1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2023 Intel Corporation 4 */ 5 6 #include "xe_mmio.h" 7 8 #include <linux/delay.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/minmax.h> 11 #include <linux/pci.h> 12 13 #include <drm/drm_managed.h> 14 #include <drm/drm_print.h> 15 16 #include "regs/xe_bars.h" 17 #include "regs/xe_regs.h" 18 #include "xe_device.h" 19 #include "xe_gt.h" 20 #include "xe_gt_printk.h" 21 #include "xe_gt_sriov_vf.h" 22 #include "xe_macros.h" 23 #include "xe_sriov.h" 24 #include "xe_trace.h" 25 26 static void tiles_fini(void *arg) 27 { 28 struct xe_device *xe = arg; 29 struct xe_tile *tile; 30 int id; 31 32 for_each_remote_tile(tile, xe, id) 33 tile->mmio.regs = NULL; 34 } 35 36 /* 37 * On multi-tile devices, partition the BAR space for MMIO on each tile, 38 * possibly accounting for register override on the number of tiles available. 39 * tile_mmio_size contains both the tile's 4MB register space, as well as 40 * additional space for the GTT and other (possibly unused) regions). 41 * Resulting memory layout is like below: 42 * 43 * .----------------------. <- tile_count * tile_mmio_size 44 * | .... | 45 * |----------------------| <- 2 * tile_mmio_size 46 * | tile1 GTT + other | 47 * |----------------------| <- 1 * tile_mmio_size + 4MB 48 * | tile1->mmio.regs | 49 * |----------------------| <- 1 * tile_mmio_size 50 * | tile0 GTT + other | 51 * |----------------------| <- 4MB 52 * | tile0->mmio.regs | 53 * '----------------------' <- 0MB 54 */ 55 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size) 56 { 57 struct xe_tile *tile; 58 void __iomem *regs; 59 u8 id; 60 61 /* 62 * Nothing to be done as tile 0 has already been setup earlier with the 63 * entire BAR mapped - see xe_mmio_init() 64 */ 65 if (xe->info.tile_count == 1) 66 return; 67 68 /* Possibly override number of tile based on configuration register */ 69 if (!xe->info.skip_mtcfg) { 70 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 71 u8 tile_count; 72 u32 mtcfg; 73 74 /* 75 * Although the per-tile mmio regs are not yet initialized, this 76 * is fine as it's going to the root tile's mmio, that's 77 * guaranteed to be initialized earlier in xe_mmio_init() 78 */ 79 mtcfg = xe_mmio_read64_2x32(mmio, XEHP_MTCFG_ADDR); 80 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; 81 82 if (tile_count < xe->info.tile_count) { 83 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", 84 xe->info.tile_count, tile_count); 85 xe->info.tile_count = tile_count; 86 87 /* 88 * FIXME: Needs some work for standalone media, but 89 * should be impossible with multi-tile for now: 90 * multi-tile platform with standalone media doesn't 91 * exist 92 */ 93 xe->info.gt_count = xe->info.tile_count; 94 } 95 } 96 97 regs = xe->mmio.regs; 98 for_each_tile(tile, xe, id) { 99 tile->mmio.regs_size = SZ_4M; 100 tile->mmio.regs = regs; 101 tile->mmio.tile = tile; 102 regs += tile_mmio_size; 103 } 104 } 105 106 /* 107 * On top of all the multi-tile MMIO space there can be a platform-dependent 108 * extension for each tile, resulting in a layout like below: 109 * 110 * .----------------------. <- ext_base + tile_count * tile_mmio_ext_size 111 * | .... | 112 * |----------------------| <- ext_base + 2 * tile_mmio_ext_size 113 * | tile1->mmio_ext.regs | 114 * |----------------------| <- ext_base + 1 * tile_mmio_ext_size 115 * | tile0->mmio_ext.regs | 116 * |======================| <- ext_base = tile_count * tile_mmio_size 117 * | | 118 * | mmio.regs | 119 * | | 120 * '----------------------' <- 0MB 121 * 122 * Set up the tile[]->mmio_ext pointers/sizes. 123 */ 124 static void mmio_extension_setup(struct xe_device *xe, size_t tile_mmio_size, 125 size_t tile_mmio_ext_size) 126 { 127 struct xe_tile *tile; 128 void __iomem *regs; 129 u8 id; 130 131 if (!xe->info.has_mmio_ext) 132 return; 133 134 regs = xe->mmio.regs + tile_mmio_size * xe->info.tile_count; 135 for_each_tile(tile, xe, id) { 136 tile->mmio_ext.regs_size = tile_mmio_ext_size; 137 tile->mmio_ext.regs = regs; 138 tile->mmio_ext.tile = tile; 139 regs += tile_mmio_ext_size; 140 } 141 } 142 143 int xe_mmio_probe_tiles(struct xe_device *xe) 144 { 145 size_t tile_mmio_size = SZ_16M; 146 size_t tile_mmio_ext_size = xe->info.tile_mmio_ext_size; 147 148 mmio_multi_tile_setup(xe, tile_mmio_size); 149 mmio_extension_setup(xe, tile_mmio_size, tile_mmio_ext_size); 150 151 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe); 152 } 153 154 static void mmio_fini(void *arg) 155 { 156 struct xe_device *xe = arg; 157 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 158 159 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); 160 xe->mmio.regs = NULL; 161 root_tile->mmio.regs = NULL; 162 } 163 164 int xe_mmio_init(struct xe_device *xe) 165 { 166 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 167 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 168 169 /* 170 * Map the entire BAR. 171 * The first 16MB of the BAR, belong to the root tile, and include: 172 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). 173 */ 174 xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR); 175 xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0); 176 if (xe->mmio.regs == NULL) { 177 drm_err(&xe->drm, "failed to map registers\n"); 178 return -EIO; 179 } 180 181 /* Setup first tile; other tiles (if present) will be setup later. */ 182 root_tile->mmio.regs_size = SZ_4M; 183 root_tile->mmio.regs = xe->mmio.regs; 184 root_tile->mmio.tile = root_tile; 185 186 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe); 187 } 188 189 static void mmio_flush_pending_writes(struct xe_mmio *mmio) 190 { 191 #define DUMMY_REG_OFFSET 0x130030 192 int i; 193 194 if (mmio->tile->xe->info.platform != XE_LUNARLAKE) 195 return; 196 197 /* 4 dummy writes */ 198 for (i = 0; i < 4; i++) 199 writel(0, mmio->regs + DUMMY_REG_OFFSET); 200 } 201 202 u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg) 203 { 204 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 205 u8 val; 206 207 /* Wa_15015404425 */ 208 mmio_flush_pending_writes(mmio); 209 210 val = readb(mmio->regs + addr); 211 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 212 213 return val; 214 } 215 216 u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg) 217 { 218 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 219 u16 val; 220 221 /* Wa_15015404425 */ 222 mmio_flush_pending_writes(mmio); 223 224 val = readw(mmio->regs + addr); 225 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 226 227 return val; 228 } 229 230 void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val) 231 { 232 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 233 234 trace_xe_reg_rw(mmio, true, addr, val, sizeof(val)); 235 236 if (!reg.vf && mmio->sriov_vf_gt) 237 xe_gt_sriov_vf_write32(mmio->sriov_vf_gt, reg, val); 238 else 239 writel(val, mmio->regs + addr); 240 } 241 242 u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg) 243 { 244 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 245 u32 val; 246 247 /* Wa_15015404425 */ 248 mmio_flush_pending_writes(mmio); 249 250 if (!reg.vf && mmio->sriov_vf_gt) 251 val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt, reg); 252 else 253 val = readl(mmio->regs + addr); 254 255 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 256 257 return val; 258 } 259 260 u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set) 261 { 262 u32 old, reg_val; 263 264 old = xe_mmio_read32(mmio, reg); 265 reg_val = (old & ~clr) | set; 266 xe_mmio_write32(mmio, reg, reg_val); 267 268 return old; 269 } 270 271 int xe_mmio_write32_and_verify(struct xe_mmio *mmio, 272 struct xe_reg reg, u32 val, u32 mask, u32 eval) 273 { 274 u32 reg_val; 275 276 xe_mmio_write32(mmio, reg, val); 277 reg_val = xe_mmio_read32(mmio, reg); 278 279 return (reg_val & mask) != eval ? -EINVAL : 0; 280 } 281 282 bool xe_mmio_in_range(const struct xe_mmio *mmio, 283 const struct xe_mmio_range *range, 284 struct xe_reg reg) 285 { 286 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 287 288 return range && addr >= range->start && addr <= range->end; 289 } 290 291 /** 292 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads 293 * @mmio: MMIO target 294 * @reg: register to read value from 295 * 296 * Although Intel GPUs have some 64-bit registers, the hardware officially 297 * only supports GTTMMADR register reads of 32 bits or smaller. Even if 298 * a readq operation may return a reasonable value, that violation of the 299 * spec shouldn't be relied upon and all 64-bit register reads should be 300 * performed as two 32-bit reads of the upper and lower dwords. 301 * 302 * When reading registers that may be changing (such as 303 * counters), a rollover of the lower dword between the two 32-bit reads 304 * can be problematic. This function attempts to ensure the upper dword has 305 * stabilized before returning the 64-bit value. 306 * 307 * Note that because this function may re-read the register multiple times 308 * while waiting for the value to stabilize it should not be used to read 309 * any registers where read operations have side effects. 310 * 311 * Returns the value of the 64-bit register. 312 */ 313 u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg) 314 { 315 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; 316 u32 ldw, udw, oldudw, retries; 317 318 reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr); 319 reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr); 320 321 /* we shouldn't adjust just one register address */ 322 xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4); 323 324 oldudw = xe_mmio_read32(mmio, reg_udw); 325 for (retries = 5; retries; --retries) { 326 ldw = xe_mmio_read32(mmio, reg); 327 udw = xe_mmio_read32(mmio, reg_udw); 328 329 if (udw == oldudw) 330 break; 331 332 oldudw = udw; 333 } 334 335 drm_WARN(&mmio->tile->xe->drm, retries == 0, 336 "64-bit read of %#x did not stabilize\n", reg.addr); 337 338 return (u64)udw << 32 | ldw; 339 } 340 341 static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 342 u32 *out_val, bool atomic, bool expect_match) 343 { 344 ktime_t cur = ktime_get_raw(); 345 const ktime_t end = ktime_add_us(cur, timeout_us); 346 int ret = -ETIMEDOUT; 347 s64 wait = 10; 348 u32 read; 349 bool check; 350 351 for (;;) { 352 read = xe_mmio_read32(mmio, reg); 353 354 check = (read & mask) == val; 355 if (!expect_match) 356 check = !check; 357 358 if (check) { 359 ret = 0; 360 break; 361 } 362 363 cur = ktime_get_raw(); 364 if (!ktime_before(cur, end)) 365 break; 366 367 if (ktime_after(ktime_add_us(cur, wait), end)) 368 wait = ktime_us_delta(end, cur); 369 370 if (atomic) 371 udelay(wait); 372 else 373 usleep_range(wait, wait << 1); 374 wait <<= 1; 375 } 376 377 if (ret != 0) { 378 read = xe_mmio_read32(mmio, reg); 379 380 check = (read & mask) == val; 381 if (!expect_match) 382 check = !check; 383 384 if (check) 385 ret = 0; 386 } 387 388 if (out_val) 389 *out_val = read; 390 391 return ret; 392 } 393 394 /** 395 * xe_mmio_wait32() - Wait for a register to match the desired masked value 396 * @mmio: MMIO target 397 * @reg: register to read value from 398 * @mask: mask to be applied to the value read from the register 399 * @val: desired value after applying the mask 400 * @timeout_us: time out after this period of time. Wait logic tries to be 401 * smart, applying an exponential backoff until @timeout_us is reached. 402 * @out_val: if not NULL, points where to store the last unmasked value 403 * @atomic: needs to be true if calling from an atomic context 404 * 405 * This function polls for the desired masked value and returns zero on success 406 * or -ETIMEDOUT if timed out. 407 * 408 * Note that @timeout_us represents the minimum amount of time to wait before 409 * giving up. The actual time taken by this function can be a little more than 410 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 411 * it is possible that this function succeeds even after @timeout_us has passed. 412 */ 413 int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 414 u32 *out_val, bool atomic) 415 { 416 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true); 417 } 418 419 /** 420 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value 421 * @mmio: MMIO target 422 * @reg: register to read value from 423 * @mask: mask to be applied to the value read from the register 424 * @val: value not to be matched after applying the mask 425 * @timeout_us: time out after this period of time 426 * @out_val: if not NULL, points where to store the last unmasked value 427 * @atomic: needs to be true if calling from an atomic context 428 * 429 * This function works exactly like xe_mmio_wait32() with the exception that 430 * @val is expected not to be matched. 431 */ 432 int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 433 u32 *out_val, bool atomic) 434 { 435 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false); 436 } 437