xref: /linux/drivers/gpu/drm/xe/xe_mmio.c (revision 08df80a3c51674ab73ae770885a383ca553fbbbf)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021-2023 Intel Corporation
4  */
5 
6 #include <linux/minmax.h>
7 
8 #include "xe_mmio.h"
9 
10 #include <drm/drm_managed.h>
11 #include <drm/xe_drm.h>
12 
13 #include "regs/xe_engine_regs.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_regs.h"
16 #include "xe_bo.h"
17 #include "xe_device.h"
18 #include "xe_ggtt.h"
19 #include "xe_gt.h"
20 #include "xe_gt_mcr.h"
21 #include "xe_macros.h"
22 #include "xe_module.h"
23 #include "xe_tile.h"
24 
25 #define XEHP_MTCFG_ADDR		XE_REG(0x101800)
26 #define TILE_COUNT		REG_GENMASK(15, 8)
27 
28 #define BAR_SIZE_SHIFT 20
29 
30 static void
31 _resize_bar(struct xe_device *xe, int resno, resource_size_t size)
32 {
33 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
34 	int bar_size = pci_rebar_bytes_to_size(size);
35 	int ret;
36 
37 	if (pci_resource_len(pdev, resno))
38 		pci_release_resource(pdev, resno);
39 
40 	ret = pci_resize_resource(pdev, resno, bar_size);
41 	if (ret) {
42 		drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
43 			 resno, 1 << bar_size, ERR_PTR(ret));
44 		return;
45 	}
46 
47 	drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
48 }
49 
50 /*
51  * if force_vram_bar_size is set, attempt to set to the requested size
52  * else set to maximum possible size
53  */
54 static void xe_resize_vram_bar(struct xe_device *xe)
55 {
56 	u64 force_vram_bar_size = xe_modparam.force_vram_bar_size;
57 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
58 	struct pci_bus *root = pdev->bus;
59 	resource_size_t current_size;
60 	resource_size_t rebar_size;
61 	struct resource *root_res;
62 	u32 bar_size_mask;
63 	u32 pci_cmd;
64 	int i;
65 
66 	/* gather some relevant info */
67 	current_size = pci_resource_len(pdev, LMEM_BAR);
68 	bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
69 
70 	if (!bar_size_mask)
71 		return;
72 
73 	/* set to a specific size? */
74 	if (force_vram_bar_size) {
75 		u32 bar_size_bit;
76 
77 		rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
78 
79 		bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
80 
81 		if (!bar_size_bit) {
82 			drm_info(&xe->drm,
83 				 "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
84 				 (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
85 			return;
86 		}
87 
88 		rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
89 
90 		if (rebar_size == current_size)
91 			return;
92 	} else {
93 		rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
94 
95 		/* only resize if larger than current */
96 		if (rebar_size <= current_size)
97 			return;
98 	}
99 
100 	drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
101 		 (u64)current_size >> 20, (u64)rebar_size >> 20);
102 
103 	while (root->parent)
104 		root = root->parent;
105 
106 	pci_bus_for_each_resource(root, root_res, i) {
107 		if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
108 		    root_res->start > 0x100000000ull)
109 			break;
110 	}
111 
112 	if (!root_res) {
113 		drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
114 		return;
115 	}
116 
117 	pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
118 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
119 
120 	_resize_bar(xe, LMEM_BAR, rebar_size);
121 
122 	pci_assign_unassigned_bus_resources(pdev->bus);
123 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
124 }
125 
126 static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar)
127 {
128 	if (!pci_resource_flags(pdev, bar))
129 		return false;
130 
131 	if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
132 		return false;
133 
134 	if (!pci_resource_len(pdev, bar))
135 		return false;
136 
137 	return true;
138 }
139 
140 static int xe_determine_lmem_bar_size(struct xe_device *xe)
141 {
142 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
143 
144 	if (!xe_pci_resource_valid(pdev, LMEM_BAR)) {
145 		drm_err(&xe->drm, "pci resource is not valid\n");
146 		return -ENXIO;
147 	}
148 
149 	xe_resize_vram_bar(xe);
150 
151 	xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR);
152 	xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR);
153 	if (!xe->mem.vram.io_size)
154 		return -EIO;
155 
156 	/* XXX: Need to change when xe link code is ready */
157 	xe->mem.vram.dpa_base = 0;
158 
159 	/* set up a map to the total memory area. */
160 	xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size);
161 
162 	return 0;
163 }
164 
165 /**
166  * xe_mmio_tile_vram_size() - Collect vram size and offset information
167  * @tile: tile to get info for
168  * @vram_size: available vram (size - device reserved portions)
169  * @tile_size: actual vram size
170  * @tile_offset: physical start point in the vram address space
171  *
172  * There are 4 places for size information:
173  * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
174  * - TILEx size (actual vram size)
175  * - GSMBASE offset (TILEx - "stolen")
176  * - CSSBASE offset (TILEx - CSS space necessary)
177  *
178  * CSSBASE is always a lower/smaller offset then GSMBASE.
179  *
180  * The actual available size of memory is to the CCS or GSM base.
181  * NOTE: multi-tile bases will include the tile offset.
182  *
183  */
184 static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size,
185 				  u64 *tile_size, u64 *tile_offset)
186 {
187 	struct xe_device *xe = tile_to_xe(tile);
188 	struct xe_gt *gt = tile->primary_gt;
189 	u64 offset;
190 	int err;
191 	u32 reg;
192 
193 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
194 	if (err)
195 		return err;
196 
197 	/* actual size */
198 	if (unlikely(xe->info.platform == XE_DG1)) {
199 		*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
200 		*tile_offset = 0;
201 	} else {
202 		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id));
203 		*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
204 		*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
205 	}
206 
207 	/* minus device usage */
208 	if (xe->info.has_flat_ccs) {
209 		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
210 		offset = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K;
211 	} else {
212 		offset = xe_mmio_read64_2x32(gt, GSMBASE);
213 	}
214 
215 	/* remove the tile offset so we have just the available size */
216 	*vram_size = offset - *tile_offset;
217 
218 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
219 }
220 
221 int xe_mmio_probe_vram(struct xe_device *xe)
222 {
223 	struct xe_tile *tile;
224 	resource_size_t io_size;
225 	u64 available_size = 0;
226 	u64 total_size = 0;
227 	u64 tile_offset;
228 	u64 tile_size;
229 	u64 vram_size;
230 	int err;
231 	u8 id;
232 
233 	if (!IS_DGFX(xe))
234 		return 0;
235 
236 	/* Get the size of the root tile's vram for later accessibility comparison */
237 	tile = xe_device_get_root_tile(xe);
238 	err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
239 	if (err)
240 		return err;
241 
242 	err = xe_determine_lmem_bar_size(xe);
243 	if (err)
244 		return err;
245 
246 	drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
247 		 &xe->mem.vram.io_size);
248 
249 	io_size = xe->mem.vram.io_size;
250 
251 	/* tile specific ranges */
252 	for_each_tile(tile, xe, id) {
253 		err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
254 		if (err)
255 			return err;
256 
257 		tile->mem.vram.actual_physical_size = tile_size;
258 		tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset;
259 		tile->mem.vram.io_size = min_t(u64, vram_size, io_size);
260 
261 		if (!tile->mem.vram.io_size) {
262 			drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
263 			return -ENODEV;
264 		}
265 
266 		tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset;
267 		tile->mem.vram.usable_size = vram_size;
268 		tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset;
269 
270 		if (tile->mem.vram.io_size < tile->mem.vram.usable_size)
271 			drm_info(&xe->drm, "Small BAR device\n");
272 		drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id,
273 			 tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size);
274 		drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id,
275 			 &tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + tile->mem.vram.actual_physical_size,
276 			 &tile->mem.vram.io_start, tile->mem.vram.io_start + tile->mem.vram.io_size);
277 
278 		/* calculate total size using tile size to get the correct HW sizing */
279 		total_size += tile_size;
280 		available_size += vram_size;
281 
282 		if (total_size > xe->mem.vram.io_size) {
283 			drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
284 				 &total_size, &xe->mem.vram.io_size);
285 		}
286 
287 		io_size -= min_t(u64, tile_size, io_size);
288 	}
289 
290 	xe->mem.vram.actual_physical_size = total_size;
291 
292 	drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
293 		 &xe->mem.vram.actual_physical_size);
294 	drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
295 		 &available_size);
296 
297 	return 0;
298 }
299 
300 void xe_mmio_probe_tiles(struct xe_device *xe)
301 {
302 	size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
303 	u8 id, tile_count = xe->info.tile_count;
304 	struct xe_gt *gt = xe_root_mmio_gt(xe);
305 	struct xe_tile *tile;
306 	void *regs;
307 	u32 mtcfg;
308 
309 	if (tile_count == 1)
310 		goto add_mmio_ext;
311 
312 	if (!xe->info.skip_mtcfg) {
313 		mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
314 		tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
315 		if (tile_count < xe->info.tile_count) {
316 			drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
317 					xe->info.tile_count, tile_count);
318 			xe->info.tile_count = tile_count;
319 
320 			/*
321 			 * FIXME: Needs some work for standalone media, but should be impossible
322 			 * with multi-tile for now.
323 			 */
324 			xe->info.gt_count = xe->info.tile_count;
325 		}
326 	}
327 
328 	regs = xe->mmio.regs;
329 	for_each_tile(tile, xe, id) {
330 		tile->mmio.size = tile_mmio_size;
331 		tile->mmio.regs = regs;
332 		regs += tile_mmio_size;
333 	}
334 
335 add_mmio_ext:
336 	/*
337 	 * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
338 	 * When supported, there could be an additional contiguous multi-tile MMIO extension
339 	 * space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
340 	 */
341 	if (xe->info.has_mmio_ext) {
342 		regs = xe->mmio.regs + tile_mmio_size * tile_count;
343 
344 		for_each_tile(tile, xe, id) {
345 			tile->mmio_ext.size = tile_mmio_ext_size;
346 			tile->mmio_ext.regs = regs;
347 
348 			regs += tile_mmio_ext_size;
349 		}
350 	}
351 }
352 
353 static void mmio_fini(struct drm_device *drm, void *arg)
354 {
355 	struct xe_device *xe = arg;
356 
357 	pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
358 	if (xe->mem.vram.mapping)
359 		iounmap(xe->mem.vram.mapping);
360 }
361 
362 static int xe_verify_lmem_ready(struct xe_device *xe)
363 {
364 	struct xe_gt *gt = xe_root_mmio_gt(xe);
365 
366 	/*
367 	 * The boot firmware initializes local memory and assesses its health.
368 	 * If memory training fails, the punit will have been instructed to
369 	 * keep the GT powered down; we won't be able to communicate with it
370 	 * and we should not continue with driver initialization.
371 	 */
372 	if (IS_DGFX(xe) && !(xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT)) {
373 		drm_err(&xe->drm, "VRAM not initialized by firmware\n");
374 		return -ENODEV;
375 	}
376 
377 	return 0;
378 }
379 
380 int xe_mmio_init(struct xe_device *xe)
381 {
382 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
383 	const int mmio_bar = 0;
384 
385 	/*
386 	 * Map the entire BAR.
387 	 * The first 16MB of the BAR, belong to the root tile, and include:
388 	 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
389 	 */
390 	xe->mmio.size = pci_resource_len(pdev, mmio_bar);
391 	xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0);
392 	if (xe->mmio.regs == NULL) {
393 		drm_err(&xe->drm, "failed to map registers\n");
394 		return -EIO;
395 	}
396 
397 	return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe);
398 }
399 
400 int xe_mmio_root_tile_init(struct xe_device *xe)
401 {
402 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
403 	int err;
404 
405 	/* Setup first tile; other tiles (if present) will be setup later. */
406 	root_tile->mmio.size = SZ_16M;
407 	root_tile->mmio.regs = xe->mmio.regs;
408 
409 	err = xe_verify_lmem_ready(xe);
410 	if (err)
411 		return err;
412 
413 	return 0;
414 }
415 
416 /**
417  * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
418  * @gt: MMIO target GT
419  * @reg: register to read value from
420  *
421  * Although Intel GPUs have some 64-bit registers, the hardware officially
422  * only supports GTTMMADR register reads of 32 bits or smaller.  Even if
423  * a readq operation may return a reasonable value, that violation of the
424  * spec shouldn't be relied upon and all 64-bit register reads should be
425  * performed as two 32-bit reads of the upper and lower dwords.
426  *
427  * When reading registers that may be changing (such as
428  * counters), a rollover of the lower dword between the two 32-bit reads
429  * can be problematic.  This function attempts to ensure the upper dword has
430  * stabilized before returning the 64-bit value.
431  *
432  * Note that because this function may re-read the register multiple times
433  * while waiting for the value to stabilize it should not be used to read
434  * any registers where read operations have side effects.
435  *
436  * Returns the value of the 64-bit register.
437  */
438 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
439 {
440 	struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
441 	u32 ldw, udw, oldudw, retries;
442 
443 	if (reg.addr < gt->mmio.adj_limit) {
444 		reg.addr += gt->mmio.adj_offset;
445 		reg_udw.addr += gt->mmio.adj_offset;
446 	}
447 
448 	oldudw = xe_mmio_read32(gt, reg_udw);
449 	for (retries = 5; retries; --retries) {
450 		ldw = xe_mmio_read32(gt, reg);
451 		udw = xe_mmio_read32(gt, reg_udw);
452 
453 		if (udw == oldudw)
454 			break;
455 
456 		oldudw = udw;
457 	}
458 
459 	xe_gt_WARN(gt, retries == 0,
460 		   "64-bit read of %#x did not stabilize\n", reg.addr);
461 
462 	return (u64)udw << 32 | ldw;
463 }
464 
465 /**
466  * xe_mmio_wait32() - Wait for a register to match the desired masked value
467  * @gt: MMIO target GT
468  * @reg: register to read value from
469  * @mask: mask to be applied to the value read from the register
470  * @val: desired value after applying the mask
471  * @timeout_us: time out after this period of time. Wait logic tries to be
472  * smart, applying an exponential backoff until @timeout_us is reached.
473  * @out_val: if not NULL, points where to store the last unmasked value
474  * @atomic: needs to be true if calling from an atomic context
475  *
476  * This function polls for the desired masked value and returns zero on success
477  * or -ETIMEDOUT if timed out.
478  *
479  * Note that @timeout_us represents the minimum amount of time to wait before
480  * giving up. The actual time taken by this function can be a little more than
481  * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
482  * it is possible that this function succeeds even after @timeout_us has passed.
483  */
484 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
485 		   u32 *out_val, bool atomic)
486 {
487 	ktime_t cur = ktime_get_raw();
488 	const ktime_t end = ktime_add_us(cur, timeout_us);
489 	int ret = -ETIMEDOUT;
490 	s64 wait = 10;
491 	u32 read;
492 
493 	for (;;) {
494 		read = xe_mmio_read32(gt, reg);
495 		if ((read & mask) == val) {
496 			ret = 0;
497 			break;
498 		}
499 
500 		cur = ktime_get_raw();
501 		if (!ktime_before(cur, end))
502 			break;
503 
504 		if (ktime_after(ktime_add_us(cur, wait), end))
505 			wait = ktime_us_delta(end, cur);
506 
507 		if (atomic)
508 			udelay(wait);
509 		else
510 			usleep_range(wait, wait << 1);
511 		wait <<= 1;
512 	}
513 
514 	if (ret != 0) {
515 		read = xe_mmio_read32(gt, reg);
516 		if ((read & mask) == val)
517 			ret = 0;
518 	}
519 
520 	if (out_val)
521 		*out_val = read;
522 
523 	return ret;
524 }
525