1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include "xe_migrate.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/sizes.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/ttm/ttm_tt.h> 13 #include <drm/xe_drm.h> 14 15 #include <generated/xe_wa_oob.h> 16 17 #include "instructions/xe_mi_commands.h" 18 #include "regs/xe_gpu_commands.h" 19 #include "tests/xe_test.h" 20 #include "xe_assert.h" 21 #include "xe_bb.h" 22 #include "xe_bo.h" 23 #include "xe_exec_queue.h" 24 #include "xe_ggtt.h" 25 #include "xe_gt.h" 26 #include "xe_hw_engine.h" 27 #include "xe_lrc.h" 28 #include "xe_map.h" 29 #include "xe_mocs.h" 30 #include "xe_pt.h" 31 #include "xe_res_cursor.h" 32 #include "xe_sched_job.h" 33 #include "xe_sync.h" 34 #include "xe_trace.h" 35 #include "xe_vm.h" 36 #include "xe_wa.h" 37 38 /** 39 * struct xe_migrate - migrate context. 40 */ 41 struct xe_migrate { 42 /** @q: Default exec queue used for migration */ 43 struct xe_exec_queue *q; 44 /** @tile: Backpointer to the tile this struct xe_migrate belongs to. */ 45 struct xe_tile *tile; 46 /** @job_mutex: Timeline mutex for @eng. */ 47 struct mutex job_mutex; 48 /** @pt_bo: Page-table buffer object. */ 49 struct xe_bo *pt_bo; 50 /** @batch_base_ofs: VM offset of the migration batch buffer */ 51 u64 batch_base_ofs; 52 /** @usm_batch_base_ofs: VM offset of the usm batch buffer */ 53 u64 usm_batch_base_ofs; 54 /** @cleared_mem_ofs: VM offset of @cleared_bo. */ 55 u64 cleared_mem_ofs; 56 /** 57 * @fence: dma-fence representing the last migration job batch. 58 * Protected by @job_mutex. 59 */ 60 struct dma_fence *fence; 61 /** 62 * @vm_update_sa: For integrated, used to suballocate page-tables 63 * out of the pt_bo. 64 */ 65 struct drm_suballoc_manager vm_update_sa; 66 /** @min_chunk_size: For dgfx, Minimum chunk size */ 67 u64 min_chunk_size; 68 }; 69 70 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */ 71 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */ 72 #define NUM_KERNEL_PDE 17 73 #define NUM_PT_SLOTS 32 74 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M 75 #define MAX_NUM_PTE 512 76 77 /* 78 * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest 79 * legal value accepted. Since that instruction field is always stored in 80 * (val-2) format, this translates to 0x400 dwords for the true maximum length 81 * of the instruction. Subtracting the instruction header (1 dword) and 82 * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values. 83 */ 84 #define MAX_PTE_PER_SDI 0x1FE 85 86 /** 87 * xe_tile_migrate_engine() - Get this tile's migrate engine. 88 * @tile: The tile. 89 * 90 * Returns the default migrate engine of this tile. 91 * TODO: Perhaps this function is slightly misplaced, and even unneeded? 92 * 93 * Return: The default migrate engine 94 */ 95 struct xe_exec_queue *xe_tile_migrate_engine(struct xe_tile *tile) 96 { 97 return tile->migrate->q; 98 } 99 100 static void xe_migrate_fini(struct drm_device *dev, void *arg) 101 { 102 struct xe_migrate *m = arg; 103 104 xe_vm_lock(m->q->vm, false); 105 xe_bo_unpin(m->pt_bo); 106 xe_vm_unlock(m->q->vm); 107 108 dma_fence_put(m->fence); 109 xe_bo_put(m->pt_bo); 110 drm_suballoc_manager_fini(&m->vm_update_sa); 111 mutex_destroy(&m->job_mutex); 112 xe_vm_close_and_put(m->q->vm); 113 xe_exec_queue_put(m->q); 114 } 115 116 static u64 xe_migrate_vm_addr(u64 slot, u32 level) 117 { 118 XE_WARN_ON(slot >= NUM_PT_SLOTS); 119 120 /* First slot is reserved for mapping of PT bo and bb, start from 1 */ 121 return (slot + 1ULL) << xe_pt_shift(level + 1); 122 } 123 124 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr) 125 { 126 /* 127 * Remove the DPA to get a correct offset into identity table for the 128 * migrate offset 129 */ 130 addr -= xe->mem.vram.dpa_base; 131 return addr + (256ULL << xe_pt_shift(2)); 132 } 133 134 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, 135 struct xe_vm *vm) 136 { 137 struct xe_device *xe = tile_to_xe(tile); 138 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 139 u8 id = tile->id; 140 u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level; 141 u32 map_ofs, level, i; 142 struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo; 143 u64 entry; 144 145 /* Can't bump NUM_PT_SLOTS too high */ 146 BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE); 147 /* Must be a multiple of 64K to support all platforms */ 148 BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K); 149 /* And one slot reserved for the 4KiB page table updates */ 150 BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1)); 151 152 /* Need to be sure everything fits in the first PT, or create more */ 153 xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M); 154 155 bo = xe_bo_create_pin_map(vm->xe, tile, vm, 156 num_entries * XE_PAGE_SIZE, 157 ttm_bo_type_kernel, 158 XE_BO_CREATE_VRAM_IF_DGFX(tile) | 159 XE_BO_CREATE_PINNED_BIT); 160 if (IS_ERR(bo)) 161 return PTR_ERR(bo); 162 163 entry = vm->pt_ops->pde_encode_bo(bo, bo->size - XE_PAGE_SIZE, pat_index); 164 xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry); 165 166 map_ofs = (num_entries - num_level) * XE_PAGE_SIZE; 167 168 /* Map the entire BO in our level 0 pt */ 169 for (i = 0, level = 0; i < num_entries; level++) { 170 entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE, 171 pat_index, 0); 172 173 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry); 174 175 if (vm->flags & XE_VM_FLAG_64K) 176 i += 16; 177 else 178 i += 1; 179 } 180 181 if (!IS_DGFX(xe)) { 182 /* Write out batch too */ 183 m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE; 184 for (i = 0; i < batch->size; 185 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : 186 XE_PAGE_SIZE) { 187 entry = vm->pt_ops->pte_encode_bo(batch, i, 188 pat_index, 0); 189 190 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, 191 entry); 192 level++; 193 } 194 if (xe->info.has_usm) { 195 xe_tile_assert(tile, batch->size == SZ_1M); 196 197 batch = tile->primary_gt->usm.bb_pool->bo; 198 m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M; 199 xe_tile_assert(tile, batch->size == SZ_512K); 200 201 for (i = 0; i < batch->size; 202 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : 203 XE_PAGE_SIZE) { 204 entry = vm->pt_ops->pte_encode_bo(batch, i, 205 pat_index, 0); 206 207 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, 208 entry); 209 level++; 210 } 211 } 212 } else { 213 u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); 214 215 m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr); 216 217 if (xe->info.has_usm) { 218 batch = tile->primary_gt->usm.bb_pool->bo; 219 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); 220 m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr); 221 } 222 } 223 224 for (level = 1; level < num_level; level++) { 225 u32 flags = 0; 226 227 if (vm->flags & XE_VM_FLAG_64K && level == 1) 228 flags = XE_PDE_64K; 229 230 entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) * 231 XE_PAGE_SIZE, pat_index); 232 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64, 233 entry | flags); 234 } 235 236 /* Write PDE's that point to our BO. */ 237 for (i = 0; i < num_entries - num_level; i++) { 238 entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE, 239 pat_index); 240 241 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE + 242 (i + 1) * 8, u64, entry); 243 } 244 245 /* Set up a 1GiB NULL mapping at 255GiB offset. */ 246 level = 2; 247 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64, 248 vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) 249 | XE_PTE_NULL); 250 m->cleared_mem_ofs = (255ULL << xe_pt_shift(level)); 251 252 /* Identity map the entire vram at 256GiB offset */ 253 if (IS_DGFX(xe)) { 254 u64 pos, ofs, flags; 255 256 level = 2; 257 ofs = map_ofs + XE_PAGE_SIZE * level + 256 * 8; 258 flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, 259 true, 0); 260 261 /* 262 * Use 1GB pages, it shouldn't matter the physical amount of 263 * vram is less, when we don't access it. 264 */ 265 for (pos = xe->mem.vram.dpa_base; 266 pos < xe->mem.vram.actual_physical_size + xe->mem.vram.dpa_base; 267 pos += SZ_1G, ofs += 8) 268 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); 269 } 270 271 /* 272 * Example layout created above, with root level = 3: 273 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's 274 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's 275 * [PT9...PT28]: Userspace PT's for VM_BIND, 4 KiB PTE's 276 * [PT29 = PDE 0] [PT30 = PDE 1] [PT31 = PDE 2] 277 * 278 * This makes the lowest part of the VM point to the pagetables. 279 * Hence the lowest 2M in the vm should point to itself, with a few writes 280 * and flushes, other parts of the VM can be used either for copying and 281 * clearing. 282 * 283 * For performance, the kernel reserves PDE's, so about 20 are left 284 * for async VM updates. 285 * 286 * To make it easier to work, each scratch PT is put in slot (1 + PT #) 287 * everywhere, this allows lockless updates to scratch pages by using 288 * the different addresses in VM. 289 */ 290 #define NUM_VMUSA_UNIT_PER_PAGE 32 291 #define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE) 292 #define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64)) 293 drm_suballoc_manager_init(&m->vm_update_sa, 294 (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) * 295 NUM_VMUSA_UNIT_PER_PAGE, 0); 296 297 m->pt_bo = bo; 298 return 0; 299 } 300 301 /* 302 * Due to workaround 16017236439, odd instance hardware copy engines are 303 * faster than even instance ones. 304 * This function returns the mask involving all fast copy engines and the 305 * reserved copy engine to be used as logical mask for migrate engine. 306 * Including the reserved copy engine is required to avoid deadlocks due to 307 * migrate jobs servicing the faults gets stuck behind the job that faulted. 308 */ 309 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt) 310 { 311 u32 logical_mask = 0; 312 struct xe_hw_engine *hwe; 313 enum xe_hw_engine_id id; 314 315 for_each_hw_engine(hwe, gt, id) { 316 if (hwe->class != XE_ENGINE_CLASS_COPY) 317 continue; 318 319 if (!XE_WA(gt, 16017236439) || 320 xe_gt_is_usm_hwe(gt, hwe) || hwe->instance & 1) 321 logical_mask |= BIT(hwe->logical_instance); 322 } 323 324 return logical_mask; 325 } 326 327 /** 328 * xe_migrate_init() - Initialize a migrate context 329 * @tile: Back-pointer to the tile we're initializing for. 330 * 331 * Return: Pointer to a migrate context on success. Error pointer on error. 332 */ 333 struct xe_migrate *xe_migrate_init(struct xe_tile *tile) 334 { 335 struct xe_device *xe = tile_to_xe(tile); 336 struct xe_gt *primary_gt = tile->primary_gt; 337 struct xe_migrate *m; 338 struct xe_vm *vm; 339 int err; 340 341 m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL); 342 if (!m) 343 return ERR_PTR(-ENOMEM); 344 345 m->tile = tile; 346 347 /* Special layout, prepared below.. */ 348 vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION | 349 XE_VM_FLAG_SET_TILE_ID(tile)); 350 if (IS_ERR(vm)) 351 return ERR_CAST(vm); 352 353 xe_vm_lock(vm, false); 354 err = xe_migrate_prepare_vm(tile, m, vm); 355 xe_vm_unlock(vm); 356 if (err) { 357 xe_vm_close_and_put(vm); 358 return ERR_PTR(err); 359 } 360 361 if (xe->info.has_usm) { 362 struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt, 363 XE_ENGINE_CLASS_COPY, 364 primary_gt->usm.reserved_bcs_instance, 365 false); 366 u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt); 367 368 if (!hwe || !logical_mask) 369 return ERR_PTR(-EINVAL); 370 371 m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe, 372 EXEC_QUEUE_FLAG_KERNEL | 373 EXEC_QUEUE_FLAG_PERMANENT | 374 EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0); 375 } else { 376 m->q = xe_exec_queue_create_class(xe, primary_gt, vm, 377 XE_ENGINE_CLASS_COPY, 378 EXEC_QUEUE_FLAG_KERNEL | 379 EXEC_QUEUE_FLAG_PERMANENT); 380 } 381 if (IS_ERR(m->q)) { 382 xe_vm_close_and_put(vm); 383 return ERR_CAST(m->q); 384 } 385 386 mutex_init(&m->job_mutex); 387 388 err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m); 389 if (err) 390 return ERR_PTR(err); 391 392 if (IS_DGFX(xe)) { 393 if (xe_device_has_flat_ccs(xe)) 394 /* min chunk size corresponds to 4K of CCS Metadata */ 395 m->min_chunk_size = SZ_4K * SZ_64K / 396 xe_device_ccs_bytes(xe, SZ_64K); 397 else 398 /* Somewhat arbitrary to avoid a huge amount of blits */ 399 m->min_chunk_size = SZ_64K; 400 m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size); 401 drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n", 402 (unsigned long long)m->min_chunk_size); 403 } 404 405 return m; 406 } 407 408 static u64 max_mem_transfer_per_pass(struct xe_device *xe) 409 { 410 if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe)) 411 return MAX_CCS_LIMITED_TRANSFER; 412 413 return MAX_PREEMPTDISABLE_TRANSFER; 414 } 415 416 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur) 417 { 418 struct xe_device *xe = tile_to_xe(m->tile); 419 u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining); 420 421 if (mem_type_is_vram(cur->mem_type)) { 422 /* 423 * VRAM we want to blit in chunks with sizes aligned to 424 * min_chunk_size in order for the offset to CCS metadata to be 425 * page-aligned. If it's the last chunk it may be smaller. 426 * 427 * Another constraint is that we need to limit the blit to 428 * the VRAM block size, unless size is smaller than 429 * min_chunk_size. 430 */ 431 u64 chunk = max_t(u64, cur->size, m->min_chunk_size); 432 433 size = min_t(u64, size, chunk); 434 if (size > m->min_chunk_size) 435 size = round_down(size, m->min_chunk_size); 436 } 437 438 return size; 439 } 440 441 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur) 442 { 443 /* If the chunk is not fragmented, allow identity map. */ 444 return cur->size >= size; 445 } 446 447 static u32 pte_update_size(struct xe_migrate *m, 448 bool is_vram, 449 struct ttm_resource *res, 450 struct xe_res_cursor *cur, 451 u64 *L0, u64 *L0_ofs, u32 *L0_pt, 452 u32 cmd_size, u32 pt_ofs, u32 avail_pts) 453 { 454 u32 cmds = 0; 455 456 *L0_pt = pt_ofs; 457 if (is_vram && xe_migrate_allow_identity(*L0, cur)) { 458 /* Offset into identity map. */ 459 *L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile), 460 cur->start + vram_region_gpu_offset(res)); 461 cmds += cmd_size; 462 } else { 463 /* Clip L0 to available size */ 464 u64 size = min(*L0, (u64)avail_pts * SZ_2M); 465 u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT; 466 467 *L0 = size; 468 *L0_ofs = xe_migrate_vm_addr(pt_ofs, 0); 469 470 /* MI_STORE_DATA_IMM */ 471 cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI); 472 473 /* PDE qwords */ 474 cmds += num_4k_pages * 2; 475 476 /* Each chunk has a single blit command */ 477 cmds += cmd_size; 478 } 479 480 return cmds; 481 } 482 483 static void emit_pte(struct xe_migrate *m, 484 struct xe_bb *bb, u32 at_pt, 485 bool is_vram, bool is_comp_pte, 486 struct xe_res_cursor *cur, 487 u32 size, struct ttm_resource *res) 488 { 489 struct xe_device *xe = tile_to_xe(m->tile); 490 struct xe_vm *vm = m->q->vm; 491 u16 pat_index; 492 u32 ptes; 493 u64 ofs = (u64)at_pt * XE_PAGE_SIZE; 494 u64 cur_ofs; 495 496 /* Indirect access needs compression enabled uncached PAT index */ 497 if (GRAPHICS_VERx100(xe) >= 2000) 498 pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] : 499 xe->pat.idx[XE_CACHE_WB]; 500 else 501 pat_index = xe->pat.idx[XE_CACHE_WB]; 502 503 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE); 504 505 while (ptes) { 506 u32 chunk = min(MAX_PTE_PER_SDI, ptes); 507 508 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 509 bb->cs[bb->len++] = ofs; 510 bb->cs[bb->len++] = 0; 511 512 cur_ofs = ofs; 513 ofs += chunk * 8; 514 ptes -= chunk; 515 516 while (chunk--) { 517 u64 addr, flags = 0; 518 bool devmem = false; 519 520 addr = xe_res_dma(cur) & PAGE_MASK; 521 if (is_vram) { 522 if (vm->flags & XE_VM_FLAG_64K) { 523 u64 va = cur_ofs * XE_PAGE_SIZE / 8; 524 525 xe_assert(xe, (va & (SZ_64K - 1)) == 526 (addr & (SZ_64K - 1))); 527 528 flags |= XE_PTE_PS64; 529 } 530 531 addr += vram_region_gpu_offset(res); 532 devmem = true; 533 } 534 535 addr = vm->pt_ops->pte_encode_addr(m->tile->xe, 536 addr, pat_index, 537 0, devmem, flags); 538 bb->cs[bb->len++] = lower_32_bits(addr); 539 bb->cs[bb->len++] = upper_32_bits(addr); 540 541 xe_res_next(cur, min_t(u32, size, PAGE_SIZE)); 542 cur_ofs += 8; 543 } 544 } 545 } 546 547 #define EMIT_COPY_CCS_DW 5 548 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb, 549 u64 dst_ofs, bool dst_is_indirect, 550 u64 src_ofs, bool src_is_indirect, 551 u32 size) 552 { 553 struct xe_device *xe = gt_to_xe(gt); 554 u32 *cs = bb->cs + bb->len; 555 u32 num_ccs_blks; 556 u32 num_pages; 557 u32 ccs_copy_size; 558 u32 mocs; 559 560 if (GRAPHICS_VERx100(xe) >= 2000) { 561 num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE); 562 xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1)); 563 564 ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1); 565 mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index); 566 567 } else { 568 num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size), 569 NUM_CCS_BYTES_PER_BLOCK); 570 xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1)); 571 572 ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1); 573 mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index); 574 } 575 576 *cs++ = XY_CTRL_SURF_COPY_BLT | 577 (src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT | 578 (dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT | 579 ccs_copy_size; 580 *cs++ = lower_32_bits(src_ofs); 581 *cs++ = upper_32_bits(src_ofs) | mocs; 582 *cs++ = lower_32_bits(dst_ofs); 583 *cs++ = upper_32_bits(dst_ofs) | mocs; 584 585 bb->len = cs - bb->cs; 586 } 587 588 #define EMIT_COPY_DW 10 589 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb, 590 u64 src_ofs, u64 dst_ofs, unsigned int size, 591 unsigned int pitch) 592 { 593 struct xe_device *xe = gt_to_xe(gt); 594 u32 mocs = 0; 595 u32 tile_y = 0; 596 597 xe_gt_assert(gt, size / pitch <= S16_MAX); 598 xe_gt_assert(gt, pitch / 4 <= S16_MAX); 599 xe_gt_assert(gt, pitch <= U16_MAX); 600 601 if (GRAPHICS_VER(xe) >= 20) 602 mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index); 603 604 if (GRAPHICS_VERx100(xe) >= 1250) 605 tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4; 606 607 bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2); 608 bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs; 609 bb->cs[bb->len++] = 0; 610 bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4; 611 bb->cs[bb->len++] = lower_32_bits(dst_ofs); 612 bb->cs[bb->len++] = upper_32_bits(dst_ofs); 613 bb->cs[bb->len++] = 0; 614 bb->cs[bb->len++] = pitch | mocs; 615 bb->cs[bb->len++] = lower_32_bits(src_ofs); 616 bb->cs[bb->len++] = upper_32_bits(src_ofs); 617 } 618 619 static int job_add_deps(struct xe_sched_job *job, struct dma_resv *resv, 620 enum dma_resv_usage usage) 621 { 622 return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage); 623 } 624 625 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm) 626 { 627 return usm ? m->usm_batch_base_ofs : m->batch_base_ofs; 628 } 629 630 static u32 xe_migrate_ccs_copy(struct xe_migrate *m, 631 struct xe_bb *bb, 632 u64 src_ofs, bool src_is_indirect, 633 u64 dst_ofs, bool dst_is_indirect, u32 dst_size, 634 u64 ccs_ofs, bool copy_ccs) 635 { 636 struct xe_gt *gt = m->tile->primary_gt; 637 u32 flush_flags = 0; 638 639 if (xe_device_has_flat_ccs(gt_to_xe(gt)) && !copy_ccs && dst_is_indirect) { 640 /* 641 * If the src is already in vram, then it should already 642 * have been cleared by us, or has been populated by the 643 * user. Make sure we copy the CCS aux state as-is. 644 * 645 * Otherwise if the bo doesn't have any CCS metadata attached, 646 * we still need to clear it for security reasons. 647 */ 648 u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs; 649 650 emit_copy_ccs(gt, bb, 651 dst_ofs, true, 652 ccs_src_ofs, src_is_indirect, dst_size); 653 654 flush_flags = MI_FLUSH_DW_CCS; 655 } else if (copy_ccs) { 656 if (!src_is_indirect) 657 src_ofs = ccs_ofs; 658 else if (!dst_is_indirect) 659 dst_ofs = ccs_ofs; 660 661 xe_gt_assert(gt, src_is_indirect || dst_is_indirect); 662 663 emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs, 664 src_is_indirect, dst_size); 665 if (dst_is_indirect) 666 flush_flags = MI_FLUSH_DW_CCS; 667 } 668 669 return flush_flags; 670 } 671 672 /** 673 * xe_migrate_copy() - Copy content of TTM resources. 674 * @m: The migration context. 675 * @src_bo: The buffer object @src is currently bound to. 676 * @dst_bo: If copying between resources created for the same bo, set this to 677 * the same value as @src_bo. If copying between buffer objects, set it to 678 * the buffer object @dst is currently bound to. 679 * @src: The source TTM resource. 680 * @dst: The dst TTM resource. 681 * @copy_only_ccs: If true copy only CCS metadata 682 * 683 * Copies the contents of @src to @dst: On flat CCS devices, 684 * the CCS metadata is copied as well if needed, or if not present, 685 * the CCS metadata of @dst is cleared for security reasons. 686 * 687 * Return: Pointer to a dma_fence representing the last copy batch, or 688 * an error pointer on failure. If there is a failure, any copy operation 689 * started by the function call has been synced. 690 */ 691 struct dma_fence *xe_migrate_copy(struct xe_migrate *m, 692 struct xe_bo *src_bo, 693 struct xe_bo *dst_bo, 694 struct ttm_resource *src, 695 struct ttm_resource *dst, 696 bool copy_only_ccs) 697 { 698 struct xe_gt *gt = m->tile->primary_gt; 699 struct xe_device *xe = gt_to_xe(gt); 700 struct dma_fence *fence = NULL; 701 u64 size = src_bo->size; 702 struct xe_res_cursor src_it, dst_it, ccs_it; 703 u64 src_L0_ofs, dst_L0_ofs; 704 u32 src_L0_pt, dst_L0_pt; 705 u64 src_L0, dst_L0; 706 int pass = 0; 707 int err; 708 bool src_is_pltt = src->mem_type == XE_PL_TT; 709 bool dst_is_pltt = dst->mem_type == XE_PL_TT; 710 bool src_is_vram = mem_type_is_vram(src->mem_type); 711 bool dst_is_vram = mem_type_is_vram(dst->mem_type); 712 bool copy_ccs = xe_device_has_flat_ccs(xe) && 713 xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo); 714 bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram); 715 716 /* Copying CCS between two different BOs is not supported yet. */ 717 if (XE_WARN_ON(copy_ccs && src_bo != dst_bo)) 718 return ERR_PTR(-EINVAL); 719 720 if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size)) 721 return ERR_PTR(-EINVAL); 722 723 if (!src_is_vram) 724 xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it); 725 else 726 xe_res_first(src, 0, size, &src_it); 727 if (!dst_is_vram) 728 xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it); 729 else 730 xe_res_first(dst, 0, size, &dst_it); 731 732 if (copy_system_ccs) 733 xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo), 734 PAGE_ALIGN(xe_device_ccs_bytes(xe, size)), 735 &ccs_it); 736 737 while (size) { 738 u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */ 739 struct xe_sched_job *job; 740 struct xe_bb *bb; 741 u32 flush_flags; 742 u32 update_idx; 743 u64 ccs_ofs, ccs_size; 744 u32 ccs_pt; 745 746 bool usm = xe->info.has_usm; 747 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 748 749 src_L0 = xe_migrate_res_sizes(m, &src_it); 750 dst_L0 = xe_migrate_res_sizes(m, &dst_it); 751 752 drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n", 753 pass++, src_L0, dst_L0); 754 755 src_L0 = min(src_L0, dst_L0); 756 757 batch_size += pte_update_size(m, src_is_vram, src, &src_it, &src_L0, 758 &src_L0_ofs, &src_L0_pt, 0, 0, 759 avail_pts); 760 761 batch_size += pte_update_size(m, dst_is_vram, dst, &dst_it, &src_L0, 762 &dst_L0_ofs, &dst_L0_pt, 0, 763 avail_pts, avail_pts); 764 765 if (copy_system_ccs) { 766 ccs_size = xe_device_ccs_bytes(xe, src_L0); 767 batch_size += pte_update_size(m, false, NULL, &ccs_it, &ccs_size, 768 &ccs_ofs, &ccs_pt, 0, 769 2 * avail_pts, 770 avail_pts); 771 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); 772 } 773 774 /* Add copy commands size here */ 775 batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) + 776 ((xe_device_has_flat_ccs(xe) ? EMIT_COPY_CCS_DW : 0)); 777 778 bb = xe_bb_new(gt, batch_size, usm); 779 if (IS_ERR(bb)) { 780 err = PTR_ERR(bb); 781 goto err_sync; 782 } 783 784 if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it)) 785 xe_res_next(&src_it, src_L0); 786 else 787 emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs, 788 &src_it, src_L0, src); 789 790 if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it)) 791 xe_res_next(&dst_it, src_L0); 792 else 793 emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs, 794 &dst_it, src_L0, dst); 795 796 if (copy_system_ccs) 797 emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src); 798 799 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 800 update_idx = bb->len; 801 802 if (!copy_only_ccs) 803 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE); 804 805 flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, 806 IS_DGFX(xe) ? src_is_vram : src_is_pltt, 807 dst_L0_ofs, 808 IS_DGFX(xe) ? dst_is_vram : dst_is_pltt, 809 src_L0, ccs_ofs, copy_ccs); 810 811 mutex_lock(&m->job_mutex); 812 job = xe_bb_create_migration_job(m->q, bb, 813 xe_migrate_batch_base(m, usm), 814 update_idx); 815 if (IS_ERR(job)) { 816 err = PTR_ERR(job); 817 goto err; 818 } 819 820 xe_sched_job_add_migrate_flush(job, flush_flags); 821 if (!fence) { 822 err = job_add_deps(job, src_bo->ttm.base.resv, 823 DMA_RESV_USAGE_BOOKKEEP); 824 if (!err && src_bo != dst_bo) 825 err = job_add_deps(job, dst_bo->ttm.base.resv, 826 DMA_RESV_USAGE_BOOKKEEP); 827 if (err) 828 goto err_job; 829 } 830 831 xe_sched_job_arm(job); 832 dma_fence_put(fence); 833 fence = dma_fence_get(&job->drm.s_fence->finished); 834 xe_sched_job_push(job); 835 836 dma_fence_put(m->fence); 837 m->fence = dma_fence_get(fence); 838 839 mutex_unlock(&m->job_mutex); 840 841 xe_bb_free(bb, fence); 842 size -= src_L0; 843 continue; 844 845 err_job: 846 xe_sched_job_put(job); 847 err: 848 mutex_unlock(&m->job_mutex); 849 xe_bb_free(bb, NULL); 850 851 err_sync: 852 /* Sync partial copy if any. FIXME: under job_mutex? */ 853 if (fence) { 854 dma_fence_wait(fence, false); 855 dma_fence_put(fence); 856 } 857 858 return ERR_PTR(err); 859 } 860 861 return fence; 862 } 863 864 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, 865 u32 size, u32 pitch) 866 { 867 struct xe_device *xe = gt_to_xe(gt); 868 u32 *cs = bb->cs + bb->len; 869 u32 len = PVC_MEM_SET_CMD_LEN_DW; 870 871 *cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2); 872 *cs++ = pitch - 1; 873 *cs++ = (size / pitch) - 1; 874 *cs++ = pitch - 1; 875 *cs++ = lower_32_bits(src_ofs); 876 *cs++ = upper_32_bits(src_ofs); 877 if (GRAPHICS_VERx100(xe) >= 2000) 878 *cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); 879 else 880 *cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); 881 882 xe_gt_assert(gt, cs - bb->cs == len + bb->len); 883 884 bb->len += len; 885 } 886 887 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb, 888 u64 src_ofs, u32 size, u32 pitch, bool is_vram) 889 { 890 struct xe_device *xe = gt_to_xe(gt); 891 u32 *cs = bb->cs + bb->len; 892 u32 len = XY_FAST_COLOR_BLT_DW; 893 894 if (GRAPHICS_VERx100(xe) < 1250) 895 len = 11; 896 897 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | 898 (len - 2); 899 if (GRAPHICS_VERx100(xe) >= 2000) 900 *cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) | 901 (pitch - 1); 902 else 903 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) | 904 (pitch - 1); 905 *cs++ = 0; 906 *cs++ = (size / pitch) << 16 | pitch / 4; 907 *cs++ = lower_32_bits(src_ofs); 908 *cs++ = upper_32_bits(src_ofs); 909 *cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; 910 *cs++ = 0; 911 *cs++ = 0; 912 *cs++ = 0; 913 *cs++ = 0; 914 915 if (len > 11) { 916 *cs++ = 0; 917 *cs++ = 0; 918 *cs++ = 0; 919 *cs++ = 0; 920 *cs++ = 0; 921 } 922 923 xe_gt_assert(gt, cs - bb->cs == len + bb->len); 924 925 bb->len += len; 926 } 927 928 static bool has_service_copy_support(struct xe_gt *gt) 929 { 930 /* 931 * What we care about is whether the architecture was designed with 932 * service copy functionality (specifically the new MEM_SET / MEM_COPY 933 * instructions) so check the architectural engine list rather than the 934 * actual list since these instructions are usable on BCS0 even if 935 * all of the actual service copy engines (BCS1-BCS8) have been fused 936 * off. 937 */ 938 return gt->info.__engine_mask & GENMASK(XE_HW_ENGINE_BCS8, 939 XE_HW_ENGINE_BCS1); 940 } 941 942 static u32 emit_clear_cmd_len(struct xe_gt *gt) 943 { 944 if (has_service_copy_support(gt)) 945 return PVC_MEM_SET_CMD_LEN_DW; 946 else 947 return XY_FAST_COLOR_BLT_DW; 948 } 949 950 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, 951 u32 size, u32 pitch, bool is_vram) 952 { 953 if (has_service_copy_support(gt)) 954 emit_clear_link_copy(gt, bb, src_ofs, size, pitch); 955 else 956 emit_clear_main_copy(gt, bb, src_ofs, size, pitch, 957 is_vram); 958 } 959 960 /** 961 * xe_migrate_clear() - Copy content of TTM resources. 962 * @m: The migration context. 963 * @bo: The buffer object @dst is currently bound to. 964 * @dst: The dst TTM resource to be cleared. 965 * 966 * Clear the contents of @dst to zero. On flat CCS devices, 967 * the CCS metadata is cleared to zero as well on VRAM destinations. 968 * TODO: Eliminate the @bo argument. 969 * 970 * Return: Pointer to a dma_fence representing the last clear batch, or 971 * an error pointer on failure. If there is a failure, any clear operation 972 * started by the function call has been synced. 973 */ 974 struct dma_fence *xe_migrate_clear(struct xe_migrate *m, 975 struct xe_bo *bo, 976 struct ttm_resource *dst) 977 { 978 bool clear_vram = mem_type_is_vram(dst->mem_type); 979 struct xe_gt *gt = m->tile->primary_gt; 980 struct xe_device *xe = gt_to_xe(gt); 981 bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false; 982 struct dma_fence *fence = NULL; 983 u64 size = bo->size; 984 struct xe_res_cursor src_it; 985 struct ttm_resource *src = dst; 986 int err; 987 int pass = 0; 988 989 if (!clear_vram) 990 xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it); 991 else 992 xe_res_first(src, 0, bo->size, &src_it); 993 994 while (size) { 995 u64 clear_L0_ofs; 996 u32 clear_L0_pt; 997 u32 flush_flags = 0; 998 u64 clear_L0; 999 struct xe_sched_job *job; 1000 struct xe_bb *bb; 1001 u32 batch_size, update_idx; 1002 1003 bool usm = xe->info.has_usm; 1004 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 1005 1006 clear_L0 = xe_migrate_res_sizes(m, &src_it); 1007 1008 drm_dbg(&xe->drm, "Pass %u, size: %llu\n", pass++, clear_L0); 1009 1010 /* Calculate final sizes and batch size.. */ 1011 batch_size = 2 + 1012 pte_update_size(m, clear_vram, src, &src_it, 1013 &clear_L0, &clear_L0_ofs, &clear_L0_pt, 1014 clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0, 1015 avail_pts); 1016 1017 if (xe_device_has_flat_ccs(xe)) 1018 batch_size += EMIT_COPY_CCS_DW; 1019 1020 /* Clear commands */ 1021 1022 if (WARN_ON_ONCE(!clear_L0)) 1023 break; 1024 1025 bb = xe_bb_new(gt, batch_size, usm); 1026 if (IS_ERR(bb)) { 1027 err = PTR_ERR(bb); 1028 goto err_sync; 1029 } 1030 1031 size -= clear_L0; 1032 /* Preemption is enabled again by the ring ops. */ 1033 if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it)) 1034 xe_res_next(&src_it, clear_L0); 1035 else 1036 emit_pte(m, bb, clear_L0_pt, clear_vram, clear_system_ccs, 1037 &src_it, clear_L0, dst); 1038 1039 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1040 update_idx = bb->len; 1041 1042 if (!clear_system_ccs) 1043 emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram); 1044 1045 if (xe_device_has_flat_ccs(xe)) { 1046 emit_copy_ccs(gt, bb, clear_L0_ofs, true, 1047 m->cleared_mem_ofs, false, clear_L0); 1048 flush_flags = MI_FLUSH_DW_CCS; 1049 } 1050 1051 mutex_lock(&m->job_mutex); 1052 job = xe_bb_create_migration_job(m->q, bb, 1053 xe_migrate_batch_base(m, usm), 1054 update_idx); 1055 if (IS_ERR(job)) { 1056 err = PTR_ERR(job); 1057 goto err; 1058 } 1059 1060 xe_sched_job_add_migrate_flush(job, flush_flags); 1061 if (!fence) { 1062 /* 1063 * There can't be anything userspace related at this 1064 * point, so we just need to respect any potential move 1065 * fences, which are always tracked as 1066 * DMA_RESV_USAGE_KERNEL. 1067 */ 1068 err = job_add_deps(job, bo->ttm.base.resv, 1069 DMA_RESV_USAGE_KERNEL); 1070 if (err) 1071 goto err_job; 1072 } 1073 1074 xe_sched_job_arm(job); 1075 dma_fence_put(fence); 1076 fence = dma_fence_get(&job->drm.s_fence->finished); 1077 xe_sched_job_push(job); 1078 1079 dma_fence_put(m->fence); 1080 m->fence = dma_fence_get(fence); 1081 1082 mutex_unlock(&m->job_mutex); 1083 1084 xe_bb_free(bb, fence); 1085 continue; 1086 1087 err_job: 1088 xe_sched_job_put(job); 1089 err: 1090 mutex_unlock(&m->job_mutex); 1091 xe_bb_free(bb, NULL); 1092 err_sync: 1093 /* Sync partial copies if any. FIXME: job_mutex? */ 1094 if (fence) { 1095 dma_fence_wait(m->fence, false); 1096 dma_fence_put(fence); 1097 } 1098 1099 return ERR_PTR(err); 1100 } 1101 1102 if (clear_system_ccs) 1103 bo->ccs_cleared = true; 1104 1105 return fence; 1106 } 1107 1108 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs, 1109 const struct xe_vm_pgtable_update *update, 1110 struct xe_migrate_pt_update *pt_update) 1111 { 1112 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1113 u32 chunk; 1114 u32 ofs = update->ofs, size = update->qwords; 1115 1116 /* 1117 * If we have 512 entries (max), we would populate it ourselves, 1118 * and update the PDE above it to the new pointer. 1119 * The only time this can only happen if we have to update the top 1120 * PDE. This requires a BO that is almost vm->size big. 1121 * 1122 * This shouldn't be possible in practice.. might change when 16K 1123 * pages are used. Hence the assert. 1124 */ 1125 xe_tile_assert(tile, update->qwords < MAX_NUM_PTE); 1126 if (!ppgtt_ofs) 1127 ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile), 1128 xe_bo_addr(update->pt_bo, 0, 1129 XE_PAGE_SIZE)); 1130 1131 do { 1132 u64 addr = ppgtt_ofs + ofs * 8; 1133 1134 chunk = min(size, MAX_PTE_PER_SDI); 1135 1136 /* Ensure populatefn can do memset64 by aligning bb->cs */ 1137 if (!(bb->len & 1)) 1138 bb->cs[bb->len++] = MI_NOOP; 1139 1140 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 1141 bb->cs[bb->len++] = lower_32_bits(addr); 1142 bb->cs[bb->len++] = upper_32_bits(addr); 1143 ops->populate(pt_update, tile, NULL, bb->cs + bb->len, ofs, chunk, 1144 update); 1145 1146 bb->len += chunk * 2; 1147 ofs += chunk; 1148 size -= chunk; 1149 } while (size); 1150 } 1151 1152 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m) 1153 { 1154 return xe_vm_get(m->q->vm); 1155 } 1156 1157 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 1158 struct migrate_test_params { 1159 struct xe_test_priv base; 1160 bool force_gpu; 1161 }; 1162 1163 #define to_migrate_test_params(_priv) \ 1164 container_of(_priv, struct migrate_test_params, base) 1165 #endif 1166 1167 static struct dma_fence * 1168 xe_migrate_update_pgtables_cpu(struct xe_migrate *m, 1169 struct xe_vm *vm, struct xe_bo *bo, 1170 const struct xe_vm_pgtable_update *updates, 1171 u32 num_updates, bool wait_vm, 1172 struct xe_migrate_pt_update *pt_update) 1173 { 1174 XE_TEST_DECLARE(struct migrate_test_params *test = 1175 to_migrate_test_params 1176 (xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));) 1177 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1178 struct dma_fence *fence; 1179 int err; 1180 u32 i; 1181 1182 if (XE_TEST_ONLY(test && test->force_gpu)) 1183 return ERR_PTR(-ETIME); 1184 1185 if (bo && !dma_resv_test_signaled(bo->ttm.base.resv, 1186 DMA_RESV_USAGE_KERNEL)) 1187 return ERR_PTR(-ETIME); 1188 1189 if (wait_vm && !dma_resv_test_signaled(xe_vm_resv(vm), 1190 DMA_RESV_USAGE_BOOKKEEP)) 1191 return ERR_PTR(-ETIME); 1192 1193 if (ops->pre_commit) { 1194 pt_update->job = NULL; 1195 err = ops->pre_commit(pt_update); 1196 if (err) 1197 return ERR_PTR(err); 1198 } 1199 for (i = 0; i < num_updates; i++) { 1200 const struct xe_vm_pgtable_update *update = &updates[i]; 1201 1202 ops->populate(pt_update, m->tile, &update->pt_bo->vmap, NULL, 1203 update->ofs, update->qwords, update); 1204 } 1205 1206 if (vm) { 1207 trace_xe_vm_cpu_bind(vm); 1208 xe_device_wmb(vm->xe); 1209 } 1210 1211 fence = dma_fence_get_stub(); 1212 1213 return fence; 1214 } 1215 1216 static bool no_in_syncs(struct xe_vm *vm, struct xe_exec_queue *q, 1217 struct xe_sync_entry *syncs, u32 num_syncs) 1218 { 1219 struct dma_fence *fence; 1220 int i; 1221 1222 for (i = 0; i < num_syncs; i++) { 1223 fence = syncs[i].fence; 1224 1225 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1226 &fence->flags)) 1227 return false; 1228 } 1229 if (q) { 1230 fence = xe_exec_queue_last_fence_get(q, vm); 1231 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1232 dma_fence_put(fence); 1233 return false; 1234 } 1235 dma_fence_put(fence); 1236 } 1237 1238 return true; 1239 } 1240 1241 /** 1242 * xe_migrate_update_pgtables() - Pipelined page-table update 1243 * @m: The migrate context. 1244 * @vm: The vm we'll be updating. 1245 * @bo: The bo whose dma-resv we will await before updating, or NULL if userptr. 1246 * @q: The exec queue to be used for the update or NULL if the default 1247 * migration engine is to be used. 1248 * @updates: An array of update descriptors. 1249 * @num_updates: Number of descriptors in @updates. 1250 * @syncs: Array of xe_sync_entry to await before updating. Note that waits 1251 * will block the engine timeline. 1252 * @num_syncs: Number of entries in @syncs. 1253 * @pt_update: Pointer to a struct xe_migrate_pt_update, which contains 1254 * pointers to callback functions and, if subclassed, private arguments to 1255 * those. 1256 * 1257 * Perform a pipelined page-table update. The update descriptors are typically 1258 * built under the same lock critical section as a call to this function. If 1259 * using the default engine for the updates, they will be performed in the 1260 * order they grab the job_mutex. If different engines are used, external 1261 * synchronization is needed for overlapping updates to maintain page-table 1262 * consistency. Note that the meaing of "overlapping" is that the updates 1263 * touch the same page-table, which might be a higher-level page-directory. 1264 * If no pipelining is needed, then updates may be performed by the cpu. 1265 * 1266 * Return: A dma_fence that, when signaled, indicates the update completion. 1267 */ 1268 struct dma_fence * 1269 xe_migrate_update_pgtables(struct xe_migrate *m, 1270 struct xe_vm *vm, 1271 struct xe_bo *bo, 1272 struct xe_exec_queue *q, 1273 const struct xe_vm_pgtable_update *updates, 1274 u32 num_updates, 1275 struct xe_sync_entry *syncs, u32 num_syncs, 1276 struct xe_migrate_pt_update *pt_update) 1277 { 1278 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1279 struct xe_tile *tile = m->tile; 1280 struct xe_gt *gt = tile->primary_gt; 1281 struct xe_device *xe = tile_to_xe(tile); 1282 struct xe_sched_job *job; 1283 struct dma_fence *fence; 1284 struct drm_suballoc *sa_bo = NULL; 1285 struct xe_vma *vma = pt_update->vma; 1286 struct xe_bb *bb; 1287 u32 i, batch_size, ppgtt_ofs, update_idx, page_ofs = 0; 1288 u64 addr; 1289 int err = 0; 1290 bool usm = !q && xe->info.has_usm; 1291 bool first_munmap_rebind = vma && 1292 vma->gpuva.flags & XE_VMA_FIRST_REBIND; 1293 struct xe_exec_queue *q_override = !q ? m->q : q; 1294 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 1295 1296 /* Use the CPU if no in syncs and engine is idle */ 1297 if (no_in_syncs(vm, q, syncs, num_syncs) && xe_exec_queue_is_idle(q_override)) { 1298 fence = xe_migrate_update_pgtables_cpu(m, vm, bo, updates, 1299 num_updates, 1300 first_munmap_rebind, 1301 pt_update); 1302 if (!IS_ERR(fence) || fence == ERR_PTR(-EAGAIN)) 1303 return fence; 1304 } 1305 1306 /* fixed + PTE entries */ 1307 if (IS_DGFX(xe)) 1308 batch_size = 2; 1309 else 1310 batch_size = 6 + num_updates * 2; 1311 1312 for (i = 0; i < num_updates; i++) { 1313 u32 num_cmds = DIV_ROUND_UP(updates[i].qwords, MAX_PTE_PER_SDI); 1314 1315 /* align noop + MI_STORE_DATA_IMM cmd prefix */ 1316 batch_size += 4 * num_cmds + updates[i].qwords * 2; 1317 } 1318 1319 /* 1320 * XXX: Create temp bo to copy from, if batch_size becomes too big? 1321 * 1322 * Worst case: Sum(2 * (each lower level page size) + (top level page size)) 1323 * Should be reasonably bound.. 1324 */ 1325 xe_tile_assert(tile, batch_size < SZ_128K); 1326 1327 bb = xe_bb_new(gt, batch_size, !q && xe->info.has_usm); 1328 if (IS_ERR(bb)) 1329 return ERR_CAST(bb); 1330 1331 /* For sysmem PTE's, need to map them in our hole.. */ 1332 if (!IS_DGFX(xe)) { 1333 ppgtt_ofs = NUM_KERNEL_PDE - 1; 1334 if (q) { 1335 xe_tile_assert(tile, num_updates <= NUM_VMUSA_WRITES_PER_UNIT); 1336 1337 sa_bo = drm_suballoc_new(&m->vm_update_sa, 1, 1338 GFP_KERNEL, true, 0); 1339 if (IS_ERR(sa_bo)) { 1340 err = PTR_ERR(sa_bo); 1341 goto err; 1342 } 1343 1344 ppgtt_ofs = NUM_KERNEL_PDE + 1345 (drm_suballoc_soffset(sa_bo) / 1346 NUM_VMUSA_UNIT_PER_PAGE); 1347 page_ofs = (drm_suballoc_soffset(sa_bo) % 1348 NUM_VMUSA_UNIT_PER_PAGE) * 1349 VM_SA_UPDATE_UNIT_SIZE; 1350 } 1351 1352 /* Map our PT's to gtt */ 1353 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(num_updates); 1354 bb->cs[bb->len++] = ppgtt_ofs * XE_PAGE_SIZE + page_ofs; 1355 bb->cs[bb->len++] = 0; /* upper_32_bits */ 1356 1357 for (i = 0; i < num_updates; i++) { 1358 struct xe_bo *pt_bo = updates[i].pt_bo; 1359 1360 xe_tile_assert(tile, pt_bo->size == SZ_4K); 1361 1362 addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, pat_index, 0); 1363 bb->cs[bb->len++] = lower_32_bits(addr); 1364 bb->cs[bb->len++] = upper_32_bits(addr); 1365 } 1366 1367 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1368 update_idx = bb->len; 1369 1370 addr = xe_migrate_vm_addr(ppgtt_ofs, 0) + 1371 (page_ofs / sizeof(u64)) * XE_PAGE_SIZE; 1372 for (i = 0; i < num_updates; i++) 1373 write_pgtable(tile, bb, addr + i * XE_PAGE_SIZE, 1374 &updates[i], pt_update); 1375 } else { 1376 /* phys pages, no preamble required */ 1377 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1378 update_idx = bb->len; 1379 1380 for (i = 0; i < num_updates; i++) 1381 write_pgtable(tile, bb, 0, &updates[i], pt_update); 1382 } 1383 1384 if (!q) 1385 mutex_lock(&m->job_mutex); 1386 1387 job = xe_bb_create_migration_job(q ?: m->q, bb, 1388 xe_migrate_batch_base(m, usm), 1389 update_idx); 1390 if (IS_ERR(job)) { 1391 err = PTR_ERR(job); 1392 goto err_bb; 1393 } 1394 1395 /* Wait on BO move */ 1396 if (bo) { 1397 err = job_add_deps(job, bo->ttm.base.resv, 1398 DMA_RESV_USAGE_KERNEL); 1399 if (err) 1400 goto err_job; 1401 } 1402 1403 /* 1404 * Munmap style VM unbind, need to wait for all jobs to be complete / 1405 * trigger preempts before moving forward 1406 */ 1407 if (first_munmap_rebind) { 1408 err = job_add_deps(job, xe_vm_resv(vm), 1409 DMA_RESV_USAGE_BOOKKEEP); 1410 if (err) 1411 goto err_job; 1412 } 1413 1414 err = xe_sched_job_last_fence_add_dep(job, vm); 1415 for (i = 0; !err && i < num_syncs; i++) 1416 err = xe_sync_entry_add_deps(&syncs[i], job); 1417 1418 if (err) 1419 goto err_job; 1420 1421 if (ops->pre_commit) { 1422 pt_update->job = job; 1423 err = ops->pre_commit(pt_update); 1424 if (err) 1425 goto err_job; 1426 } 1427 xe_sched_job_arm(job); 1428 fence = dma_fence_get(&job->drm.s_fence->finished); 1429 xe_sched_job_push(job); 1430 1431 if (!q) 1432 mutex_unlock(&m->job_mutex); 1433 1434 xe_bb_free(bb, fence); 1435 drm_suballoc_free(sa_bo, fence); 1436 1437 return fence; 1438 1439 err_job: 1440 xe_sched_job_put(job); 1441 err_bb: 1442 if (!q) 1443 mutex_unlock(&m->job_mutex); 1444 xe_bb_free(bb, NULL); 1445 err: 1446 drm_suballoc_free(sa_bo, NULL); 1447 return ERR_PTR(err); 1448 } 1449 1450 /** 1451 * xe_migrate_wait() - Complete all operations using the xe_migrate context 1452 * @m: Migrate context to wait for. 1453 * 1454 * Waits until the GPU no longer uses the migrate context's default engine 1455 * or its page-table objects. FIXME: What about separate page-table update 1456 * engines? 1457 */ 1458 void xe_migrate_wait(struct xe_migrate *m) 1459 { 1460 if (m->fence) 1461 dma_fence_wait(m->fence, false); 1462 } 1463 1464 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 1465 #include "tests/xe_migrate.c" 1466 #endif 1467