xref: /linux/drivers/gpu/drm/xe/xe_mmio.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021-2023 Intel Corporation
4  */
5 
6 #include <linux/minmax.h>
7 
8 #include "xe_mmio.h"
9 
10 #include <drm/drm_managed.h>
11 #include <drm/xe_drm.h>
12 
13 #include "regs/xe_engine_regs.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_regs.h"
16 #include "xe_bo.h"
17 #include "xe_device.h"
18 #include "xe_ggtt.h"
19 #include "xe_gt.h"
20 #include "xe_gt_mcr.h"
21 #include "xe_macros.h"
22 #include "xe_module.h"
23 #include "xe_sriov.h"
24 #include "xe_tile.h"
25 
26 #define XEHP_MTCFG_ADDR		XE_REG(0x101800)
27 #define TILE_COUNT		REG_GENMASK(15, 8)
28 
29 #define BAR_SIZE_SHIFT 20
30 
31 static void
32 _resize_bar(struct xe_device *xe, int resno, resource_size_t size)
33 {
34 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
35 	int bar_size = pci_rebar_bytes_to_size(size);
36 	int ret;
37 
38 	if (pci_resource_len(pdev, resno))
39 		pci_release_resource(pdev, resno);
40 
41 	ret = pci_resize_resource(pdev, resno, bar_size);
42 	if (ret) {
43 		drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
44 			 resno, 1 << bar_size, ERR_PTR(ret));
45 		return;
46 	}
47 
48 	drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
49 }
50 
51 /*
52  * if force_vram_bar_size is set, attempt to set to the requested size
53  * else set to maximum possible size
54  */
55 static void xe_resize_vram_bar(struct xe_device *xe)
56 {
57 	u64 force_vram_bar_size = xe_modparam.force_vram_bar_size;
58 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
59 	struct pci_bus *root = pdev->bus;
60 	resource_size_t current_size;
61 	resource_size_t rebar_size;
62 	struct resource *root_res;
63 	u32 bar_size_mask;
64 	u32 pci_cmd;
65 	int i;
66 
67 	/* gather some relevant info */
68 	current_size = pci_resource_len(pdev, LMEM_BAR);
69 	bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
70 
71 	if (!bar_size_mask)
72 		return;
73 
74 	/* set to a specific size? */
75 	if (force_vram_bar_size) {
76 		u32 bar_size_bit;
77 
78 		rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
79 
80 		bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
81 
82 		if (!bar_size_bit) {
83 			drm_info(&xe->drm,
84 				 "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
85 				 (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
86 			return;
87 		}
88 
89 		rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
90 
91 		if (rebar_size == current_size)
92 			return;
93 	} else {
94 		rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
95 
96 		/* only resize if larger than current */
97 		if (rebar_size <= current_size)
98 			return;
99 	}
100 
101 	drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
102 		 (u64)current_size >> 20, (u64)rebar_size >> 20);
103 
104 	while (root->parent)
105 		root = root->parent;
106 
107 	pci_bus_for_each_resource(root, root_res, i) {
108 		if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
109 		    (u64)root_res->start > 0x100000000ul)
110 			break;
111 	}
112 
113 	if (!root_res) {
114 		drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
115 		return;
116 	}
117 
118 	pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
119 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
120 
121 	_resize_bar(xe, LMEM_BAR, rebar_size);
122 
123 	pci_assign_unassigned_bus_resources(pdev->bus);
124 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
125 }
126 
127 static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar)
128 {
129 	if (!pci_resource_flags(pdev, bar))
130 		return false;
131 
132 	if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
133 		return false;
134 
135 	if (!pci_resource_len(pdev, bar))
136 		return false;
137 
138 	return true;
139 }
140 
141 static int xe_determine_lmem_bar_size(struct xe_device *xe)
142 {
143 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
144 
145 	if (!xe_pci_resource_valid(pdev, LMEM_BAR)) {
146 		drm_err(&xe->drm, "pci resource is not valid\n");
147 		return -ENXIO;
148 	}
149 
150 	xe_resize_vram_bar(xe);
151 
152 	xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR);
153 	xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR);
154 	if (!xe->mem.vram.io_size)
155 		return -EIO;
156 
157 	/* XXX: Need to change when xe link code is ready */
158 	xe->mem.vram.dpa_base = 0;
159 
160 	/* set up a map to the total memory area. */
161 	xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size);
162 
163 	return 0;
164 }
165 
166 static inline u64 get_flat_ccs_offset(struct xe_gt *gt, u64 tile_size)
167 {
168 	struct xe_device *xe = gt_to_xe(gt);
169 	u64 offset;
170 	u32 reg;
171 
172 	if (GRAPHICS_VER(xe) >= 20) {
173 		u64 ccs_size = tile_size / 512;
174 		u64 offset_hi, offset_lo;
175 		u32 nodes, num_enabled;
176 
177 		reg = xe_mmio_read32(gt, MIRROR_FUSE3);
178 		nodes = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, reg);
179 		num_enabled = hweight32(nodes); /* Number of enabled l3 nodes */
180 
181 		reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
182 		offset_lo = REG_FIELD_GET(XE2_FLAT_CCS_BASE_LOWER_ADDR_MASK, reg);
183 
184 		reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_UPPER);
185 		offset_hi = REG_FIELD_GET(XE2_FLAT_CCS_BASE_UPPER_ADDR_MASK, reg);
186 
187 		offset = offset_hi << 32; /* HW view bits 39:32 */
188 		offset |= offset_lo << 6; /* HW view bits 31:6 */
189 		offset *= num_enabled; /* convert to SW view */
190 
191 		/* We don't expect any holes */
192 		xe_assert_msg(xe, offset == (xe_mmio_read64_2x32(gt, GSMBASE) - ccs_size),
193 			      "Hole between CCS and GSM.\n");
194 	} else {
195 		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
196 		offset = (u64)REG_FIELD_GET(XEHP_FLAT_CCS_PTR, reg) * SZ_64K;
197 	}
198 
199 	return offset;
200 }
201 
202 /**
203  * xe_mmio_tile_vram_size() - Collect vram size and offset information
204  * @tile: tile to get info for
205  * @vram_size: available vram (size - device reserved portions)
206  * @tile_size: actual vram size
207  * @tile_offset: physical start point in the vram address space
208  *
209  * There are 4 places for size information:
210  * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
211  * - TILEx size (actual vram size)
212  * - GSMBASE offset (TILEx - "stolen")
213  * - CSSBASE offset (TILEx - CSS space necessary)
214  *
215  * CSSBASE is always a lower/smaller offset then GSMBASE.
216  *
217  * The actual available size of memory is to the CCS or GSM base.
218  * NOTE: multi-tile bases will include the tile offset.
219  *
220  */
221 static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size,
222 				  u64 *tile_size, u64 *tile_offset)
223 {
224 	struct xe_device *xe = tile_to_xe(tile);
225 	struct xe_gt *gt = tile->primary_gt;
226 	u64 offset;
227 	int err;
228 	u32 reg;
229 
230 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
231 	if (err)
232 		return err;
233 
234 	/* actual size */
235 	if (unlikely(xe->info.platform == XE_DG1)) {
236 		*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
237 		*tile_offset = 0;
238 	} else {
239 		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id));
240 		*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
241 		*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
242 	}
243 
244 	/* minus device usage */
245 	if (xe->info.has_flat_ccs) {
246 		offset = get_flat_ccs_offset(gt, *tile_size);
247 	} else {
248 		offset = xe_mmio_read64_2x32(gt, GSMBASE);
249 	}
250 
251 	/* remove the tile offset so we have just the available size */
252 	*vram_size = offset - *tile_offset;
253 
254 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
255 }
256 
257 int xe_mmio_probe_vram(struct xe_device *xe)
258 {
259 	struct xe_tile *tile;
260 	resource_size_t io_size;
261 	u64 available_size = 0;
262 	u64 total_size = 0;
263 	u64 tile_offset;
264 	u64 tile_size;
265 	u64 vram_size;
266 	int err;
267 	u8 id;
268 
269 	if (!IS_DGFX(xe))
270 		return 0;
271 
272 	/* Get the size of the root tile's vram for later accessibility comparison */
273 	tile = xe_device_get_root_tile(xe);
274 	err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
275 	if (err)
276 		return err;
277 
278 	err = xe_determine_lmem_bar_size(xe);
279 	if (err)
280 		return err;
281 
282 	drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
283 		 &xe->mem.vram.io_size);
284 
285 	io_size = xe->mem.vram.io_size;
286 
287 	/* tile specific ranges */
288 	for_each_tile(tile, xe, id) {
289 		err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
290 		if (err)
291 			return err;
292 
293 		tile->mem.vram.actual_physical_size = tile_size;
294 		tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset;
295 		tile->mem.vram.io_size = min_t(u64, vram_size, io_size);
296 
297 		if (!tile->mem.vram.io_size) {
298 			drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
299 			return -ENODEV;
300 		}
301 
302 		tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset;
303 		tile->mem.vram.usable_size = vram_size;
304 		tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset;
305 
306 		if (tile->mem.vram.io_size < tile->mem.vram.usable_size)
307 			drm_info(&xe->drm, "Small BAR device\n");
308 		drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id,
309 			 tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size);
310 		drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id,
311 			 &tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + (u64)tile->mem.vram.actual_physical_size,
312 			 &tile->mem.vram.io_start, tile->mem.vram.io_start + (u64)tile->mem.vram.io_size);
313 
314 		/* calculate total size using tile size to get the correct HW sizing */
315 		total_size += tile_size;
316 		available_size += vram_size;
317 
318 		if (total_size > xe->mem.vram.io_size) {
319 			drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
320 				 &total_size, &xe->mem.vram.io_size);
321 		}
322 
323 		io_size -= min_t(u64, tile_size, io_size);
324 	}
325 
326 	xe->mem.vram.actual_physical_size = total_size;
327 
328 	drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
329 		 &xe->mem.vram.actual_physical_size);
330 	drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
331 		 &available_size);
332 
333 	return 0;
334 }
335 
336 void xe_mmio_probe_tiles(struct xe_device *xe)
337 {
338 	size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
339 	u8 id, tile_count = xe->info.tile_count;
340 	struct xe_gt *gt = xe_root_mmio_gt(xe);
341 	struct xe_tile *tile;
342 	void __iomem *regs;
343 	u32 mtcfg;
344 
345 	if (tile_count == 1)
346 		goto add_mmio_ext;
347 
348 	if (!xe->info.skip_mtcfg) {
349 		mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
350 		tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
351 		if (tile_count < xe->info.tile_count) {
352 			drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
353 					xe->info.tile_count, tile_count);
354 			xe->info.tile_count = tile_count;
355 
356 			/*
357 			 * FIXME: Needs some work for standalone media, but should be impossible
358 			 * with multi-tile for now.
359 			 */
360 			xe->info.gt_count = xe->info.tile_count;
361 		}
362 	}
363 
364 	regs = xe->mmio.regs;
365 	for_each_tile(tile, xe, id) {
366 		tile->mmio.size = tile_mmio_size;
367 		tile->mmio.regs = regs;
368 		regs += tile_mmio_size;
369 	}
370 
371 add_mmio_ext:
372 	/*
373 	 * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
374 	 * When supported, there could be an additional contiguous multi-tile MMIO extension
375 	 * space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
376 	 */
377 	if (xe->info.has_mmio_ext) {
378 		regs = xe->mmio.regs + tile_mmio_size * tile_count;
379 
380 		for_each_tile(tile, xe, id) {
381 			tile->mmio_ext.size = tile_mmio_ext_size;
382 			tile->mmio_ext.regs = regs;
383 
384 			regs += tile_mmio_ext_size;
385 		}
386 	}
387 }
388 
389 static void mmio_fini(struct drm_device *drm, void *arg)
390 {
391 	struct xe_device *xe = arg;
392 
393 	pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
394 	if (xe->mem.vram.mapping)
395 		iounmap(xe->mem.vram.mapping);
396 }
397 
398 int xe_mmio_init(struct xe_device *xe)
399 {
400 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
401 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
402 	const int mmio_bar = 0;
403 
404 	/*
405 	 * Map the entire BAR.
406 	 * The first 16MB of the BAR, belong to the root tile, and include:
407 	 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
408 	 */
409 	xe->mmio.size = pci_resource_len(pdev, mmio_bar);
410 	xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0);
411 	if (xe->mmio.regs == NULL) {
412 		drm_err(&xe->drm, "failed to map registers\n");
413 		return -EIO;
414 	}
415 
416 	/* Setup first tile; other tiles (if present) will be setup later. */
417 	root_tile->mmio.size = SZ_16M;
418 	root_tile->mmio.regs = xe->mmio.regs;
419 
420 	return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe);
421 }
422 
423 u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg)
424 {
425 	struct xe_tile *tile = gt_to_tile(gt);
426 
427 	if (reg.addr < gt->mmio.adj_limit)
428 		reg.addr += gt->mmio.adj_offset;
429 
430 	return readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr);
431 }
432 
433 u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg)
434 {
435 	struct xe_tile *tile = gt_to_tile(gt);
436 
437 	if (reg.addr < gt->mmio.adj_limit)
438 		reg.addr += gt->mmio.adj_offset;
439 
440 	return readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr);
441 }
442 
443 void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val)
444 {
445 	struct xe_tile *tile = gt_to_tile(gt);
446 
447 	if (reg.addr < gt->mmio.adj_limit)
448 		reg.addr += gt->mmio.adj_offset;
449 
450 	writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr);
451 }
452 
453 u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg)
454 {
455 	struct xe_tile *tile = gt_to_tile(gt);
456 
457 	if (reg.addr < gt->mmio.adj_limit)
458 		reg.addr += gt->mmio.adj_offset;
459 
460 	return readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr);
461 }
462 
463 u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set)
464 {
465 	u32 old, reg_val;
466 
467 	old = xe_mmio_read32(gt, reg);
468 	reg_val = (old & ~clr) | set;
469 	xe_mmio_write32(gt, reg, reg_val);
470 
471 	return old;
472 }
473 
474 int xe_mmio_write32_and_verify(struct xe_gt *gt,
475 			       struct xe_reg reg, u32 val, u32 mask, u32 eval)
476 {
477 	u32 reg_val;
478 
479 	xe_mmio_write32(gt, reg, val);
480 	reg_val = xe_mmio_read32(gt, reg);
481 
482 	return (reg_val & mask) != eval ? -EINVAL : 0;
483 }
484 
485 bool xe_mmio_in_range(const struct xe_gt *gt,
486 		      const struct xe_mmio_range *range,
487 		      struct xe_reg reg)
488 {
489 	if (reg.addr < gt->mmio.adj_limit)
490 		reg.addr += gt->mmio.adj_offset;
491 
492 	return range && reg.addr >= range->start && reg.addr <= range->end;
493 }
494 
495 /**
496  * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
497  * @gt: MMIO target GT
498  * @reg: register to read value from
499  *
500  * Although Intel GPUs have some 64-bit registers, the hardware officially
501  * only supports GTTMMADR register reads of 32 bits or smaller.  Even if
502  * a readq operation may return a reasonable value, that violation of the
503  * spec shouldn't be relied upon and all 64-bit register reads should be
504  * performed as two 32-bit reads of the upper and lower dwords.
505  *
506  * When reading registers that may be changing (such as
507  * counters), a rollover of the lower dword between the two 32-bit reads
508  * can be problematic.  This function attempts to ensure the upper dword has
509  * stabilized before returning the 64-bit value.
510  *
511  * Note that because this function may re-read the register multiple times
512  * while waiting for the value to stabilize it should not be used to read
513  * any registers where read operations have side effects.
514  *
515  * Returns the value of the 64-bit register.
516  */
517 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
518 {
519 	struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
520 	u32 ldw, udw, oldudw, retries;
521 
522 	if (reg.addr < gt->mmio.adj_limit) {
523 		reg.addr += gt->mmio.adj_offset;
524 		reg_udw.addr += gt->mmio.adj_offset;
525 	}
526 
527 	oldudw = xe_mmio_read32(gt, reg_udw);
528 	for (retries = 5; retries; --retries) {
529 		ldw = xe_mmio_read32(gt, reg);
530 		udw = xe_mmio_read32(gt, reg_udw);
531 
532 		if (udw == oldudw)
533 			break;
534 
535 		oldudw = udw;
536 	}
537 
538 	xe_gt_WARN(gt, retries == 0,
539 		   "64-bit read of %#x did not stabilize\n", reg.addr);
540 
541 	return (u64)udw << 32 | ldw;
542 }
543 
544 /**
545  * xe_mmio_wait32() - Wait for a register to match the desired masked value
546  * @gt: MMIO target GT
547  * @reg: register to read value from
548  * @mask: mask to be applied to the value read from the register
549  * @val: desired value after applying the mask
550  * @timeout_us: time out after this period of time. Wait logic tries to be
551  * smart, applying an exponential backoff until @timeout_us is reached.
552  * @out_val: if not NULL, points where to store the last unmasked value
553  * @atomic: needs to be true if calling from an atomic context
554  *
555  * This function polls for the desired masked value and returns zero on success
556  * or -ETIMEDOUT if timed out.
557  *
558  * Note that @timeout_us represents the minimum amount of time to wait before
559  * giving up. The actual time taken by this function can be a little more than
560  * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
561  * it is possible that this function succeeds even after @timeout_us has passed.
562  */
563 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
564 		   u32 *out_val, bool atomic)
565 {
566 	ktime_t cur = ktime_get_raw();
567 	const ktime_t end = ktime_add_us(cur, timeout_us);
568 	int ret = -ETIMEDOUT;
569 	s64 wait = 10;
570 	u32 read;
571 
572 	for (;;) {
573 		read = xe_mmio_read32(gt, reg);
574 		if ((read & mask) == val) {
575 			ret = 0;
576 			break;
577 		}
578 
579 		cur = ktime_get_raw();
580 		if (!ktime_before(cur, end))
581 			break;
582 
583 		if (ktime_after(ktime_add_us(cur, wait), end))
584 			wait = ktime_us_delta(end, cur);
585 
586 		if (atomic)
587 			udelay(wait);
588 		else
589 			usleep_range(wait, wait << 1);
590 		wait <<= 1;
591 	}
592 
593 	if (ret != 0) {
594 		read = xe_mmio_read32(gt, reg);
595 		if ((read & mask) == val)
596 			ret = 0;
597 	}
598 
599 	if (out_val)
600 		*out_val = read;
601 
602 	return ret;
603 }
604