xref: /linux/drivers/gpu/drm/xe/xe_mmio.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021-2023 Intel Corporation
4  */
5 
6 #include "xe_mmio.h"
7 
8 #include <linux/delay.h>
9 #include <linux/io-64-nonatomic-lo-hi.h>
10 #include <linux/minmax.h>
11 #include <linux/pci.h>
12 
13 #include <drm/drm_managed.h>
14 #include <drm/drm_print.h>
15 
16 #include "regs/xe_bars.h"
17 #include "regs/xe_regs.h"
18 #include "xe_device.h"
19 #include "xe_gt.h"
20 #include "xe_gt_printk.h"
21 #include "xe_gt_sriov_vf.h"
22 #include "xe_macros.h"
23 #include "xe_sriov.h"
24 #include "xe_trace.h"
25 
26 static void tiles_fini(void *arg)
27 {
28 	struct xe_device *xe = arg;
29 	struct xe_tile *tile;
30 	int id;
31 
32 	for_each_remote_tile(tile, xe, id)
33 		tile->mmio.regs = NULL;
34 }
35 
36 /*
37  * On multi-tile devices, partition the BAR space for MMIO on each tile,
38  * possibly accounting for register override on the number of tiles available.
39  * tile_mmio_size contains both the tile's 4MB register space, as well as
40  * additional space for the GTT and other (possibly unused) regions).
41  * Resulting memory layout is like below:
42  *
43  * .----------------------. <- tile_count * tile_mmio_size
44  * |         ....         |
45  * |----------------------| <- 2 * tile_mmio_size
46  * |   tile1 GTT + other  |
47  * |----------------------| <- 1 * tile_mmio_size + 4MB
48  * |   tile1->mmio.regs   |
49  * |----------------------| <- 1 * tile_mmio_size
50  * |   tile0 GTT + other  |
51  * |----------------------| <- 4MB
52  * |   tile0->mmio.regs   |
53  * '----------------------' <- 0MB
54  */
55 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size)
56 {
57 	struct xe_tile *tile;
58 	void __iomem *regs;
59 	u8 id;
60 
61 	/*
62 	 * Nothing to be done as tile 0 has already been setup earlier with the
63 	 * entire BAR mapped - see xe_mmio_init()
64 	 */
65 	if (xe->info.tile_count == 1)
66 		return;
67 
68 	/* Possibly override number of tile based on configuration register */
69 	if (!xe->info.skip_mtcfg) {
70 		struct xe_mmio *mmio = xe_root_tile_mmio(xe);
71 		u8 tile_count;
72 		u32 mtcfg;
73 
74 		/*
75 		 * Although the per-tile mmio regs are not yet initialized, this
76 		 * is fine as it's going to the root tile's mmio, that's
77 		 * guaranteed to be initialized earlier in xe_mmio_init()
78 		 */
79 		mtcfg = xe_mmio_read64_2x32(mmio, XEHP_MTCFG_ADDR);
80 		tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
81 
82 		if (tile_count < xe->info.tile_count) {
83 			drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
84 					xe->info.tile_count, tile_count);
85 			xe->info.tile_count = tile_count;
86 
87 			/*
88 			 * FIXME: Needs some work for standalone media, but
89 			 * should be impossible with multi-tile for now:
90 			 * multi-tile platform with standalone media doesn't
91 			 * exist
92 			 */
93 			xe->info.gt_count = xe->info.tile_count;
94 		}
95 	}
96 
97 	regs = xe->mmio.regs;
98 	for_each_tile(tile, xe, id) {
99 		tile->mmio.regs_size = SZ_4M;
100 		tile->mmio.regs = regs;
101 		tile->mmio.tile = tile;
102 		regs += tile_mmio_size;
103 	}
104 }
105 
106 /*
107  * On top of all the multi-tile MMIO space there can be a platform-dependent
108  * extension for each tile, resulting in a layout like below:
109  *
110  * .----------------------. <- ext_base + tile_count * tile_mmio_ext_size
111  * |         ....         |
112  * |----------------------| <- ext_base + 2 * tile_mmio_ext_size
113  * | tile1->mmio_ext.regs |
114  * |----------------------| <- ext_base + 1 * tile_mmio_ext_size
115  * | tile0->mmio_ext.regs |
116  * |======================| <- ext_base = tile_count * tile_mmio_size
117  * |                      |
118  * |       mmio.regs      |
119  * |                      |
120  * '----------------------' <- 0MB
121  *
122  * Set up the tile[]->mmio_ext pointers/sizes.
123  */
124 static void mmio_extension_setup(struct xe_device *xe, size_t tile_mmio_size,
125 				 size_t tile_mmio_ext_size)
126 {
127 	struct xe_tile *tile;
128 	void __iomem *regs;
129 	u8 id;
130 
131 	if (!xe->info.has_mmio_ext)
132 		return;
133 
134 	regs = xe->mmio.regs + tile_mmio_size * xe->info.tile_count;
135 	for_each_tile(tile, xe, id) {
136 		tile->mmio_ext.regs_size = tile_mmio_ext_size;
137 		tile->mmio_ext.regs = regs;
138 		tile->mmio_ext.tile = tile;
139 		regs += tile_mmio_ext_size;
140 	}
141 }
142 
143 int xe_mmio_probe_tiles(struct xe_device *xe)
144 {
145 	size_t tile_mmio_size = SZ_16M;
146 	size_t tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
147 
148 	mmio_multi_tile_setup(xe, tile_mmio_size);
149 	mmio_extension_setup(xe, tile_mmio_size, tile_mmio_ext_size);
150 
151 	return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
152 }
153 
154 static void mmio_fini(void *arg)
155 {
156 	struct xe_device *xe = arg;
157 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
158 
159 	pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
160 	xe->mmio.regs = NULL;
161 	root_tile->mmio.regs = NULL;
162 }
163 
164 int xe_mmio_init(struct xe_device *xe)
165 {
166 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
167 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
168 
169 	/*
170 	 * Map the entire BAR.
171 	 * The first 16MB of the BAR, belong to the root tile, and include:
172 	 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
173 	 */
174 	xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR);
175 	xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0);
176 	if (xe->mmio.regs == NULL) {
177 		drm_err(&xe->drm, "failed to map registers\n");
178 		return -EIO;
179 	}
180 
181 	/* Setup first tile; other tiles (if present) will be setup later. */
182 	root_tile->mmio.regs_size = SZ_4M;
183 	root_tile->mmio.regs = xe->mmio.regs;
184 	root_tile->mmio.tile = root_tile;
185 
186 	return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
187 }
188 
189 static void mmio_flush_pending_writes(struct xe_mmio *mmio)
190 {
191 #define DUMMY_REG_OFFSET	0x130030
192 	int i;
193 
194 	if (mmio->tile->xe->info.platform != XE_LUNARLAKE)
195 		return;
196 
197 	/* 4 dummy writes */
198 	for (i = 0; i < 4; i++)
199 		writel(0, mmio->regs + DUMMY_REG_OFFSET);
200 }
201 
202 u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg)
203 {
204 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
205 	u8 val;
206 
207 	/* Wa_15015404425 */
208 	mmio_flush_pending_writes(mmio);
209 
210 	val = readb(mmio->regs + addr);
211 	trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
212 
213 	return val;
214 }
215 
216 u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg)
217 {
218 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
219 	u16 val;
220 
221 	/* Wa_15015404425 */
222 	mmio_flush_pending_writes(mmio);
223 
224 	val = readw(mmio->regs + addr);
225 	trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
226 
227 	return val;
228 }
229 
230 void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val)
231 {
232 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
233 
234 	trace_xe_reg_rw(mmio, true, addr, val, sizeof(val));
235 
236 	if (!reg.vf && mmio->sriov_vf_gt)
237 		xe_gt_sriov_vf_write32(mmio->sriov_vf_gt, reg, val);
238 	else
239 		writel(val, mmio->regs + addr);
240 }
241 
242 u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg)
243 {
244 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
245 	u32 val;
246 
247 	/* Wa_15015404425 */
248 	mmio_flush_pending_writes(mmio);
249 
250 	if (!reg.vf && mmio->sriov_vf_gt)
251 		val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt, reg);
252 	else
253 		val = readl(mmio->regs + addr);
254 
255 	trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
256 
257 	return val;
258 }
259 
260 u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set)
261 {
262 	u32 old, reg_val;
263 
264 	old = xe_mmio_read32(mmio, reg);
265 	reg_val = (old & ~clr) | set;
266 	xe_mmio_write32(mmio, reg, reg_val);
267 
268 	return old;
269 }
270 
271 int xe_mmio_write32_and_verify(struct xe_mmio *mmio,
272 			       struct xe_reg reg, u32 val, u32 mask, u32 eval)
273 {
274 	u32 reg_val;
275 
276 	xe_mmio_write32(mmio, reg, val);
277 	reg_val = xe_mmio_read32(mmio, reg);
278 
279 	return (reg_val & mask) != eval ? -EINVAL : 0;
280 }
281 
282 bool xe_mmio_in_range(const struct xe_mmio *mmio,
283 		      const struct xe_mmio_range *range,
284 		      struct xe_reg reg)
285 {
286 	u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
287 
288 	return range && addr >= range->start && addr <= range->end;
289 }
290 
291 /**
292  * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
293  * @mmio: MMIO target
294  * @reg: register to read value from
295  *
296  * Although Intel GPUs have some 64-bit registers, the hardware officially
297  * only supports GTTMMADR register reads of 32 bits or smaller.  Even if
298  * a readq operation may return a reasonable value, that violation of the
299  * spec shouldn't be relied upon and all 64-bit register reads should be
300  * performed as two 32-bit reads of the upper and lower dwords.
301  *
302  * When reading registers that may be changing (such as
303  * counters), a rollover of the lower dword between the two 32-bit reads
304  * can be problematic.  This function attempts to ensure the upper dword has
305  * stabilized before returning the 64-bit value.
306  *
307  * Note that because this function may re-read the register multiple times
308  * while waiting for the value to stabilize it should not be used to read
309  * any registers where read operations have side effects.
310  *
311  * Returns the value of the 64-bit register.
312  */
313 u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg)
314 {
315 	struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
316 	u32 ldw, udw, oldudw, retries;
317 
318 	reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr);
319 	reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr);
320 
321 	/* we shouldn't adjust just one register address */
322 	xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4);
323 
324 	oldudw = xe_mmio_read32(mmio, reg_udw);
325 	for (retries = 5; retries; --retries) {
326 		ldw = xe_mmio_read32(mmio, reg);
327 		udw = xe_mmio_read32(mmio, reg_udw);
328 
329 		if (udw == oldudw)
330 			break;
331 
332 		oldudw = udw;
333 	}
334 
335 	drm_WARN(&mmio->tile->xe->drm, retries == 0,
336 		 "64-bit read of %#x did not stabilize\n", reg.addr);
337 
338 	return (u64)udw << 32 | ldw;
339 }
340 
341 static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
342 			    u32 *out_val, bool atomic, bool expect_match)
343 {
344 	ktime_t cur = ktime_get_raw();
345 	const ktime_t end = ktime_add_us(cur, timeout_us);
346 	int ret = -ETIMEDOUT;
347 	s64 wait = 10;
348 	u32 read;
349 	bool check;
350 
351 	for (;;) {
352 		read = xe_mmio_read32(mmio, reg);
353 
354 		check = (read & mask) == val;
355 		if (!expect_match)
356 			check = !check;
357 
358 		if (check) {
359 			ret = 0;
360 			break;
361 		}
362 
363 		cur = ktime_get_raw();
364 		if (!ktime_before(cur, end))
365 			break;
366 
367 		if (ktime_after(ktime_add_us(cur, wait), end))
368 			wait = ktime_us_delta(end, cur);
369 
370 		if (atomic)
371 			udelay(wait);
372 		else
373 			usleep_range(wait, wait << 1);
374 		wait <<= 1;
375 	}
376 
377 	if (ret != 0) {
378 		read = xe_mmio_read32(mmio, reg);
379 
380 		check = (read & mask) == val;
381 		if (!expect_match)
382 			check = !check;
383 
384 		if (check)
385 			ret = 0;
386 	}
387 
388 	if (out_val)
389 		*out_val = read;
390 
391 	return ret;
392 }
393 
394 /**
395  * xe_mmio_wait32() - Wait for a register to match the desired masked value
396  * @mmio: MMIO target
397  * @reg: register to read value from
398  * @mask: mask to be applied to the value read from the register
399  * @val: desired value after applying the mask
400  * @timeout_us: time out after this period of time. Wait logic tries to be
401  * smart, applying an exponential backoff until @timeout_us is reached.
402  * @out_val: if not NULL, points where to store the last unmasked value
403  * @atomic: needs to be true if calling from an atomic context
404  *
405  * This function polls for the desired masked value and returns zero on success
406  * or -ETIMEDOUT if timed out.
407  *
408  * Note that @timeout_us represents the minimum amount of time to wait before
409  * giving up. The actual time taken by this function can be a little more than
410  * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
411  * it is possible that this function succeeds even after @timeout_us has passed.
412  */
413 int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
414 		   u32 *out_val, bool atomic)
415 {
416 	return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true);
417 }
418 
419 /**
420  * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
421  * @mmio: MMIO target
422  * @reg: register to read value from
423  * @mask: mask to be applied to the value read from the register
424  * @val: value not to be matched after applying the mask
425  * @timeout_us: time out after this period of time
426  * @out_val: if not NULL, points where to store the last unmasked value
427  * @atomic: needs to be true if calling from an atomic context
428  *
429  * This function works exactly like xe_mmio_wait32() with the exception that
430  * @val is expected not to be matched.
431  */
432 int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
433 		       u32 *out_val, bool atomic)
434 {
435 	return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false);
436 }
437