1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2023 Intel Corporation 4 */ 5 6 #include "xe_mmio.h" 7 8 #include <linux/delay.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/minmax.h> 11 #include <linux/pci.h> 12 13 #include <drm/drm_managed.h> 14 #include <drm/drm_print.h> 15 16 #include "regs/xe_bars.h" 17 #include "regs/xe_regs.h" 18 #include "xe_device.h" 19 #include "xe_gt.h" 20 #include "xe_gt_printk.h" 21 #include "xe_gt_sriov_vf.h" 22 #include "xe_macros.h" 23 #include "xe_sriov.h" 24 25 static void tiles_fini(void *arg) 26 { 27 struct xe_device *xe = arg; 28 struct xe_tile *tile; 29 int id; 30 31 for_each_tile(tile, xe, id) 32 tile->mmio.regs = NULL; 33 } 34 35 int xe_mmio_probe_tiles(struct xe_device *xe) 36 { 37 size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size; 38 u8 id, tile_count = xe->info.tile_count; 39 struct xe_gt *gt = xe_root_mmio_gt(xe); 40 struct xe_tile *tile; 41 void __iomem *regs; 42 u32 mtcfg; 43 44 if (tile_count == 1) 45 goto add_mmio_ext; 46 47 if (!xe->info.skip_mtcfg) { 48 mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR); 49 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; 50 if (tile_count < xe->info.tile_count) { 51 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", 52 xe->info.tile_count, tile_count); 53 xe->info.tile_count = tile_count; 54 55 /* 56 * FIXME: Needs some work for standalone media, but should be impossible 57 * with multi-tile for now. 58 */ 59 xe->info.gt_count = xe->info.tile_count; 60 } 61 } 62 63 regs = xe->mmio.regs; 64 for_each_tile(tile, xe, id) { 65 tile->mmio.size = tile_mmio_size; 66 tile->mmio.regs = regs; 67 regs += tile_mmio_size; 68 } 69 70 add_mmio_ext: 71 /* 72 * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile). 73 * When supported, there could be an additional contiguous multi-tile MMIO extension 74 * space ON TOP of it, and hence the necessity for distinguished MMIO spaces. 75 */ 76 if (xe->info.has_mmio_ext) { 77 regs = xe->mmio.regs + tile_mmio_size * tile_count; 78 79 for_each_tile(tile, xe, id) { 80 tile->mmio_ext.size = tile_mmio_ext_size; 81 tile->mmio_ext.regs = regs; 82 83 regs += tile_mmio_ext_size; 84 } 85 } 86 87 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe); 88 } 89 90 static void mmio_fini(void *arg) 91 { 92 struct xe_device *xe = arg; 93 94 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); 95 xe->mmio.regs = NULL; 96 } 97 98 int xe_mmio_init(struct xe_device *xe) 99 { 100 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 101 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 102 const int mmio_bar = 0; 103 104 /* 105 * Map the entire BAR. 106 * The first 16MB of the BAR, belong to the root tile, and include: 107 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). 108 */ 109 xe->mmio.size = pci_resource_len(pdev, mmio_bar); 110 xe->mmio.regs = pci_iomap(pdev, mmio_bar, GTTMMADR_BAR); 111 if (xe->mmio.regs == NULL) { 112 drm_err(&xe->drm, "failed to map registers\n"); 113 return -EIO; 114 } 115 116 /* Setup first tile; other tiles (if present) will be setup later. */ 117 root_tile->mmio.size = SZ_16M; 118 root_tile->mmio.regs = xe->mmio.regs; 119 120 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe); 121 } 122 123 u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg) 124 { 125 struct xe_tile *tile = gt_to_tile(gt); 126 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 127 128 return readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 129 } 130 131 u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg) 132 { 133 struct xe_tile *tile = gt_to_tile(gt); 134 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 135 136 return readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 137 } 138 139 void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val) 140 { 141 struct xe_tile *tile = gt_to_tile(gt); 142 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 143 144 writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 145 } 146 147 u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg) 148 { 149 struct xe_tile *tile = gt_to_tile(gt); 150 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 151 152 if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt))) 153 return xe_gt_sriov_vf_read32(gt, reg); 154 155 return readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 156 } 157 158 u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set) 159 { 160 u32 old, reg_val; 161 162 old = xe_mmio_read32(gt, reg); 163 reg_val = (old & ~clr) | set; 164 xe_mmio_write32(gt, reg, reg_val); 165 166 return old; 167 } 168 169 int xe_mmio_write32_and_verify(struct xe_gt *gt, 170 struct xe_reg reg, u32 val, u32 mask, u32 eval) 171 { 172 u32 reg_val; 173 174 xe_mmio_write32(gt, reg, val); 175 reg_val = xe_mmio_read32(gt, reg); 176 177 return (reg_val & mask) != eval ? -EINVAL : 0; 178 } 179 180 bool xe_mmio_in_range(const struct xe_gt *gt, 181 const struct xe_mmio_range *range, 182 struct xe_reg reg) 183 { 184 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 185 186 return range && addr >= range->start && addr <= range->end; 187 } 188 189 /** 190 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads 191 * @gt: MMIO target GT 192 * @reg: register to read value from 193 * 194 * Although Intel GPUs have some 64-bit registers, the hardware officially 195 * only supports GTTMMADR register reads of 32 bits or smaller. Even if 196 * a readq operation may return a reasonable value, that violation of the 197 * spec shouldn't be relied upon and all 64-bit register reads should be 198 * performed as two 32-bit reads of the upper and lower dwords. 199 * 200 * When reading registers that may be changing (such as 201 * counters), a rollover of the lower dword between the two 32-bit reads 202 * can be problematic. This function attempts to ensure the upper dword has 203 * stabilized before returning the 64-bit value. 204 * 205 * Note that because this function may re-read the register multiple times 206 * while waiting for the value to stabilize it should not be used to read 207 * any registers where read operations have side effects. 208 * 209 * Returns the value of the 64-bit register. 210 */ 211 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg) 212 { 213 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; 214 u32 ldw, udw, oldudw, retries; 215 216 reg.addr = xe_mmio_adjusted_addr(gt, reg.addr); 217 reg_udw.addr = xe_mmio_adjusted_addr(gt, reg_udw.addr); 218 219 /* we shouldn't adjust just one register address */ 220 xe_gt_assert(gt, reg_udw.addr == reg.addr + 0x4); 221 222 oldudw = xe_mmio_read32(gt, reg_udw); 223 for (retries = 5; retries; --retries) { 224 ldw = xe_mmio_read32(gt, reg); 225 udw = xe_mmio_read32(gt, reg_udw); 226 227 if (udw == oldudw) 228 break; 229 230 oldudw = udw; 231 } 232 233 xe_gt_WARN(gt, retries == 0, 234 "64-bit read of %#x did not stabilize\n", reg.addr); 235 236 return (u64)udw << 32 | ldw; 237 } 238 239 /** 240 * xe_mmio_wait32() - Wait for a register to match the desired masked value 241 * @gt: MMIO target GT 242 * @reg: register to read value from 243 * @mask: mask to be applied to the value read from the register 244 * @val: desired value after applying the mask 245 * @timeout_us: time out after this period of time. Wait logic tries to be 246 * smart, applying an exponential backoff until @timeout_us is reached. 247 * @out_val: if not NULL, points where to store the last unmasked value 248 * @atomic: needs to be true if calling from an atomic context 249 * 250 * This function polls for the desired masked value and returns zero on success 251 * or -ETIMEDOUT if timed out. 252 * 253 * Note that @timeout_us represents the minimum amount of time to wait before 254 * giving up. The actual time taken by this function can be a little more than 255 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 256 * it is possible that this function succeeds even after @timeout_us has passed. 257 */ 258 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 259 u32 *out_val, bool atomic) 260 { 261 ktime_t cur = ktime_get_raw(); 262 const ktime_t end = ktime_add_us(cur, timeout_us); 263 int ret = -ETIMEDOUT; 264 s64 wait = 10; 265 u32 read; 266 267 for (;;) { 268 read = xe_mmio_read32(gt, reg); 269 if ((read & mask) == val) { 270 ret = 0; 271 break; 272 } 273 274 cur = ktime_get_raw(); 275 if (!ktime_before(cur, end)) 276 break; 277 278 if (ktime_after(ktime_add_us(cur, wait), end)) 279 wait = ktime_us_delta(end, cur); 280 281 if (atomic) 282 udelay(wait); 283 else 284 usleep_range(wait, wait << 1); 285 wait <<= 1; 286 } 287 288 if (ret != 0) { 289 read = xe_mmio_read32(gt, reg); 290 if ((read & mask) == val) 291 ret = 0; 292 } 293 294 if (out_val) 295 *out_val = read; 296 297 return ret; 298 } 299 300 /** 301 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value 302 * @gt: MMIO target GT 303 * @reg: register to read value from 304 * @mask: mask to be applied to the value read from the register 305 * @val: value to match after applying the mask 306 * @timeout_us: time out after this period of time. Wait logic tries to be 307 * smart, applying an exponential backoff until @timeout_us is reached. 308 * @out_val: if not NULL, points where to store the last unmasked value 309 * @atomic: needs to be true if calling from an atomic context 310 * 311 * This function polls for a masked value to change from a given value and 312 * returns zero on success or -ETIMEDOUT if timed out. 313 * 314 * Note that @timeout_us represents the minimum amount of time to wait before 315 * giving up. The actual time taken by this function can be a little more than 316 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 317 * it is possible that this function succeeds even after @timeout_us has passed. 318 */ 319 int xe_mmio_wait32_not(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 320 u32 *out_val, bool atomic) 321 { 322 ktime_t cur = ktime_get_raw(); 323 const ktime_t end = ktime_add_us(cur, timeout_us); 324 int ret = -ETIMEDOUT; 325 s64 wait = 10; 326 u32 read; 327 328 for (;;) { 329 read = xe_mmio_read32(gt, reg); 330 if ((read & mask) != val) { 331 ret = 0; 332 break; 333 } 334 335 cur = ktime_get_raw(); 336 if (!ktime_before(cur, end)) 337 break; 338 339 if (ktime_after(ktime_add_us(cur, wait), end)) 340 wait = ktime_us_delta(end, cur); 341 342 if (atomic) 343 udelay(wait); 344 else 345 usleep_range(wait, wait << 1); 346 wait <<= 1; 347 } 348 349 if (ret != 0) { 350 read = xe_mmio_read32(gt, reg); 351 if ((read & mask) != val) 352 ret = 0; 353 } 354 355 if (out_val) 356 *out_val = read; 357 358 return ret; 359 } 360