc); 830 831 pci_set_master(pdev); 832 833 err = xe_info_init_early(xe, desc, subplatform_desc); 834 if (err) 835 return err; 836 837 err = xe_device_probe_early(xe); 838 if (err) 839 return err; 840 841 err = xe_info_init(xe, desc->graphics, desc->media); 842 if (err) 843 return err; 844 845 err = xe_display_probe(xe); 846 if (err) 847 return err; 848 849 drm_dbg(&xe->drm, "%s %s %04x:%04x dgfx:%d gfx:%s (%d.%02d) media:%s (%d.%02d) display:%s dma_m_s:%d tc:%d gscfi:%d cscfi:%d", 850 desc->platform_name, 851 subplatform_desc ? subplatform_desc->name : "", 852 xe->info.devid, xe->info.revid, 853 xe->info.is_dgfx, 854 xe->info.graphics_name, 855 xe->info.graphics_verx100 / 100, 856 xe->info.graphics_verx100 % 100, 857 xe->info.media_name, 858 xe->info.media_verx100 / 100, 859 xe->info.media_verx100 % 100, 860 str_yes_no(xe->info.probe_display), 861 xe->info.dma_mask_size, xe->info.tile_count, 862 xe->info.has_heci_gscfi, xe->info.has_heci_cscfi); 863 864 drm_dbg(&xe->drm, "Stepping = (G:%s, M:%s, B:%s)\n", 865 xe_step_name(xe->info.step.graphics), 866 xe_step_name(xe->info.step.media), 867 xe_step_name(xe->info.step.basedie)); 868 869 drm_dbg(&xe->drm, "SR-IOV support: %s (mode: %s)\n", 870 str_yes_no(xe_device_has_sriov(xe)), 871 xe_sriov_mode_to_string(xe_device_sriov_mode(xe))); 872 873 err = xe_pm_init_early(xe); 874 if (err) 875 return err; 876 877 err = xe_device_probe(xe); 878 if (err) 879 return err; 880 881 err = xe_pm_init(xe); 882 if (err) 883 goto err_driver_cleanup; 884 885 drm_dbg(&xe->drm, "d3cold: capable=%s\n", 886 str_yes_no(xe->d3cold.capable)); 887 888 return 0; 889 890 err_driver_cleanup: 891 xe_pci_remove(pdev); 892 return err; 893 } 894 895 static void xe_pci_shutdown(struct pci_dev *pdev) 896 { 897 xe_device_shutdown(pdev_to_xe_device(pdev)); 898 } 899 900 #ifdef CONFIG_PM_SLEEP 901 static void d3cold_toggle(struct pci_dev *pdev, enum toggle_d3cold toggle) 902 { 903 struct xe_device *xe = pdev_to_xe_device(pdev); 904 struct pci_dev *root_pdev; 905 906 if (!xe->d3cold.capable) 907 return; 908 909 root_pdev = pcie_find_root_port(pdev); 910 if (!root_pdev) 911 return; 912 913 switch (toggle) { 914 case D3COLD_DISABLE: 915 pci_d3cold_disable(root_pdev); 916 break; 917 case D3COLD_ENABLE: 918 pci_d3cold_enable(root_pdev); 919 break; 920 } 921 } 922 923 static int xe_pci_suspend(struct device *dev) 924 { 925 struct pci_dev *pdev = to_pci_dev(dev); 926 int err; 927 928 err = xe_pm_suspend(pdev_to_xe_device(pdev)); 929 if (err) 930 return err; 931 932 /* 933 * Enabling D3Cold is needed for S2Idle/S0ix. 934 * It is save to allow here since xe_pm_suspend has evicted 935 * the local memory and the direct complete optimization is disabled. 936 */ 937 d3cold_toggle(pdev, D3COLD_ENABLE); 938 939 pci_save_state(pdev); 940 pci_disable_device(pdev); 941 942 return 0; 943 } 944 945 static int xe_pci_resume(struct device *dev) 946 { 947 struct pci_dev *pdev = to_pci_dev(dev); 948 int err; 949 950 /* Give back the D3Cold decision to the runtime P M*/ 951 d3cold_toggle(pdev, D3COLD_DISABLE); 952 953 err = pci_set_power_state(pdev, PCI_D0); 954 if (err) 955 return err; 956 957 pci_restore_state(pdev); 958 959 err = pci_enable_device(pdev); 960 if (err) 961 return err; 962 963 pci_set_master(pdev); 964 965 err = xe_pm_resume(pdev_to_xe_device(pdev)); 966 if (err) 967 return err; 968 969 return 0; 970 } 971 972 static int xe_pci_runtime_suspend(struct device *dev) 973 { 974 struct pci_dev *pdev = to_pci_dev(dev); 975 struct xe_device *xe = pdev_to_xe_device(pdev); 976 int err; 977 978 err = xe_pm_runtime_suspend(xe); 979 if (err) 980 return err; 981 982 pci_save_state(pdev); 983 984 if (xe->d3cold.allowed) { 985 d3cold_toggle(pdev, D3COLD_ENABLE); 986 pci_disable_device(pdev); 987 pci_ignore_hotplug(pdev); 988 pci_set_power_state(pdev, PCI_D3cold); 989 } else { 990 d3cold_toggle(pdev, D3COLD_DISABLE); 991 pci_set_power_state(pdev, PCI_D3hot); 992 } 993 994 return 0; 995 } 996 997 static int xe_pci_runtime_resume(struct device *dev) 998 { 999 struct pci_dev *pdev = to_pci_dev(dev); 1000 struct xe_device *xe = pdev_to_xe_device(pdev); 1001 int err; 1002 1003 err = pci_set_power_state(pdev, PCI_D0); 1004 if (err) 1005 return err; 1006 1007 pci_restore_state(pdev); 1008 1009 if (xe->d3cold.allowed) { 1010 err = pci_enable_device(pdev); 1011 if (err) 1012 return err; 1013 1014 pci_set_master(pdev); 1015 } 1016 1017 return xe_pm_runtime_resume(xe); 1018 } 1019 1020 static int xe_pci_runtime_idle(struct device *dev) 1021 { 1022 struct pci_dev *pdev = to_pci_dev(dev); 1023 struct xe_device *xe = pdev_to_xe_device(pdev); 1024 1025 xe_pm_d3cold_allowed_toggle(xe); 1026 1027 return 0; 1028 } 1029 1030 static const struct dev_pm_ops xe_pm_ops = { 1031 SET_SYSTEM_SLEEP_PM_OPS(xe_pci_suspend, xe_pci_resume) 1032 SET_RUNTIME_PM_OPS(xe_pci_runtime_suspend, xe_pci_runtime_resume, xe_pci_runtime_idle) 1033 }; 1034 #endif 1035 1036 static struct pci_driver xe_pci_driver = { 1037 .name = DRIVER_NAME, 1038 .id_table = pciidlist, 1039 .probe = xe_pci_probe, 1040 .remove = xe_pci_remove, 1041 .shutdown = xe_pci_shutdown, 1042 .sriov_configure = xe_pci_sriov_configure, 1043 #ifdef CONFIG_PM_SLEEP 1044 .driver.pm = &xe_pm_ops, 1045 #endif 1046 }; 1047 1048 int xe_register_pci_driver(void) 1049 { 1050 return pci_register_driver(&xe_pci_driver); 1051 } 1052 1053 void xe_unregister_pci_driver(void) 1054 { 1055 pci_unregister_driver(&xe_pci_driver); 1056 } 1057 1058 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 1059 #include "tests/xe_pci.c" 1060 #endif 1061