1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2023 Intel Corporation 4 */ 5 6 #include "xe_mmio.h" 7 8 #include <linux/delay.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/minmax.h> 11 #include <linux/pci.h> 12 13 #include <drm/drm_managed.h> 14 #include <drm/drm_print.h> 15 16 #include "regs/xe_bars.h" 17 #include "regs/xe_regs.h" 18 #include "xe_device.h" 19 #include "xe_gt.h" 20 #include "xe_gt_printk.h" 21 #include "xe_gt_sriov_vf.h" 22 #include "xe_macros.h" 23 #include "xe_sriov.h" 24 #include "xe_trace.h" 25 26 static void tiles_fini(void *arg) 27 { 28 struct xe_device *xe = arg; 29 struct xe_tile *tile; 30 int id; 31 32 for_each_tile(tile, xe, id) 33 tile->mmio.regs = NULL; 34 } 35 36 int xe_mmio_probe_tiles(struct xe_device *xe) 37 { 38 size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size; 39 u8 id, tile_count = xe->info.tile_count; 40 struct xe_gt *gt = xe_root_mmio_gt(xe); 41 struct xe_tile *tile; 42 void __iomem *regs; 43 u32 mtcfg; 44 45 if (tile_count == 1) 46 goto add_mmio_ext; 47 48 if (!xe->info.skip_mtcfg) { 49 mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR); 50 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; 51 if (tile_count < xe->info.tile_count) { 52 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", 53 xe->info.tile_count, tile_count); 54 xe->info.tile_count = tile_count; 55 56 /* 57 * FIXME: Needs some work for standalone media, but should be impossible 58 * with multi-tile for now. 59 */ 60 xe->info.gt_count = xe->info.tile_count; 61 } 62 } 63 64 regs = xe->mmio.regs; 65 for_each_tile(tile, xe, id) { 66 tile->mmio.size = tile_mmio_size; 67 tile->mmio.regs = regs; 68 regs += tile_mmio_size; 69 } 70 71 add_mmio_ext: 72 /* 73 * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile). 74 * When supported, there could be an additional contiguous multi-tile MMIO extension 75 * space ON TOP of it, and hence the necessity for distinguished MMIO spaces. 76 */ 77 if (xe->info.has_mmio_ext) { 78 regs = xe->mmio.regs + tile_mmio_size * tile_count; 79 80 for_each_tile(tile, xe, id) { 81 tile->mmio_ext.size = tile_mmio_ext_size; 82 tile->mmio_ext.regs = regs; 83 84 regs += tile_mmio_ext_size; 85 } 86 } 87 88 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe); 89 } 90 91 static void mmio_fini(void *arg) 92 { 93 struct xe_device *xe = arg; 94 95 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); 96 xe->mmio.regs = NULL; 97 } 98 99 int xe_mmio_init(struct xe_device *xe) 100 { 101 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 102 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 103 const int mmio_bar = 0; 104 105 /* 106 * Map the entire BAR. 107 * The first 16MB of the BAR, belong to the root tile, and include: 108 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). 109 */ 110 xe->mmio.size = pci_resource_len(pdev, mmio_bar); 111 xe->mmio.regs = pci_iomap(pdev, mmio_bar, GTTMMADR_BAR); 112 if (xe->mmio.regs == NULL) { 113 drm_err(&xe->drm, "failed to map registers\n"); 114 return -EIO; 115 } 116 117 /* Setup first tile; other tiles (if present) will be setup later. */ 118 root_tile->mmio.size = SZ_16M; 119 root_tile->mmio.regs = xe->mmio.regs; 120 121 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe); 122 } 123 124 u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg) 125 { 126 struct xe_tile *tile = gt_to_tile(gt); 127 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 128 u8 val; 129 130 val = readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 131 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 132 133 return val; 134 } 135 136 u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg) 137 { 138 struct xe_tile *tile = gt_to_tile(gt); 139 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 140 u16 val; 141 142 val = readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 143 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 144 145 return val; 146 } 147 148 void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val) 149 { 150 struct xe_tile *tile = gt_to_tile(gt); 151 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 152 153 trace_xe_reg_rw(gt, true, addr, val, sizeof(val)); 154 writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 155 } 156 157 u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg) 158 { 159 struct xe_tile *tile = gt_to_tile(gt); 160 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 161 u32 val; 162 163 if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt))) 164 val = xe_gt_sriov_vf_read32(gt, reg); 165 else 166 val = readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 167 168 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 169 170 return val; 171 } 172 173 u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set) 174 { 175 u32 old, reg_val; 176 177 old = xe_mmio_read32(gt, reg); 178 reg_val = (old & ~clr) | set; 179 xe_mmio_write32(gt, reg, reg_val); 180 181 return old; 182 } 183 184 int xe_mmio_write32_and_verify(struct xe_gt *gt, 185 struct xe_reg reg, u32 val, u32 mask, u32 eval) 186 { 187 u32 reg_val; 188 189 xe_mmio_write32(gt, reg, val); 190 reg_val = xe_mmio_read32(gt, reg); 191 192 return (reg_val & mask) != eval ? -EINVAL : 0; 193 } 194 195 bool xe_mmio_in_range(const struct xe_gt *gt, 196 const struct xe_mmio_range *range, 197 struct xe_reg reg) 198 { 199 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 200 201 return range && addr >= range->start && addr <= range->end; 202 } 203 204 /** 205 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads 206 * @gt: MMIO target GT 207 * @reg: register to read value from 208 * 209 * Although Intel GPUs have some 64-bit registers, the hardware officially 210 * only supports GTTMMADR register reads of 32 bits or smaller. Even if 211 * a readq operation may return a reasonable value, that violation of the 212 * spec shouldn't be relied upon and all 64-bit register reads should be 213 * performed as two 32-bit reads of the upper and lower dwords. 214 * 215 * When reading registers that may be changing (such as 216 * counters), a rollover of the lower dword between the two 32-bit reads 217 * can be problematic. This function attempts to ensure the upper dword has 218 * stabilized before returning the 64-bit value. 219 * 220 * Note that because this function may re-read the register multiple times 221 * while waiting for the value to stabilize it should not be used to read 222 * any registers where read operations have side effects. 223 * 224 * Returns the value of the 64-bit register. 225 */ 226 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg) 227 { 228 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; 229 u32 ldw, udw, oldudw, retries; 230 231 reg.addr = xe_mmio_adjusted_addr(gt, reg.addr); 232 reg_udw.addr = xe_mmio_adjusted_addr(gt, reg_udw.addr); 233 234 /* we shouldn't adjust just one register address */ 235 xe_gt_assert(gt, reg_udw.addr == reg.addr + 0x4); 236 237 oldudw = xe_mmio_read32(gt, reg_udw); 238 for (retries = 5; retries; --retries) { 239 ldw = xe_mmio_read32(gt, reg); 240 udw = xe_mmio_read32(gt, reg_udw); 241 242 if (udw == oldudw) 243 break; 244 245 oldudw = udw; 246 } 247 248 xe_gt_WARN(gt, retries == 0, 249 "64-bit read of %#x did not stabilize\n", reg.addr); 250 251 return (u64)udw << 32 | ldw; 252 } 253 254 /** 255 * xe_mmio_wait32() - Wait for a register to match the desired masked value 256 * @gt: MMIO target GT 257 * @reg: register to read value from 258 * @mask: mask to be applied to the value read from the register 259 * @val: desired value after applying the mask 260 * @timeout_us: time out after this period of time. Wait logic tries to be 261 * smart, applying an exponential backoff until @timeout_us is reached. 262 * @out_val: if not NULL, points where to store the last unmasked value 263 * @atomic: needs to be true if calling from an atomic context 264 * 265 * This function polls for the desired masked value and returns zero on success 266 * or -ETIMEDOUT if timed out. 267 * 268 * Note that @timeout_us represents the minimum amount of time to wait before 269 * giving up. The actual time taken by this function can be a little more than 270 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 271 * it is possible that this function succeeds even after @timeout_us has passed. 272 */ 273 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 274 u32 *out_val, bool atomic) 275 { 276 ktime_t cur = ktime_get_raw(); 277 const ktime_t end = ktime_add_us(cur, timeout_us); 278 int ret = -ETIMEDOUT; 279 s64 wait = 10; 280 u32 read; 281 282 for (;;) { 283 read = xe_mmio_read32(gt, reg); 284 if ((read & mask) == val) { 285 ret = 0; 286 break; 287 } 288 289 cur = ktime_get_raw(); 290 if (!ktime_before(cur, end)) 291 break; 292 293 if (ktime_after(ktime_add_us(cur, wait), end)) 294 wait = ktime_us_delta(end, cur); 295 296 if (atomic) 297 udelay(wait); 298 else 299 usleep_range(wait, wait << 1); 300 wait <<= 1; 301 } 302 303 if (ret != 0) { 304 read = xe_mmio_read32(gt, reg); 305 if ((read & mask) == val) 306 ret = 0; 307 } 308 309 if (out_val) 310 *out_val = read; 311 312 return ret; 313 } 314 315 /** 316 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value 317 * @gt: MMIO target GT 318 * @reg: register to read value from 319 * @mask: mask to be applied to the value read from the register 320 * @val: value to match after applying the mask 321 * @timeout_us: time out after this period of time. Wait logic tries to be 322 * smart, applying an exponential backoff until @timeout_us is reached. 323 * @out_val: if not NULL, points where to store the last unmasked value 324 * @atomic: needs to be true if calling from an atomic context 325 * 326 * This function polls for a masked value to change from a given value and 327 * returns zero on success or -ETIMEDOUT if timed out. 328 * 329 * Note that @timeout_us represents the minimum amount of time to wait before 330 * giving up. The actual time taken by this function can be a little more than 331 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 332 * it is possible that this function succeeds even after @timeout_us has passed. 333 */ 334 int xe_mmio_wait32_not(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 335 u32 *out_val, bool atomic) 336 { 337 ktime_t cur = ktime_get_raw(); 338 const ktime_t end = ktime_add_us(cur, timeout_us); 339 int ret = -ETIMEDOUT; 340 s64 wait = 10; 341 u32 read; 342 343 for (;;) { 344 read = xe_mmio_read32(gt, reg); 345 if ((read & mask) != val) { 346 ret = 0; 347 break; 348 } 349 350 cur = ktime_get_raw(); 351 if (!ktime_before(cur, end)) 352 break; 353 354 if (ktime_after(ktime_add_us(cur, wait), end)) 355 wait = ktime_us_delta(end, cur); 356 357 if (atomic) 358 udelay(wait); 359 else 360 usleep_range(wait, wait << 1); 361 wait <<= 1; 362 } 363 364 if (ret != 0) { 365 read = xe_mmio_read32(gt, reg); 366 if ((read & mask) != val) 367 ret = 0; 368 } 369 370 if (out_val) 371 *out_val = read; 372 373 return ret; 374 } 375