1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2023 Intel Corporation 4 */ 5 6 #include "xe_mmio.h" 7 8 #include <linux/delay.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/minmax.h> 11 #include <linux/pci.h> 12 13 #include <drm/drm_managed.h> 14 #include <drm/drm_print.h> 15 16 #include "regs/xe_bars.h" 17 #include "regs/xe_regs.h" 18 #include "xe_device.h" 19 #include "xe_gt.h" 20 #include "xe_gt_printk.h" 21 #include "xe_gt_sriov_vf.h" 22 #include "xe_macros.h" 23 #include "xe_sriov.h" 24 #include "xe_trace.h" 25 26 static void tiles_fini(void *arg) 27 { 28 struct xe_device *xe = arg; 29 struct xe_tile *tile; 30 int id; 31 32 for_each_remote_tile(tile, xe, id) 33 tile->mmio.regs = NULL; 34 } 35 36 /* 37 * On multi-tile devices, partition the BAR space for MMIO on each tile, 38 * possibly accounting for register override on the number of tiles available. 39 * tile_mmio_size contains both the tile's 4MB register space, as well as 40 * additional space for the GTT and other (possibly unused) regions). 41 * Resulting memory layout is like below: 42 * 43 * .----------------------. <- tile_count * tile_mmio_size 44 * | .... | 45 * |----------------------| <- 2 * tile_mmio_size 46 * | tile1 GTT + other | 47 * |----------------------| <- 1 * tile_mmio_size + 4MB 48 * | tile1->mmio.regs | 49 * |----------------------| <- 1 * tile_mmio_size 50 * | tile0 GTT + other | 51 * |----------------------| <- 4MB 52 * | tile0->mmio.regs | 53 * '----------------------' <- 0MB 54 */ 55 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size) 56 { 57 struct xe_tile *tile; 58 u8 id; 59 60 /* 61 * Nothing to be done as tile 0 has already been setup earlier with the 62 * entire BAR mapped - see xe_mmio_probe_early() 63 */ 64 if (xe->info.tile_count == 1) 65 return; 66 67 /* Possibly override number of tile based on configuration register */ 68 if (!xe->info.skip_mtcfg) { 69 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 70 u8 tile_count; 71 u32 mtcfg; 72 73 /* 74 * Although the per-tile mmio regs are not yet initialized, this 75 * is fine as it's going to the root tile's mmio, that's 76 * guaranteed to be initialized earlier in xe_mmio_probe_early() 77 */ 78 mtcfg = xe_mmio_read32(mmio, XEHP_MTCFG_ADDR); 79 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; 80 81 if (tile_count < xe->info.tile_count) { 82 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", 83 xe->info.tile_count, tile_count); 84 xe->info.tile_count = tile_count; 85 86 /* 87 * FIXME: Needs some work for standalone media, but 88 * should be impossible with multi-tile for now: 89 * multi-tile platform with standalone media doesn't 90 * exist 91 */ 92 xe->info.gt_count = xe->info.tile_count; 93 } 94 } 95 96 for_each_remote_tile(tile, xe, id) 97 xe_mmio_init(&tile->mmio, tile, xe->mmio.regs + id * tile_mmio_size, SZ_4M); 98 } 99 100 int xe_mmio_probe_tiles(struct xe_device *xe) 101 { 102 size_t tile_mmio_size = SZ_16M; 103 104 mmio_multi_tile_setup(xe, tile_mmio_size); 105 106 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe); 107 } 108 109 static void mmio_fini(void *arg) 110 { 111 struct xe_device *xe = arg; 112 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 113 114 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); 115 xe->mmio.regs = NULL; 116 root_tile->mmio.regs = NULL; 117 } 118 119 int xe_mmio_probe_early(struct xe_device *xe) 120 { 121 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 122 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 123 124 /* 125 * Map the entire BAR. 126 * The first 16MB of the BAR, belong to the root tile, and include: 127 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). 128 */ 129 xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR); 130 xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0); 131 if (!xe->mmio.regs) { 132 drm_err(&xe->drm, "failed to map registers\n"); 133 return -EIO; 134 } 135 136 /* Setup first tile; other tiles (if present) will be setup later. */ 137 xe_mmio_init(&root_tile->mmio, root_tile, xe->mmio.regs, SZ_4M); 138 139 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe); 140 } 141 ALLOW_ERROR_INJECTION(xe_mmio_probe_early, ERRNO); /* See xe_pci_probe() */ 142 143 /** 144 * xe_mmio_init() - Initialize an MMIO instance 145 * @mmio: Pointer to the MMIO instance to initialize 146 * @tile: The tile to which the MMIO region belongs 147 * @ptr: Pointer to the start of the MMIO region 148 * @size: The size of the MMIO region in bytes 149 * 150 * This is a convenience function for minimal initialization of struct xe_mmio. 151 */ 152 void xe_mmio_init(struct xe_mmio *mmio, struct xe_tile *tile, void __iomem *ptr, u32 size) 153 { 154 xe_tile_assert(tile, size <= XE_REG_ADDR_MAX); 155 156 mmio->regs = ptr; 157 mmio->regs_size = size; 158 mmio->tile = tile; 159 } 160 161 static void mmio_flush_pending_writes(struct xe_mmio *mmio) 162 { 163 #define DUMMY_REG_OFFSET 0x130030 164 int i; 165 166 if (mmio->tile->xe->info.platform != XE_LUNARLAKE) 167 return; 168 169 /* 4 dummy writes */ 170 for (i = 0; i < 4; i++) 171 writel(0, mmio->regs + DUMMY_REG_OFFSET); 172 } 173 174 u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg) 175 { 176 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 177 u8 val; 178 179 /* Wa_15015404425 */ 180 mmio_flush_pending_writes(mmio); 181 182 val = readb(mmio->regs + addr); 183 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 184 185 return val; 186 } 187 188 u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg) 189 { 190 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 191 u16 val; 192 193 /* Wa_15015404425 */ 194 mmio_flush_pending_writes(mmio); 195 196 val = readw(mmio->regs + addr); 197 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 198 199 return val; 200 } 201 202 void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val) 203 { 204 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 205 206 trace_xe_reg_rw(mmio, true, addr, val, sizeof(val)); 207 208 if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe)) 209 xe_gt_sriov_vf_write32(mmio->sriov_vf_gt ?: 210 mmio->tile->primary_gt, reg, val); 211 else 212 writel(val, mmio->regs + addr); 213 } 214 215 u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg) 216 { 217 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 218 u32 val; 219 220 /* Wa_15015404425 */ 221 mmio_flush_pending_writes(mmio); 222 223 if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe)) 224 val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt ?: 225 mmio->tile->primary_gt, reg); 226 else 227 val = readl(mmio->regs + addr); 228 229 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 230 231 return val; 232 } 233 234 u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set) 235 { 236 u32 old, reg_val; 237 238 old = xe_mmio_read32(mmio, reg); 239 reg_val = (old & ~clr) | set; 240 xe_mmio_write32(mmio, reg, reg_val); 241 242 return old; 243 } 244 245 int xe_mmio_write32_and_verify(struct xe_mmio *mmio, 246 struct xe_reg reg, u32 val, u32 mask, u32 eval) 247 { 248 u32 reg_val; 249 250 xe_mmio_write32(mmio, reg, val); 251 reg_val = xe_mmio_read32(mmio, reg); 252 253 return (reg_val & mask) != eval ? -EINVAL : 0; 254 } 255 256 bool xe_mmio_in_range(const struct xe_mmio *mmio, 257 const struct xe_mmio_range *range, 258 struct xe_reg reg) 259 { 260 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 261 262 return range && addr >= range->start && addr <= range->end; 263 } 264 265 /** 266 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads 267 * @mmio: MMIO target 268 * @reg: register to read value from 269 * 270 * Although Intel GPUs have some 64-bit registers, the hardware officially 271 * only supports GTTMMADR register reads of 32 bits or smaller. Even if 272 * a readq operation may return a reasonable value, that violation of the 273 * spec shouldn't be relied upon and all 64-bit register reads should be 274 * performed as two 32-bit reads of the upper and lower dwords. 275 * 276 * When reading registers that may be changing (such as 277 * counters), a rollover of the lower dword between the two 32-bit reads 278 * can be problematic. This function attempts to ensure the upper dword has 279 * stabilized before returning the 64-bit value. 280 * 281 * Note that because this function may re-read the register multiple times 282 * while waiting for the value to stabilize it should not be used to read 283 * any registers where read operations have side effects. 284 * 285 * Returns the value of the 64-bit register. 286 */ 287 u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg) 288 { 289 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; 290 u32 ldw, udw, oldudw, retries; 291 292 reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr); 293 reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr); 294 295 /* we shouldn't adjust just one register address */ 296 xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4); 297 298 oldudw = xe_mmio_read32(mmio, reg_udw); 299 for (retries = 5; retries; --retries) { 300 ldw = xe_mmio_read32(mmio, reg); 301 udw = xe_mmio_read32(mmio, reg_udw); 302 303 if (udw == oldudw) 304 break; 305 306 oldudw = udw; 307 } 308 309 drm_WARN(&mmio->tile->xe->drm, retries == 0, 310 "64-bit read of %#x did not stabilize\n", reg.addr); 311 312 return (u64)udw << 32 | ldw; 313 } 314 315 static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, 316 u32 timeout_us, u32 *out_val, bool atomic, bool expect_match) 317 { 318 ktime_t cur = ktime_get_raw(); 319 const ktime_t end = ktime_add_us(cur, timeout_us); 320 int ret = -ETIMEDOUT; 321 s64 wait = 10; 322 u32 read; 323 bool check; 324 325 for (;;) { 326 read = xe_mmio_read32(mmio, reg); 327 328 check = (read & mask) == val; 329 if (!expect_match) 330 check = !check; 331 332 if (check) { 333 ret = 0; 334 break; 335 } 336 337 cur = ktime_get_raw(); 338 if (!ktime_before(cur, end)) 339 break; 340 341 if (ktime_after(ktime_add_us(cur, wait), end)) 342 wait = ktime_us_delta(end, cur); 343 344 if (atomic) 345 udelay(wait); 346 else 347 usleep_range(wait, wait << 1); 348 wait <<= 1; 349 } 350 351 if (ret != 0) { 352 read = xe_mmio_read32(mmio, reg); 353 354 check = (read & mask) == val; 355 if (!expect_match) 356 check = !check; 357 358 if (check) 359 ret = 0; 360 } 361 362 if (out_val) 363 *out_val = read; 364 365 return ret; 366 } 367 368 /** 369 * xe_mmio_wait32() - Wait for a register to match the desired masked value 370 * @mmio: MMIO target 371 * @reg: register to read value from 372 * @mask: mask to be applied to the value read from the register 373 * @val: desired value after applying the mask 374 * @timeout_us: time out after this period of time. Wait logic tries to be 375 * smart, applying an exponential backoff until @timeout_us is reached. 376 * @out_val: if not NULL, points where to store the last unmasked value 377 * @atomic: needs to be true if calling from an atomic context 378 * 379 * This function polls for the desired masked value and returns zero on success 380 * or -ETIMEDOUT if timed out. 381 * 382 * Note that @timeout_us represents the minimum amount of time to wait before 383 * giving up. The actual time taken by this function can be a little more than 384 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 385 * it is possible that this function succeeds even after @timeout_us has passed. 386 */ 387 int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 388 u32 *out_val, bool atomic) 389 { 390 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true); 391 } 392 393 /** 394 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value 395 * @mmio: MMIO target 396 * @reg: register to read value from 397 * @mask: mask to be applied to the value read from the register 398 * @val: value not to be matched after applying the mask 399 * @timeout_us: time out after this period of time 400 * @out_val: if not NULL, points where to store the last unmasked value 401 * @atomic: needs to be true if calling from an atomic context 402 * 403 * This function works exactly like xe_mmio_wait32() with the exception that 404 * @val is expected not to be matched. 405 */ 406 int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 407 u32 *out_val, bool atomic) 408 { 409 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false); 410 } 411