xref: /linux/drivers/gpu/drm/xe/xe_mmio.c (revision dcdd6b84d9acaa0794c29de7024cfdb20cfd7b92)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021-2023 Intel Corporation
4  */
5 
6 #include "xe_mmio.h"
7 
8 #include <linux/delay.h>
9 #include <linux/io-64-nonatomic-lo-hi.h>
10 #include <linux/minmax.h>
11 #include <linux/pci.h>
12 
13 #include <drm/drm_managed.h>
14 #include <drm/drm_print.h>
15 
16 #include "regs/xe_bars.h"
17 #include "regs/xe_regs.h"
18 #include "xe_device.h"
19 #include "xe_gt.h"
20 #include "xe_gt_printk.h"
21 #include "xe_gt_sriov_vf.h"
22 #include "xe_macros.h"
23 #include "xe_sriov.h"
24 #include "xe_trace.h"
25 
26 static void tiles_fini(void *arg)
27 {
28 	struct xe_device *xe = arg;
29 	struct xe_tile *tile;
30 	int id;
31 
32 	for_each_remote_tile(tile, xe, id)
33 		tile->mmio.regs = NULL;
34 }
35 
36 /*
37  * On multi-tile devices, partition the BAR space for MMIO on each tile,
38  * possibly accounting for register override on the number of tiles available.
39  * tile_mmio_size contains both the tile's 4MB register space, as well as
40  * additional space for the GTT and other (possibly unused) regions).
41  * Resulting memory layout is like below:
42  *
43  * .----------------------. <- tile_count * tile_mmio_size
44  * |         ....         |
45  * |----------------------| <- 2 * tile_mmio_size
46  * |   tile1 GTT + other  |
47  * |----------------------| <- 1 * tile_mmio_size + 4MB
48  * |   tile1->mmio.regs   |
49  * |----------------------| <- 1 * tile_mmio_size
50  * |   tile0 GTT + other  |
51  * |----------------------| <- 4MB
52  * |   tile0->mmio.regs   |
53  * '----------------------' <- 0MB
54  */
55 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size)
56 {
57 	struct xe_tile *tile;
58 	void __iomem *regs;
59 	u8 id;
60 
61 	/*
62 	 * Nothing to be done as tile 0 has already been setup earlier with the
63 	 * entire BAR mapped - see xe_mmio_init()
64 	 */
65 	if (xe->info.tile_count == 1)
66 		return;
67 
68 	/* Possibly override number of tile based on configuration register */
69 	if (!xe->info.skip_mtcfg) {
70 		struct xe_mmio *mmio = xe_root_tile_mmio(xe);
71 		u8 tile_count;
72 		u32 mtcfg;
73 
74 		/*
75 		 * Although the per-tile mmio regs are not yet initialized, this
76 		 * is fine as it's going to the root tile's mmio, that's
77 		 * guaranteed to be initialized earlier in xe_mmio_init()
78 		 */
79 		mtcfg = xe_mmio_read64_2x32(mmio, XEHP_MTCFG_ADDR);
80 		tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
81 
82 		if (tile_count < xe->info.tile_count) {
83 			drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
84 					xe->info.tile_count, tile_count);
85 			xe->info.tile_count = tile_count;
86 
87 			/*
88 			 * FIXME: Needs some work for standalone media, but
89 			 * should be impossible with multi-tile for now:
90 			 * multi-tile platform with standalone media doesn't
91 			 * exist
92 			 */
93 			xe->info.gt_count = xe->info.tile_count;
94 		}
95 	}
96 
97 	regs = xe->mmio.regs;
98 	for_each_tile(tile, xe, id) {
99 		tile->mmio.regs_size = SZ_4M;
100 		tile->mmio.regs = regs;
101 		tile->mmio.tile = tile;
102 		regs += tile_mmio_size;
103 	}
104 }
105 
106 int xe_mmio_probe_tiles(struct xe_device *xe)
107 {
108 	size_t tile_mmio_size = SZ_16M;
109 
110 	mmio_multi_tile_setup(xe, tile_mmio_size);
111 
112 	return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
113 }
114 
115 static void mmio_fini(void *arg)
116 {
117 	struct xe_device *xe = arg;
118 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
119 
120 	pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
121 	xe->mmio.regs = NULL;
122 	root_tile->mmio.regs = NULL;
123 }
124 
125 int xe_mmio_init(struct xe_device *xe)
126 {
127 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
128 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
129 
130 	/*
131 	 * Map the entire BAR.
132 	 * The first 16MB of the BAR, belong to the root tile, and include:
133 	 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
134 	 */
135 	xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR);
136 	xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0);
137 	if (xe->mmio.regs == NULL) {
138 		drm_err(&xe->drm, "failed to map registers\n");
139 		return -EIO;
140 	}
141 
142 	/* Setup first tile; other tiles (if present) will be setup later. */
143 	root_tile->mmio.regs_size = SZ_4M;
144 	root_tile->mmio.regs = xe->mmio.regs;
145 	root_tile->mmio.tile = root_tile;
146 
147 	return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
148 }
149 
150 static void mmio_flush_pending_writes(struct xe_mmio *mmio)
151 {
152 #define DUMMY_REG_OFFSET	0x130030
153 	int i;
154 
155 	if (mmio->tile->xe->info.platform != XE_LUNARLAKE)
156 		return;
157 
158 	/* 4 dummy writes */
159 	for (i = 0; i < 4; i++)
160 		writel(0, mmio->regs + DUMMY_REG_OFFSET);
161 }
162 
163 u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg)
164 {
165 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
166 	u8 val;
167 
168 	/* Wa_15015404425 */
169 	mmio_flush_pending_writes(mmio);
170 
171 	val = readb(mmio->regs + addr);
172 	trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
173 
174 	return val;
175 }
176 
177 u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg)
178 {
179 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
180 	u16 val;
181 
182 	/* Wa_15015404425 */
183 	mmio_flush_pending_writes(mmio);
184 
185 	val = readw(mmio->regs + addr);
186 	trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
187 
188 	return val;
189 }
190 
191 void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val)
192 {
193 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
194 
195 	trace_xe_reg_rw(mmio, true, addr, val, sizeof(val));
196 
197 	if (!reg.vf && mmio->sriov_vf_gt)
198 		xe_gt_sriov_vf_write32(mmio->sriov_vf_gt, reg, val);
199 	else
200 		writel(val, mmio->regs + addr);
201 }
202 
203 u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg)
204 {
205 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
206 	u32 val;
207 
208 	/* Wa_15015404425 */
209 	mmio_flush_pending_writes(mmio);
210 
211 	if (!reg.vf && mmio->sriov_vf_gt)
212 		val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt, reg);
213 	else
214 		val = readl(mmio->regs + addr);
215 
216 	trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
217 
218 	return val;
219 }
220 
221 u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set)
222 {
223 	u32 old, reg_val;
224 
225 	old = xe_mmio_read32(mmio, reg);
226 	reg_val = (old & ~clr) | set;
227 	xe_mmio_write32(mmio, reg, reg_val);
228 
229 	return old;
230 }
231 
232 int xe_mmio_write32_and_verify(struct xe_mmio *mmio,
233 			       struct xe_reg reg, u32 val, u32 mask, u32 eval)
234 {
235 	u32 reg_val;
236 
237 	xe_mmio_write32(mmio, reg, val);
238 	reg_val = xe_mmio_read32(mmio, reg);
239 
240 	return (reg_val & mask) != eval ? -EINVAL : 0;
241 }
242 
243 bool xe_mmio_in_range(const struct xe_mmio *mmio,
244 		      const struct xe_mmio_range *range,
245 		      struct xe_reg reg)
246 {
247 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
248 
249 	return range && addr >= range->start && addr <= range->end;
250 }
251 
252 /**
253  * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
254  * @mmio: MMIO target
255  * @reg: register to read value from
256  *
257  * Although Intel GPUs have some 64-bit registers, the hardware officially
258  * only supports GTTMMADR register reads of 32 bits or smaller.  Even if
259  * a readq operation may return a reasonable value, that violation of the
260  * spec shouldn't be relied upon and all 64-bit register reads should be
261  * performed as two 32-bit reads of the upper and lower dwords.
262  *
263  * When reading registers that may be changing (such as
264  * counters), a rollover of the lower dword between the two 32-bit reads
265  * can be problematic.  This function attempts to ensure the upper dword has
266  * stabilized before returning the 64-bit value.
267  *
268  * Note that because this function may re-read the register multiple times
269  * while waiting for the value to stabilize it should not be used to read
270  * any registers where read operations have side effects.
271  *
272  * Returns the value of the 64-bit register.
273  */
274 u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg)
275 {
276 	struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
277 	u32 ldw, udw, oldudw, retries;
278 
279 	reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr);
280 	reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr);
281 
282 	/* we shouldn't adjust just one register address */
283 	xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4);
284 
285 	oldudw = xe_mmio_read32(mmio, reg_udw);
286 	for (retries = 5; retries; --retries) {
287 		ldw = xe_mmio_read32(mmio, reg);
288 		udw = xe_mmio_read32(mmio, reg_udw);
289 
290 		if (udw == oldudw)
291 			break;
292 
293 		oldudw = udw;
294 	}
295 
296 	drm_WARN(&mmio->tile->xe->drm, retries == 0,
297 		 "64-bit read of %#x did not stabilize\n", reg.addr);
298 
299 	return (u64)udw << 32 | ldw;
300 }
301 
302 static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
303 			    u32 *out_val, bool atomic, bool expect_match)
304 {
305 	ktime_t cur = ktime_get_raw();
306 	const ktime_t end = ktime_add_us(cur, timeout_us);
307 	int ret = -ETIMEDOUT;
308 	s64 wait = 10;
309 	u32 read;
310 	bool check;
311 
312 	for (;;) {
313 		read = xe_mmio_read32(mmio, reg);
314 
315 		check = (read & mask) == val;
316 		if (!expect_match)
317 			check = !check;
318 
319 		if (check) {
320 			ret = 0;
321 			break;
322 		}
323 
324 		cur = ktime_get_raw();
325 		if (!ktime_before(cur, end))
326 			break;
327 
328 		if (ktime_after(ktime_add_us(cur, wait), end))
329 			wait = ktime_us_delta(end, cur);
330 
331 		if (atomic)
332 			udelay(wait);
333 		else
334 			usleep_range(wait, wait << 1);
335 		wait <<= 1;
336 	}
337 
338 	if (ret != 0) {
339 		read = xe_mmio_read32(mmio, reg);
340 
341 		check = (read & mask) == val;
342 		if (!expect_match)
343 			check = !check;
344 
345 		if (check)
346 			ret = 0;
347 	}
348 
349 	if (out_val)
350 		*out_val = read;
351 
352 	return ret;
353 }
354 
355 /**
356  * xe_mmio_wait32() - Wait for a register to match the desired masked value
357  * @mmio: MMIO target
358  * @reg: register to read value from
359  * @mask: mask to be applied to the value read from the register
360  * @val: desired value after applying the mask
361  * @timeout_us: time out after this period of time. Wait logic tries to be
362  * smart, applying an exponential backoff until @timeout_us is reached.
363  * @out_val: if not NULL, points where to store the last unmasked value
364  * @atomic: needs to be true if calling from an atomic context
365  *
366  * This function polls for the desired masked value and returns zero on success
367  * or -ETIMEDOUT if timed out.
368  *
369  * Note that @timeout_us represents the minimum amount of time to wait before
370  * giving up. The actual time taken by this function can be a little more than
371  * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
372  * it is possible that this function succeeds even after @timeout_us has passed.
373  */
374 int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
375 		   u32 *out_val, bool atomic)
376 {
377 	return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true);
378 }
379 
380 /**
381  * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
382  * @mmio: MMIO target
383  * @reg: register to read value from
384  * @mask: mask to be applied to the value read from the register
385  * @val: value not to be matched after applying the mask
386  * @timeout_us: time out after this period of time
387  * @out_val: if not NULL, points where to store the last unmasked value
388  * @atomic: needs to be true if calling from an atomic context
389  *
390  * This function works exactly like xe_mmio_wait32() with the exception that
391  * @val is expected not to be matched.
392  */
393 int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
394 		       u32 *out_val, bool atomic)
395 {
396 	return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false);
397 }
398