1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2023 Intel Corporation 4 */ 5 6 #include "xe_mmio.h" 7 8 #include <linux/delay.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/minmax.h> 11 #include <linux/pci.h> 12 13 #include <drm/drm_managed.h> 14 #include <drm/drm_print.h> 15 16 #include "regs/xe_bars.h" 17 #include "regs/xe_regs.h" 18 #include "xe_device.h" 19 #include "xe_gt.h" 20 #include "xe_gt_printk.h" 21 #include "xe_gt_sriov_vf.h" 22 #include "xe_macros.h" 23 #include "xe_sriov.h" 24 #include "xe_trace.h" 25 26 static void tiles_fini(void *arg) 27 { 28 struct xe_device *xe = arg; 29 struct xe_tile *tile; 30 int id; 31 32 for_each_remote_tile(tile, xe, id) 33 tile->mmio.regs = NULL; 34 } 35 36 /* 37 * On multi-tile devices, partition the BAR space for MMIO on each tile, 38 * possibly accounting for register override on the number of tiles available. 39 * Resulting memory layout is like below: 40 * 41 * .----------------------. <- tile_count * tile_mmio_size 42 * | .... | 43 * |----------------------| <- 2 * tile_mmio_size 44 * | tile1->mmio.regs | 45 * |----------------------| <- 1 * tile_mmio_size 46 * | tile0->mmio.regs | 47 * '----------------------' <- 0MB 48 */ 49 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size) 50 { 51 struct xe_tile *tile; 52 void __iomem *regs; 53 u8 id; 54 55 /* 56 * Nothing to be done as tile 0 has already been setup earlier with the 57 * entire BAR mapped - see xe_mmio_init() 58 */ 59 if (xe->info.tile_count == 1) 60 return; 61 62 /* Possibly override number of tile based on configuration register */ 63 if (!xe->info.skip_mtcfg) { 64 struct xe_gt *gt = xe_root_mmio_gt(xe); 65 u8 tile_count; 66 u32 mtcfg; 67 68 /* 69 * Although the per-tile mmio regs are not yet initialized, this 70 * is fine as it's going to the root gt, that's guaranteed to be 71 * initialized earlier in xe_mmio_init() 72 */ 73 mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR); 74 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; 75 76 if (tile_count < xe->info.tile_count) { 77 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", 78 xe->info.tile_count, tile_count); 79 xe->info.tile_count = tile_count; 80 81 /* 82 * FIXME: Needs some work for standalone media, but 83 * should be impossible with multi-tile for now: 84 * multi-tile platform with standalone media doesn't 85 * exist 86 */ 87 xe->info.gt_count = xe->info.tile_count; 88 } 89 } 90 91 regs = xe->mmio.regs; 92 for_each_tile(tile, xe, id) { 93 tile->mmio.size = tile_mmio_size; 94 tile->mmio.regs = regs; 95 regs += tile_mmio_size; 96 } 97 } 98 99 /* 100 * On top of all the multi-tile MMIO space there can be a platform-dependent 101 * extension for each tile, resulting in a layout like below: 102 * 103 * .----------------------. <- ext_base + tile_count * tile_mmio_ext_size 104 * | .... | 105 * |----------------------| <- ext_base + 2 * tile_mmio_ext_size 106 * | tile1->mmio_ext.regs | 107 * |----------------------| <- ext_base + 1 * tile_mmio_ext_size 108 * | tile0->mmio_ext.regs | 109 * |======================| <- ext_base = tile_count * tile_mmio_size 110 * | | 111 * | mmio.regs | 112 * | | 113 * '----------------------' <- 0MB 114 * 115 * Set up the tile[]->mmio_ext pointers/sizes. 116 */ 117 static void mmio_extension_setup(struct xe_device *xe, size_t tile_mmio_size, 118 size_t tile_mmio_ext_size) 119 { 120 struct xe_tile *tile; 121 void __iomem *regs; 122 u8 id; 123 124 if (!xe->info.has_mmio_ext) 125 return; 126 127 regs = xe->mmio.regs + tile_mmio_size * xe->info.tile_count; 128 for_each_tile(tile, xe, id) { 129 tile->mmio_ext.size = tile_mmio_ext_size; 130 tile->mmio_ext.regs = regs; 131 regs += tile_mmio_ext_size; 132 } 133 } 134 135 int xe_mmio_probe_tiles(struct xe_device *xe) 136 { 137 size_t tile_mmio_size = SZ_16M; 138 size_t tile_mmio_ext_size = xe->info.tile_mmio_ext_size; 139 140 mmio_multi_tile_setup(xe, tile_mmio_size); 141 mmio_extension_setup(xe, tile_mmio_size, tile_mmio_ext_size); 142 143 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe); 144 } 145 146 static void mmio_fini(void *arg) 147 { 148 struct xe_device *xe = arg; 149 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 150 151 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); 152 xe->mmio.regs = NULL; 153 root_tile->mmio.regs = NULL; 154 } 155 156 int xe_mmio_init(struct xe_device *xe) 157 { 158 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 159 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 160 const int mmio_bar = 0; 161 162 /* 163 * Map the entire BAR. 164 * The first 16MB of the BAR, belong to the root tile, and include: 165 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). 166 */ 167 xe->mmio.size = pci_resource_len(pdev, mmio_bar); 168 xe->mmio.regs = pci_iomap(pdev, mmio_bar, GTTMMADR_BAR); 169 if (xe->mmio.regs == NULL) { 170 drm_err(&xe->drm, "failed to map registers\n"); 171 return -EIO; 172 } 173 174 /* Setup first tile; other tiles (if present) will be setup later. */ 175 root_tile->mmio.size = SZ_16M; 176 root_tile->mmio.regs = xe->mmio.regs; 177 178 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe); 179 } 180 181 static void mmio_flush_pending_writes(struct xe_gt *gt) 182 { 183 #define DUMMY_REG_OFFSET 0x130030 184 struct xe_tile *tile = gt_to_tile(gt); 185 int i; 186 187 if (tile->xe->info.platform != XE_LUNARLAKE) 188 return; 189 190 /* 4 dummy writes */ 191 for (i = 0; i < 4; i++) 192 writel(0, tile->mmio.regs + DUMMY_REG_OFFSET); 193 } 194 195 u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg) 196 { 197 struct xe_tile *tile = gt_to_tile(gt); 198 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 199 u8 val; 200 201 /* Wa_15015404425 */ 202 mmio_flush_pending_writes(gt); 203 204 val = readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 205 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 206 207 return val; 208 } 209 210 u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg) 211 { 212 struct xe_tile *tile = gt_to_tile(gt); 213 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 214 u16 val; 215 216 /* Wa_15015404425 */ 217 mmio_flush_pending_writes(gt); 218 219 val = readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 220 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 221 222 return val; 223 } 224 225 void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val) 226 { 227 struct xe_tile *tile = gt_to_tile(gt); 228 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 229 230 trace_xe_reg_rw(gt, true, addr, val, sizeof(val)); 231 232 if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt))) 233 xe_gt_sriov_vf_write32(gt, reg, val); 234 else 235 writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 236 } 237 238 u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg) 239 { 240 struct xe_tile *tile = gt_to_tile(gt); 241 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 242 u32 val; 243 244 /* Wa_15015404425 */ 245 mmio_flush_pending_writes(gt); 246 247 if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt))) 248 val = xe_gt_sriov_vf_read32(gt, reg); 249 else 250 val = readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 251 252 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 253 254 return val; 255 } 256 257 u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set) 258 { 259 u32 old, reg_val; 260 261 old = xe_mmio_read32(gt, reg); 262 reg_val = (old & ~clr) | set; 263 xe_mmio_write32(gt, reg, reg_val); 264 265 return old; 266 } 267 268 int xe_mmio_write32_and_verify(struct xe_gt *gt, 269 struct xe_reg reg, u32 val, u32 mask, u32 eval) 270 { 271 u32 reg_val; 272 273 xe_mmio_write32(gt, reg, val); 274 reg_val = xe_mmio_read32(gt, reg); 275 276 return (reg_val & mask) != eval ? -EINVAL : 0; 277 } 278 279 bool xe_mmio_in_range(const struct xe_gt *gt, 280 const struct xe_mmio_range *range, 281 struct xe_reg reg) 282 { 283 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 284 285 return range && addr >= range->start && addr <= range->end; 286 } 287 288 /** 289 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads 290 * @gt: MMIO target GT 291 * @reg: register to read value from 292 * 293 * Although Intel GPUs have some 64-bit registers, the hardware officially 294 * only supports GTTMMADR register reads of 32 bits or smaller. Even if 295 * a readq operation may return a reasonable value, that violation of the 296 * spec shouldn't be relied upon and all 64-bit register reads should be 297 * performed as two 32-bit reads of the upper and lower dwords. 298 * 299 * When reading registers that may be changing (such as 300 * counters), a rollover of the lower dword between the two 32-bit reads 301 * can be problematic. This function attempts to ensure the upper dword has 302 * stabilized before returning the 64-bit value. 303 * 304 * Note that because this function may re-read the register multiple times 305 * while waiting for the value to stabilize it should not be used to read 306 * any registers where read operations have side effects. 307 * 308 * Returns the value of the 64-bit register. 309 */ 310 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg) 311 { 312 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; 313 u32 ldw, udw, oldudw, retries; 314 315 reg.addr = xe_mmio_adjusted_addr(gt, reg.addr); 316 reg_udw.addr = xe_mmio_adjusted_addr(gt, reg_udw.addr); 317 318 /* we shouldn't adjust just one register address */ 319 xe_gt_assert(gt, reg_udw.addr == reg.addr + 0x4); 320 321 oldudw = xe_mmio_read32(gt, reg_udw); 322 for (retries = 5; retries; --retries) { 323 ldw = xe_mmio_read32(gt, reg); 324 udw = xe_mmio_read32(gt, reg_udw); 325 326 if (udw == oldudw) 327 break; 328 329 oldudw = udw; 330 } 331 332 xe_gt_WARN(gt, retries == 0, 333 "64-bit read of %#x did not stabilize\n", reg.addr); 334 335 return (u64)udw << 32 | ldw; 336 } 337 338 static int __xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 339 u32 *out_val, bool atomic, bool expect_match) 340 { 341 ktime_t cur = ktime_get_raw(); 342 const ktime_t end = ktime_add_us(cur, timeout_us); 343 int ret = -ETIMEDOUT; 344 s64 wait = 10; 345 u32 read; 346 bool check; 347 348 for (;;) { 349 read = xe_mmio_read32(gt, reg); 350 351 check = (read & mask) == val; 352 if (!expect_match) 353 check = !check; 354 355 if (check) { 356 ret = 0; 357 break; 358 } 359 360 cur = ktime_get_raw(); 361 if (!ktime_before(cur, end)) 362 break; 363 364 if (ktime_after(ktime_add_us(cur, wait), end)) 365 wait = ktime_us_delta(end, cur); 366 367 if (atomic) 368 udelay(wait); 369 else 370 usleep_range(wait, wait << 1); 371 wait <<= 1; 372 } 373 374 if (ret != 0) { 375 read = xe_mmio_read32(gt, reg); 376 377 check = (read & mask) == val; 378 if (!expect_match) 379 check = !check; 380 381 if (check) 382 ret = 0; 383 } 384 385 if (out_val) 386 *out_val = read; 387 388 return ret; 389 } 390 391 /** 392 * xe_mmio_wait32() - Wait for a register to match the desired masked value 393 * @gt: MMIO target GT 394 * @reg: register to read value from 395 * @mask: mask to be applied to the value read from the register 396 * @val: desired value after applying the mask 397 * @timeout_us: time out after this period of time. Wait logic tries to be 398 * smart, applying an exponential backoff until @timeout_us is reached. 399 * @out_val: if not NULL, points where to store the last unmasked value 400 * @atomic: needs to be true if calling from an atomic context 401 * 402 * This function polls for the desired masked value and returns zero on success 403 * or -ETIMEDOUT if timed out. 404 * 405 * Note that @timeout_us represents the minimum amount of time to wait before 406 * giving up. The actual time taken by this function can be a little more than 407 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 408 * it is possible that this function succeeds even after @timeout_us has passed. 409 */ 410 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 411 u32 *out_val, bool atomic) 412 { 413 return __xe_mmio_wait32(gt, reg, mask, val, timeout_us, out_val, atomic, true); 414 } 415 416 /** 417 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value 418 * @gt: MMIO target GT 419 * @reg: register to read value from 420 * @mask: mask to be applied to the value read from the register 421 * @val: value not to be matched after applying the mask 422 * @timeout_us: time out after this period of time 423 * @out_val: if not NULL, points where to store the last unmasked value 424 * @atomic: needs to be true if calling from an atomic context 425 * 426 * This function works exactly like xe_mmio_wait32() with the exception that 427 * @val is expected not to be matched. 428 */ 429 int xe_mmio_wait32_not(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 430 u32 *out_val, bool atomic) 431 { 432 return __xe_mmio_wait32(gt, reg, mask, val, timeout_us, out_val, atomic, false); 433 } 434