xref: /linux/drivers/gpu/drm/xe/xe_mmio.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021-2023 Intel Corporation
4  */
5 
6 #include <linux/minmax.h>
7 
8 #include "xe_mmio.h"
9 
10 #include <drm/drm_managed.h>
11 #include <drm/xe_drm.h>
12 
13 #include "regs/xe_engine_regs.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_regs.h"
16 #include "xe_bo.h"
17 #include "xe_device.h"
18 #include "xe_ggtt.h"
19 #include "xe_gt.h"
20 #include "xe_gt_mcr.h"
21 #include "xe_macros.h"
22 #include "xe_module.h"
23 #include "xe_sriov.h"
24 #include "xe_tile.h"
25 
26 #define XEHP_MTCFG_ADDR		XE_REG(0x101800)
27 #define TILE_COUNT		REG_GENMASK(15, 8)
28 
29 #define BAR_SIZE_SHIFT 20
30 
31 static void
32 _resize_bar(struct xe_device *xe, int resno, resource_size_t size)
33 {
34 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
35 	int bar_size = pci_rebar_bytes_to_size(size);
36 	int ret;
37 
38 	if (pci_resource_len(pdev, resno))
39 		pci_release_resource(pdev, resno);
40 
41 	ret = pci_resize_resource(pdev, resno, bar_size);
42 	if (ret) {
43 		drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
44 			 resno, 1 << bar_size, ERR_PTR(ret));
45 		return;
46 	}
47 
48 	drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
49 }
50 
51 /*
52  * if force_vram_bar_size is set, attempt to set to the requested size
53  * else set to maximum possible size
54  */
55 static void xe_resize_vram_bar(struct xe_device *xe)
56 {
57 	u64 force_vram_bar_size = xe_modparam.force_vram_bar_size;
58 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
59 	struct pci_bus *root = pdev->bus;
60 	resource_size_t current_size;
61 	resource_size_t rebar_size;
62 	struct resource *root_res;
63 	u32 bar_size_mask;
64 	u32 pci_cmd;
65 	int i;
66 
67 	/* gather some relevant info */
68 	current_size = pci_resource_len(pdev, LMEM_BAR);
69 	bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
70 
71 	if (!bar_size_mask)
72 		return;
73 
74 	/* set to a specific size? */
75 	if (force_vram_bar_size) {
76 		u32 bar_size_bit;
77 
78 		rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
79 
80 		bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
81 
82 		if (!bar_size_bit) {
83 			drm_info(&xe->drm,
84 				 "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
85 				 (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
86 			return;
87 		}
88 
89 		rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
90 
91 		if (rebar_size == current_size)
92 			return;
93 	} else {
94 		rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
95 
96 		/* only resize if larger than current */
97 		if (rebar_size <= current_size)
98 			return;
99 	}
100 
101 	drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
102 		 (u64)current_size >> 20, (u64)rebar_size >> 20);
103 
104 	while (root->parent)
105 		root = root->parent;
106 
107 	pci_bus_for_each_resource(root, root_res, i) {
108 		if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
109 		    (u64)root_res->start > 0x100000000ul)
110 			break;
111 	}
112 
113 	if (!root_res) {
114 		drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
115 		return;
116 	}
117 
118 	pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
119 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
120 
121 	_resize_bar(xe, LMEM_BAR, rebar_size);
122 
123 	pci_assign_unassigned_bus_resources(pdev->bus);
124 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
125 }
126 
127 static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar)
128 {
129 	if (!pci_resource_flags(pdev, bar))
130 		return false;
131 
132 	if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
133 		return false;
134 
135 	if (!pci_resource_len(pdev, bar))
136 		return false;
137 
138 	return true;
139 }
140 
141 static int xe_determine_lmem_bar_size(struct xe_device *xe)
142 {
143 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
144 
145 	if (!xe_pci_resource_valid(pdev, LMEM_BAR)) {
146 		drm_err(&xe->drm, "pci resource is not valid\n");
147 		return -ENXIO;
148 	}
149 
150 	xe_resize_vram_bar(xe);
151 
152 	xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR);
153 	xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR);
154 	if (!xe->mem.vram.io_size)
155 		return -EIO;
156 
157 	/* XXX: Need to change when xe link code is ready */
158 	xe->mem.vram.dpa_base = 0;
159 
160 	/* set up a map to the total memory area. */
161 	xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size);
162 
163 	return 0;
164 }
165 
166 /**
167  * xe_mmio_tile_vram_size() - Collect vram size and offset information
168  * @tile: tile to get info for
169  * @vram_size: available vram (size - device reserved portions)
170  * @tile_size: actual vram size
171  * @tile_offset: physical start point in the vram address space
172  *
173  * There are 4 places for size information:
174  * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
175  * - TILEx size (actual vram size)
176  * - GSMBASE offset (TILEx - "stolen")
177  * - CSSBASE offset (TILEx - CSS space necessary)
178  *
179  * CSSBASE is always a lower/smaller offset then GSMBASE.
180  *
181  * The actual available size of memory is to the CCS or GSM base.
182  * NOTE: multi-tile bases will include the tile offset.
183  *
184  */
185 static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size,
186 				  u64 *tile_size, u64 *tile_offset)
187 {
188 	struct xe_device *xe = tile_to_xe(tile);
189 	struct xe_gt *gt = tile->primary_gt;
190 	u64 offset;
191 	int err;
192 	u32 reg;
193 
194 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
195 	if (err)
196 		return err;
197 
198 	/* actual size */
199 	if (unlikely(xe->info.platform == XE_DG1)) {
200 		*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
201 		*tile_offset = 0;
202 	} else {
203 		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id));
204 		*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
205 		*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
206 	}
207 
208 	/* minus device usage */
209 	if (xe->info.has_flat_ccs) {
210 		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
211 		offset = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K;
212 	} else {
213 		offset = xe_mmio_read64_2x32(gt, GSMBASE);
214 	}
215 
216 	/* remove the tile offset so we have just the available size */
217 	*vram_size = offset - *tile_offset;
218 
219 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
220 }
221 
222 int xe_mmio_probe_vram(struct xe_device *xe)
223 {
224 	struct xe_tile *tile;
225 	resource_size_t io_size;
226 	u64 available_size = 0;
227 	u64 total_size = 0;
228 	u64 tile_offset;
229 	u64 tile_size;
230 	u64 vram_size;
231 	int err;
232 	u8 id;
233 
234 	if (!IS_DGFX(xe))
235 		return 0;
236 
237 	/* Get the size of the root tile's vram for later accessibility comparison */
238 	tile = xe_device_get_root_tile(xe);
239 	err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
240 	if (err)
241 		return err;
242 
243 	err = xe_determine_lmem_bar_size(xe);
244 	if (err)
245 		return err;
246 
247 	drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
248 		 &xe->mem.vram.io_size);
249 
250 	io_size = xe->mem.vram.io_size;
251 
252 	/* tile specific ranges */
253 	for_each_tile(tile, xe, id) {
254 		err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
255 		if (err)
256 			return err;
257 
258 		tile->mem.vram.actual_physical_size = tile_size;
259 		tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset;
260 		tile->mem.vram.io_size = min_t(u64, vram_size, io_size);
261 
262 		if (!tile->mem.vram.io_size) {
263 			drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
264 			return -ENODEV;
265 		}
266 
267 		tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset;
268 		tile->mem.vram.usable_size = vram_size;
269 		tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset;
270 
271 		if (tile->mem.vram.io_size < tile->mem.vram.usable_size)
272 			drm_info(&xe->drm, "Small BAR device\n");
273 		drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id,
274 			 tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size);
275 		drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id,
276 			 &tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + (u64)tile->mem.vram.actual_physical_size,
277 			 &tile->mem.vram.io_start, tile->mem.vram.io_start + (u64)tile->mem.vram.io_size);
278 
279 		/* calculate total size using tile size to get the correct HW sizing */
280 		total_size += tile_size;
281 		available_size += vram_size;
282 
283 		if (total_size > xe->mem.vram.io_size) {
284 			drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
285 				 &total_size, &xe->mem.vram.io_size);
286 		}
287 
288 		io_size -= min_t(u64, tile_size, io_size);
289 	}
290 
291 	xe->mem.vram.actual_physical_size = total_size;
292 
293 	drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
294 		 &xe->mem.vram.actual_physical_size);
295 	drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
296 		 &available_size);
297 
298 	return 0;
299 }
300 
301 void xe_mmio_probe_tiles(struct xe_device *xe)
302 {
303 	size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
304 	u8 id, tile_count = xe->info.tile_count;
305 	struct xe_gt *gt = xe_root_mmio_gt(xe);
306 	struct xe_tile *tile;
307 	void __iomem *regs;
308 	u32 mtcfg;
309 
310 	if (tile_count == 1)
311 		goto add_mmio_ext;
312 
313 	if (!xe->info.skip_mtcfg) {
314 		mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
315 		tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
316 		if (tile_count < xe->info.tile_count) {
317 			drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
318 					xe->info.tile_count, tile_count);
319 			xe->info.tile_count = tile_count;
320 
321 			/*
322 			 * FIXME: Needs some work for standalone media, but should be impossible
323 			 * with multi-tile for now.
324 			 */
325 			xe->info.gt_count = xe->info.tile_count;
326 		}
327 	}
328 
329 	regs = xe->mmio.regs;
330 	for_each_tile(tile, xe, id) {
331 		tile->mmio.size = tile_mmio_size;
332 		tile->mmio.regs = regs;
333 		regs += tile_mmio_size;
334 	}
335 
336 add_mmio_ext:
337 	/*
338 	 * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
339 	 * When supported, there could be an additional contiguous multi-tile MMIO extension
340 	 * space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
341 	 */
342 	if (xe->info.has_mmio_ext) {
343 		regs = xe->mmio.regs + tile_mmio_size * tile_count;
344 
345 		for_each_tile(tile, xe, id) {
346 			tile->mmio_ext.size = tile_mmio_ext_size;
347 			tile->mmio_ext.regs = regs;
348 
349 			regs += tile_mmio_ext_size;
350 		}
351 	}
352 }
353 
354 static void mmio_fini(struct drm_device *drm, void *arg)
355 {
356 	struct xe_device *xe = arg;
357 
358 	pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
359 	if (xe->mem.vram.mapping)
360 		iounmap(xe->mem.vram.mapping);
361 }
362 
363 static int xe_verify_lmem_ready(struct xe_device *xe)
364 {
365 	struct xe_gt *gt = xe_root_mmio_gt(xe);
366 
367 	if (!IS_DGFX(xe))
368 		return 0;
369 
370 	if (IS_SRIOV_VF(xe))
371 		return 0;
372 
373 	/*
374 	 * The boot firmware initializes local memory and assesses its health.
375 	 * If memory training fails, the punit will have been instructed to
376 	 * keep the GT powered down; we won't be able to communicate with it
377 	 * and we should not continue with driver initialization.
378 	 */
379 	if (!(xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT)) {
380 		drm_err(&xe->drm, "VRAM not initialized by firmware\n");
381 		return -ENODEV;
382 	}
383 
384 	return 0;
385 }
386 
387 int xe_mmio_init(struct xe_device *xe)
388 {
389 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
390 	const int mmio_bar = 0;
391 
392 	/*
393 	 * Map the entire BAR.
394 	 * The first 16MB of the BAR, belong to the root tile, and include:
395 	 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
396 	 */
397 	xe->mmio.size = pci_resource_len(pdev, mmio_bar);
398 	xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0);
399 	if (xe->mmio.regs == NULL) {
400 		drm_err(&xe->drm, "failed to map registers\n");
401 		return -EIO;
402 	}
403 
404 	return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe);
405 }
406 
407 int xe_mmio_root_tile_init(struct xe_device *xe)
408 {
409 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
410 	int err;
411 
412 	/* Setup first tile; other tiles (if present) will be setup later. */
413 	root_tile->mmio.size = SZ_16M;
414 	root_tile->mmio.regs = xe->mmio.regs;
415 
416 	err = xe_verify_lmem_ready(xe);
417 	if (err)
418 		return err;
419 
420 	return 0;
421 }
422 
423 /**
424  * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
425  * @gt: MMIO target GT
426  * @reg: register to read value from
427  *
428  * Although Intel GPUs have some 64-bit registers, the hardware officially
429  * only supports GTTMMADR register reads of 32 bits or smaller.  Even if
430  * a readq operation may return a reasonable value, that violation of the
431  * spec shouldn't be relied upon and all 64-bit register reads should be
432  * performed as two 32-bit reads of the upper and lower dwords.
433  *
434  * When reading registers that may be changing (such as
435  * counters), a rollover of the lower dword between the two 32-bit reads
436  * can be problematic.  This function attempts to ensure the upper dword has
437  * stabilized before returning the 64-bit value.
438  *
439  * Note that because this function may re-read the register multiple times
440  * while waiting for the value to stabilize it should not be used to read
441  * any registers where read operations have side effects.
442  *
443  * Returns the value of the 64-bit register.
444  */
445 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
446 {
447 	struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
448 	u32 ldw, udw, oldudw, retries;
449 
450 	if (reg.addr < gt->mmio.adj_limit) {
451 		reg.addr += gt->mmio.adj_offset;
452 		reg_udw.addr += gt->mmio.adj_offset;
453 	}
454 
455 	oldudw = xe_mmio_read32(gt, reg_udw);
456 	for (retries = 5; retries; --retries) {
457 		ldw = xe_mmio_read32(gt, reg);
458 		udw = xe_mmio_read32(gt, reg_udw);
459 
460 		if (udw == oldudw)
461 			break;
462 
463 		oldudw = udw;
464 	}
465 
466 	xe_gt_WARN(gt, retries == 0,
467 		   "64-bit read of %#x did not stabilize\n", reg.addr);
468 
469 	return (u64)udw << 32 | ldw;
470 }
471 
472 /**
473  * xe_mmio_wait32() - Wait for a register to match the desired masked value
474  * @gt: MMIO target GT
475  * @reg: register to read value from
476  * @mask: mask to be applied to the value read from the register
477  * @val: desired value after applying the mask
478  * @timeout_us: time out after this period of time. Wait logic tries to be
479  * smart, applying an exponential backoff until @timeout_us is reached.
480  * @out_val: if not NULL, points where to store the last unmasked value
481  * @atomic: needs to be true if calling from an atomic context
482  *
483  * This function polls for the desired masked value and returns zero on success
484  * or -ETIMEDOUT if timed out.
485  *
486  * Note that @timeout_us represents the minimum amount of time to wait before
487  * giving up. The actual time taken by this function can be a little more than
488  * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
489  * it is possible that this function succeeds even after @timeout_us has passed.
490  */
491 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
492 		   u32 *out_val, bool atomic)
493 {
494 	ktime_t cur = ktime_get_raw();
495 	const ktime_t end = ktime_add_us(cur, timeout_us);
496 	int ret = -ETIMEDOUT;
497 	s64 wait = 10;
498 	u32 read;
499 
500 	for (;;) {
501 		read = xe_mmio_read32(gt, reg);
502 		if ((read & mask) == val) {
503 			ret = 0;
504 			break;
505 		}
506 
507 		cur = ktime_get_raw();
508 		if (!ktime_before(cur, end))
509 			break;
510 
511 		if (ktime_after(ktime_add_us(cur, wait), end))
512 			wait = ktime_us_delta(end, cur);
513 
514 		if (atomic)
515 			udelay(wait);
516 		else
517 			usleep_range(wait, wait << 1);
518 		wait <<= 1;
519 	}
520 
521 	if (ret != 0) {
522 		read = xe_mmio_read32(gt, reg);
523 		if ((read & mask) == val)
524 			ret = 0;
525 	}
526 
527 	if (out_val)
528 		*out_val = read;
529 
530 	return ret;
531 }
532