1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2023 Intel Corporation 4 */ 5 6 #include "xe_mmio.h" 7 8 #include <linux/delay.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/minmax.h> 11 #include <linux/pci.h> 12 13 #include <drm/drm_managed.h> 14 #include <drm/drm_print.h> 15 16 #include "regs/xe_bars.h" 17 #include "regs/xe_regs.h" 18 #include "xe_device.h" 19 #include "xe_gt.h" 20 #include "xe_gt_printk.h" 21 #include "xe_gt_sriov_vf.h" 22 #include "xe_macros.h" 23 #include "xe_sriov.h" 24 #include "xe_trace.h" 25 #include "xe_wa.h" 26 27 #include "generated/xe_device_wa_oob.h" 28 29 static void tiles_fini(void *arg) 30 { 31 struct xe_device *xe = arg; 32 struct xe_tile *tile; 33 int id; 34 35 for_each_remote_tile(tile, xe, id) 36 tile->mmio.regs = NULL; 37 } 38 39 /* 40 * On multi-tile devices, partition the BAR space for MMIO on each tile, 41 * possibly accounting for register override on the number of tiles available. 42 * tile_mmio_size contains both the tile's 4MB register space, as well as 43 * additional space for the GTT and other (possibly unused) regions). 44 * Resulting memory layout is like below: 45 * 46 * .----------------------. <- tile_count * tile_mmio_size 47 * | .... | 48 * |----------------------| <- 2 * tile_mmio_size 49 * | tile1 GTT + other | 50 * |----------------------| <- 1 * tile_mmio_size + 4MB 51 * | tile1->mmio.regs | 52 * |----------------------| <- 1 * tile_mmio_size 53 * | tile0 GTT + other | 54 * |----------------------| <- 4MB 55 * | tile0->mmio.regs | 56 * '----------------------' <- 0MB 57 */ 58 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size) 59 { 60 struct xe_tile *tile; 61 struct xe_gt *gt; 62 u8 id; 63 64 /* 65 * Nothing to be done as tile 0 has already been setup earlier with the 66 * entire BAR mapped - see xe_mmio_probe_early() 67 */ 68 if (xe->info.tile_count == 1) 69 return; 70 71 /* Possibly override number of tile based on configuration register */ 72 if (!xe->info.skip_mtcfg) { 73 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 74 u8 tile_count, gt_count; 75 u32 mtcfg; 76 77 /* 78 * Although the per-tile mmio regs are not yet initialized, this 79 * is fine as it's going to the root tile's mmio, that's 80 * guaranteed to be initialized earlier in xe_mmio_probe_early() 81 */ 82 mtcfg = xe_mmio_read32(mmio, XEHP_MTCFG_ADDR); 83 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; 84 85 if (tile_count < xe->info.tile_count) { 86 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", 87 xe->info.tile_count, tile_count); 88 xe->info.tile_count = tile_count; 89 90 /* 91 * We've already setup gt_count according to the full 92 * tile count. Re-calculate it to only include the GTs 93 * that belong to the remaining tile(s). 94 */ 95 gt_count = 0; 96 for_each_gt(gt, xe, id) 97 if (gt->info.id < tile_count * xe->info.max_gt_per_tile) 98 gt_count++; 99 xe->info.gt_count = gt_count; 100 } 101 } 102 103 for_each_remote_tile(tile, xe, id) 104 xe_mmio_init(&tile->mmio, tile, xe->mmio.regs + id * tile_mmio_size, SZ_4M); 105 } 106 107 int xe_mmio_probe_tiles(struct xe_device *xe) 108 { 109 size_t tile_mmio_size = SZ_16M; 110 111 mmio_multi_tile_setup(xe, tile_mmio_size); 112 113 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe); 114 } 115 116 static void mmio_fini(void *arg) 117 { 118 struct xe_device *xe = arg; 119 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 120 121 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); 122 xe->mmio.regs = NULL; 123 root_tile->mmio.regs = NULL; 124 } 125 126 int xe_mmio_probe_early(struct xe_device *xe) 127 { 128 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 129 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 130 131 /* 132 * Map the entire BAR. 133 * The first 16MB of the BAR, belong to the root tile, and include: 134 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). 135 */ 136 xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR); 137 xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0); 138 if (!xe->mmio.regs) { 139 drm_err(&xe->drm, "failed to map registers\n"); 140 return -EIO; 141 } 142 143 /* Setup first tile; other tiles (if present) will be setup later. */ 144 xe_mmio_init(&root_tile->mmio, root_tile, xe->mmio.regs, SZ_4M); 145 146 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe); 147 } 148 ALLOW_ERROR_INJECTION(xe_mmio_probe_early, ERRNO); /* See xe_pci_probe() */ 149 150 /** 151 * xe_mmio_init() - Initialize an MMIO instance 152 * @mmio: Pointer to the MMIO instance to initialize 153 * @tile: The tile to which the MMIO region belongs 154 * @ptr: Pointer to the start of the MMIO region 155 * @size: The size of the MMIO region in bytes 156 * 157 * This is a convenience function for minimal initialization of struct xe_mmio. 158 */ 159 void xe_mmio_init(struct xe_mmio *mmio, struct xe_tile *tile, void __iomem *ptr, u32 size) 160 { 161 xe_tile_assert(tile, size <= XE_REG_ADDR_MAX); 162 163 mmio->regs = ptr; 164 mmio->regs_size = size; 165 mmio->tile = tile; 166 } 167 168 static void mmio_flush_pending_writes(struct xe_mmio *mmio) 169 { 170 #define DUMMY_REG_OFFSET 0x130030 171 int i; 172 173 if (!XE_DEVICE_WA(mmio->tile->xe, 15015404425)) 174 return; 175 176 /* 4 dummy writes */ 177 for (i = 0; i < 4; i++) 178 writel(0, mmio->regs + DUMMY_REG_OFFSET); 179 } 180 181 u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg) 182 { 183 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 184 u8 val; 185 186 mmio_flush_pending_writes(mmio); 187 188 val = readb(mmio->regs + addr); 189 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 190 191 return val; 192 } 193 194 u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg) 195 { 196 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 197 u16 val; 198 199 mmio_flush_pending_writes(mmio); 200 201 val = readw(mmio->regs + addr); 202 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 203 204 return val; 205 } 206 207 void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val) 208 { 209 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 210 211 trace_xe_reg_rw(mmio, true, addr, val, sizeof(val)); 212 213 if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe)) 214 xe_gt_sriov_vf_write32(mmio->sriov_vf_gt ?: 215 mmio->tile->primary_gt, reg, val); 216 else 217 writel(val, mmio->regs + addr); 218 } 219 220 u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg) 221 { 222 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 223 u32 val; 224 225 mmio_flush_pending_writes(mmio); 226 227 if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe)) 228 val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt ?: 229 mmio->tile->primary_gt, reg); 230 else 231 val = readl(mmio->regs + addr); 232 233 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val)); 234 235 return val; 236 } 237 238 u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set) 239 { 240 u32 old, reg_val; 241 242 old = xe_mmio_read32(mmio, reg); 243 reg_val = (old & ~clr) | set; 244 xe_mmio_write32(mmio, reg, reg_val); 245 246 return old; 247 } 248 249 int xe_mmio_write32_and_verify(struct xe_mmio *mmio, 250 struct xe_reg reg, u32 val, u32 mask, u32 eval) 251 { 252 u32 reg_val; 253 254 xe_mmio_write32(mmio, reg, val); 255 reg_val = xe_mmio_read32(mmio, reg); 256 257 return (reg_val & mask) != eval ? -EINVAL : 0; 258 } 259 260 bool xe_mmio_in_range(const struct xe_mmio *mmio, 261 const struct xe_mmio_range *range, 262 struct xe_reg reg) 263 { 264 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr); 265 266 return range && addr >= range->start && addr <= range->end; 267 } 268 269 /** 270 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads 271 * @mmio: MMIO target 272 * @reg: register to read value from 273 * 274 * Although Intel GPUs have some 64-bit registers, the hardware officially 275 * only supports GTTMMADR register reads of 32 bits or smaller. Even if 276 * a readq operation may return a reasonable value, that violation of the 277 * spec shouldn't be relied upon and all 64-bit register reads should be 278 * performed as two 32-bit reads of the upper and lower dwords. 279 * 280 * When reading registers that may be changing (such as 281 * counters), a rollover of the lower dword between the two 32-bit reads 282 * can be problematic. This function attempts to ensure the upper dword has 283 * stabilized before returning the 64-bit value. 284 * 285 * Note that because this function may re-read the register multiple times 286 * while waiting for the value to stabilize it should not be used to read 287 * any registers where read operations have side effects. 288 * 289 * Returns the value of the 64-bit register. 290 */ 291 u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg) 292 { 293 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; 294 u32 ldw, udw, oldudw, retries; 295 296 reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr); 297 reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr); 298 299 /* we shouldn't adjust just one register address */ 300 xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4); 301 302 oldudw = xe_mmio_read32(mmio, reg_udw); 303 for (retries = 5; retries; --retries) { 304 ldw = xe_mmio_read32(mmio, reg); 305 udw = xe_mmio_read32(mmio, reg_udw); 306 307 if (udw == oldudw) 308 break; 309 310 oldudw = udw; 311 } 312 313 drm_WARN(&mmio->tile->xe->drm, retries == 0, 314 "64-bit read of %#x did not stabilize\n", reg.addr); 315 316 return (u64)udw << 32 | ldw; 317 } 318 319 static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, 320 u32 timeout_us, u32 *out_val, bool atomic, bool expect_match) 321 { 322 ktime_t cur = ktime_get_raw(); 323 const ktime_t end = ktime_add_us(cur, timeout_us); 324 int ret = -ETIMEDOUT; 325 s64 wait = 10; 326 u32 read; 327 bool check; 328 329 for (;;) { 330 read = xe_mmio_read32(mmio, reg); 331 332 check = (read & mask) == val; 333 if (!expect_match) 334 check = !check; 335 336 if (check) { 337 ret = 0; 338 break; 339 } 340 341 cur = ktime_get_raw(); 342 if (!ktime_before(cur, end)) 343 break; 344 345 if (ktime_after(ktime_add_us(cur, wait), end)) 346 wait = ktime_us_delta(end, cur); 347 348 if (atomic) 349 udelay(wait); 350 else 351 usleep_range(wait, wait << 1); 352 wait <<= 1; 353 } 354 355 if (ret != 0) { 356 read = xe_mmio_read32(mmio, reg); 357 358 check = (read & mask) == val; 359 if (!expect_match) 360 check = !check; 361 362 if (check) 363 ret = 0; 364 } 365 366 if (out_val) 367 *out_val = read; 368 369 return ret; 370 } 371 372 /** 373 * xe_mmio_wait32() - Wait for a register to match the desired masked value 374 * @mmio: MMIO target 375 * @reg: register to read value from 376 * @mask: mask to be applied to the value read from the register 377 * @val: desired value after applying the mask 378 * @timeout_us: time out after this period of time. Wait logic tries to be 379 * smart, applying an exponential backoff until @timeout_us is reached. 380 * @out_val: if not NULL, points where to store the last unmasked value 381 * @atomic: needs to be true if calling from an atomic context 382 * 383 * This function polls for the desired masked value and returns zero on success 384 * or -ETIMEDOUT if timed out. 385 * 386 * Note that @timeout_us represents the minimum amount of time to wait before 387 * giving up. The actual time taken by this function can be a little more than 388 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 389 * it is possible that this function succeeds even after @timeout_us has passed. 390 */ 391 int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 392 u32 *out_val, bool atomic) 393 { 394 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true); 395 } 396 397 /** 398 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value 399 * @mmio: MMIO target 400 * @reg: register to read value from 401 * @mask: mask to be applied to the value read from the register 402 * @val: value not to be matched after applying the mask 403 * @timeout_us: time out after this period of time 404 * @out_val: if not NULL, points where to store the last unmasked value 405 * @atomic: needs to be true if calling from an atomic context 406 * 407 * This function works exactly like xe_mmio_wait32() with the exception that 408 * @val is expected not to be matched. 409 */ 410 int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 411 u32 *out_val, bool atomic) 412 { 413 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false); 414 } 415