1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2023 Intel Corporation 4 */ 5 6 #include "xe_mmio.h" 7 8 #include <linux/delay.h> 9 #include <linux/io-64-nonatomic-lo-hi.h> 10 #include <linux/minmax.h> 11 #include <linux/pci.h> 12 13 #include <drm/drm_managed.h> 14 #include <drm/drm_print.h> 15 16 #include "regs/xe_bars.h" 17 #include "regs/xe_regs.h" 18 #include "xe_device.h" 19 #include "xe_gt.h" 20 #include "xe_gt_printk.h" 21 #include "xe_gt_sriov_vf.h" 22 #include "xe_macros.h" 23 #include "xe_sriov.h" 24 #include "xe_trace.h" 25 26 static void tiles_fini(void *arg) 27 { 28 struct xe_device *xe = arg; 29 struct xe_tile *tile; 30 int id; 31 32 for_each_tile(tile, xe, id) 33 if (tile != xe_device_get_root_tile(xe)) 34 tile->mmio.regs = NULL; 35 } 36 37 int xe_mmio_probe_tiles(struct xe_device *xe) 38 { 39 size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size; 40 u8 id, tile_count = xe->info.tile_count; 41 struct xe_gt *gt = xe_root_mmio_gt(xe); 42 struct xe_tile *tile; 43 void __iomem *regs; 44 u32 mtcfg; 45 46 if (tile_count == 1) 47 goto add_mmio_ext; 48 49 if (!xe->info.skip_mtcfg) { 50 mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR); 51 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; 52 if (tile_count < xe->info.tile_count) { 53 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", 54 xe->info.tile_count, tile_count); 55 xe->info.tile_count = tile_count; 56 57 /* 58 * FIXME: Needs some work for standalone media, but should be impossible 59 * with multi-tile for now. 60 */ 61 xe->info.gt_count = xe->info.tile_count; 62 } 63 } 64 65 regs = xe->mmio.regs; 66 for_each_tile(tile, xe, id) { 67 tile->mmio.size = tile_mmio_size; 68 tile->mmio.regs = regs; 69 regs += tile_mmio_size; 70 } 71 72 add_mmio_ext: 73 /* 74 * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile). 75 * When supported, there could be an additional contiguous multi-tile MMIO extension 76 * space ON TOP of it, and hence the necessity for distinguished MMIO spaces. 77 */ 78 if (xe->info.has_mmio_ext) { 79 regs = xe->mmio.regs + tile_mmio_size * tile_count; 80 81 for_each_tile(tile, xe, id) { 82 tile->mmio_ext.size = tile_mmio_ext_size; 83 tile->mmio_ext.regs = regs; 84 85 regs += tile_mmio_ext_size; 86 } 87 } 88 89 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe); 90 } 91 92 static void mmio_fini(void *arg) 93 { 94 struct xe_device *xe = arg; 95 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 96 97 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); 98 xe->mmio.regs = NULL; 99 root_tile->mmio.regs = NULL; 100 } 101 102 int xe_mmio_init(struct xe_device *xe) 103 { 104 struct xe_tile *root_tile = xe_device_get_root_tile(xe); 105 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 106 const int mmio_bar = 0; 107 108 /* 109 * Map the entire BAR. 110 * The first 16MB of the BAR, belong to the root tile, and include: 111 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). 112 */ 113 xe->mmio.size = pci_resource_len(pdev, mmio_bar); 114 xe->mmio.regs = pci_iomap(pdev, mmio_bar, GTTMMADR_BAR); 115 if (xe->mmio.regs == NULL) { 116 drm_err(&xe->drm, "failed to map registers\n"); 117 return -EIO; 118 } 119 120 /* Setup first tile; other tiles (if present) will be setup later. */ 121 root_tile->mmio.size = SZ_16M; 122 root_tile->mmio.regs = xe->mmio.regs; 123 124 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe); 125 } 126 127 static void mmio_flush_pending_writes(struct xe_gt *gt) 128 { 129 #define DUMMY_REG_OFFSET 0x130030 130 struct xe_tile *tile = gt_to_tile(gt); 131 int i; 132 133 if (tile->xe->info.platform != XE_LUNARLAKE) 134 return; 135 136 /* 4 dummy writes */ 137 for (i = 0; i < 4; i++) 138 writel(0, tile->mmio.regs + DUMMY_REG_OFFSET); 139 } 140 141 u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg) 142 { 143 struct xe_tile *tile = gt_to_tile(gt); 144 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 145 u8 val; 146 147 /* Wa_15015404425 */ 148 mmio_flush_pending_writes(gt); 149 150 val = readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 151 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 152 153 return val; 154 } 155 156 u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg) 157 { 158 struct xe_tile *tile = gt_to_tile(gt); 159 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 160 u16 val; 161 162 /* Wa_15015404425 */ 163 mmio_flush_pending_writes(gt); 164 165 val = readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 166 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 167 168 return val; 169 } 170 171 void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val) 172 { 173 struct xe_tile *tile = gt_to_tile(gt); 174 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 175 176 trace_xe_reg_rw(gt, true, addr, val, sizeof(val)); 177 writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 178 } 179 180 u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg) 181 { 182 struct xe_tile *tile = gt_to_tile(gt); 183 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 184 u32 val; 185 186 /* Wa_15015404425 */ 187 mmio_flush_pending_writes(gt); 188 189 if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt))) 190 val = xe_gt_sriov_vf_read32(gt, reg); 191 else 192 val = readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr); 193 194 trace_xe_reg_rw(gt, false, addr, val, sizeof(val)); 195 196 return val; 197 } 198 199 u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set) 200 { 201 u32 old, reg_val; 202 203 old = xe_mmio_read32(gt, reg); 204 reg_val = (old & ~clr) | set; 205 xe_mmio_write32(gt, reg, reg_val); 206 207 return old; 208 } 209 210 int xe_mmio_write32_and_verify(struct xe_gt *gt, 211 struct xe_reg reg, u32 val, u32 mask, u32 eval) 212 { 213 u32 reg_val; 214 215 xe_mmio_write32(gt, reg, val); 216 reg_val = xe_mmio_read32(gt, reg); 217 218 return (reg_val & mask) != eval ? -EINVAL : 0; 219 } 220 221 bool xe_mmio_in_range(const struct xe_gt *gt, 222 const struct xe_mmio_range *range, 223 struct xe_reg reg) 224 { 225 u32 addr = xe_mmio_adjusted_addr(gt, reg.addr); 226 227 return range && addr >= range->start && addr <= range->end; 228 } 229 230 /** 231 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads 232 * @gt: MMIO target GT 233 * @reg: register to read value from 234 * 235 * Although Intel GPUs have some 64-bit registers, the hardware officially 236 * only supports GTTMMADR register reads of 32 bits or smaller. Even if 237 * a readq operation may return a reasonable value, that violation of the 238 * spec shouldn't be relied upon and all 64-bit register reads should be 239 * performed as two 32-bit reads of the upper and lower dwords. 240 * 241 * When reading registers that may be changing (such as 242 * counters), a rollover of the lower dword between the two 32-bit reads 243 * can be problematic. This function attempts to ensure the upper dword has 244 * stabilized before returning the 64-bit value. 245 * 246 * Note that because this function may re-read the register multiple times 247 * while waiting for the value to stabilize it should not be used to read 248 * any registers where read operations have side effects. 249 * 250 * Returns the value of the 64-bit register. 251 */ 252 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg) 253 { 254 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; 255 u32 ldw, udw, oldudw, retries; 256 257 reg.addr = xe_mmio_adjusted_addr(gt, reg.addr); 258 reg_udw.addr = xe_mmio_adjusted_addr(gt, reg_udw.addr); 259 260 /* we shouldn't adjust just one register address */ 261 xe_gt_assert(gt, reg_udw.addr == reg.addr + 0x4); 262 263 oldudw = xe_mmio_read32(gt, reg_udw); 264 for (retries = 5; retries; --retries) { 265 ldw = xe_mmio_read32(gt, reg); 266 udw = xe_mmio_read32(gt, reg_udw); 267 268 if (udw == oldudw) 269 break; 270 271 oldudw = udw; 272 } 273 274 xe_gt_WARN(gt, retries == 0, 275 "64-bit read of %#x did not stabilize\n", reg.addr); 276 277 return (u64)udw << 32 | ldw; 278 } 279 280 /** 281 * xe_mmio_wait32() - Wait for a register to match the desired masked value 282 * @gt: MMIO target GT 283 * @reg: register to read value from 284 * @mask: mask to be applied to the value read from the register 285 * @val: desired value after applying the mask 286 * @timeout_us: time out after this period of time. Wait logic tries to be 287 * smart, applying an exponential backoff until @timeout_us is reached. 288 * @out_val: if not NULL, points where to store the last unmasked value 289 * @atomic: needs to be true if calling from an atomic context 290 * 291 * This function polls for the desired masked value and returns zero on success 292 * or -ETIMEDOUT if timed out. 293 * 294 * Note that @timeout_us represents the minimum amount of time to wait before 295 * giving up. The actual time taken by this function can be a little more than 296 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 297 * it is possible that this function succeeds even after @timeout_us has passed. 298 */ 299 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 300 u32 *out_val, bool atomic) 301 { 302 ktime_t cur = ktime_get_raw(); 303 const ktime_t end = ktime_add_us(cur, timeout_us); 304 int ret = -ETIMEDOUT; 305 s64 wait = 10; 306 u32 read; 307 308 for (;;) { 309 read = xe_mmio_read32(gt, reg); 310 if ((read & mask) == val) { 311 ret = 0; 312 break; 313 } 314 315 cur = ktime_get_raw(); 316 if (!ktime_before(cur, end)) 317 break; 318 319 if (ktime_after(ktime_add_us(cur, wait), end)) 320 wait = ktime_us_delta(end, cur); 321 322 if (atomic) 323 udelay(wait); 324 else 325 usleep_range(wait, wait << 1); 326 wait <<= 1; 327 } 328 329 if (ret != 0) { 330 read = xe_mmio_read32(gt, reg); 331 if ((read & mask) == val) 332 ret = 0; 333 } 334 335 if (out_val) 336 *out_val = read; 337 338 return ret; 339 } 340 341 /** 342 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value 343 * @gt: MMIO target GT 344 * @reg: register to read value from 345 * @mask: mask to be applied to the value read from the register 346 * @val: value to match after applying the mask 347 * @timeout_us: time out after this period of time. Wait logic tries to be 348 * smart, applying an exponential backoff until @timeout_us is reached. 349 * @out_val: if not NULL, points where to store the last unmasked value 350 * @atomic: needs to be true if calling from an atomic context 351 * 352 * This function polls for a masked value to change from a given value and 353 * returns zero on success or -ETIMEDOUT if timed out. 354 * 355 * Note that @timeout_us represents the minimum amount of time to wait before 356 * giving up. The actual time taken by this function can be a little more than 357 * @timeout_us for different reasons, specially in non-atomic contexts. Thus, 358 * it is possible that this function succeeds even after @timeout_us has passed. 359 */ 360 int xe_mmio_wait32_not(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, 361 u32 *out_val, bool atomic) 362 { 363 ktime_t cur = ktime_get_raw(); 364 const ktime_t end = ktime_add_us(cur, timeout_us); 365 int ret = -ETIMEDOUT; 366 s64 wait = 10; 367 u32 read; 368 369 for (;;) { 370 read = xe_mmio_read32(gt, reg); 371 if ((read & mask) != val) { 372 ret = 0; 373 break; 374 } 375 376 cur = ktime_get_raw(); 377 if (!ktime_before(cur, end)) 378 break; 379 380 if (ktime_after(ktime_add_us(cur, wait), end)) 381 wait = ktime_us_delta(end, cur); 382 383 if (atomic) 384 udelay(wait); 385 else 386 usleep_range(wait, wait << 1); 387 wait <<= 1; 388 } 389 390 if (ret != 0) { 391 read = xe_mmio_read32(gt, reg); 392 if ((read & mask) != val) 393 ret = 0; 394 } 395 396 if (out_val) 397 *out_val = read; 398 399 return ret; 400 } 401