xref: /linux/drivers/gpu/drm/xe/xe_migrate.c (revision 7cc9196675234d4de0e1e19b9da1a8b86ecfeedd)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include "xe_migrate.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/sizes.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/ttm/ttm_tt.h>
13 #include <drm/xe_drm.h>
14 
15 #include <generated/xe_wa_oob.h>
16 
17 #include "instructions/xe_mi_commands.h"
18 #include "regs/xe_gpu_commands.h"
19 #include "tests/xe_test.h"
20 #include "xe_assert.h"
21 #include "xe_bb.h"
22 #include "xe_bo.h"
23 #include "xe_exec_queue.h"
24 #include "xe_ggtt.h"
25 #include "xe_gt.h"
26 #include "xe_hw_engine.h"
27 #include "xe_lrc.h"
28 #include "xe_map.h"
29 #include "xe_mocs.h"
30 #include "xe_pt.h"
31 #include "xe_res_cursor.h"
32 #include "xe_sched_job.h"
33 #include "xe_sync.h"
34 #include "xe_trace.h"
35 #include "xe_vm.h"
36 #include "xe_wa.h"
37 
38 /**
39  * struct xe_migrate - migrate context.
40  */
41 struct xe_migrate {
42 	/** @q: Default exec queue used for migration */
43 	struct xe_exec_queue *q;
44 	/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
45 	struct xe_tile *tile;
46 	/** @job_mutex: Timeline mutex for @eng. */
47 	struct mutex job_mutex;
48 	/** @pt_bo: Page-table buffer object. */
49 	struct xe_bo *pt_bo;
50 	/** @batch_base_ofs: VM offset of the migration batch buffer */
51 	u64 batch_base_ofs;
52 	/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
53 	u64 usm_batch_base_ofs;
54 	/** @cleared_mem_ofs: VM offset of @cleared_bo. */
55 	u64 cleared_mem_ofs;
56 	/**
57 	 * @fence: dma-fence representing the last migration job batch.
58 	 * Protected by @job_mutex.
59 	 */
60 	struct dma_fence *fence;
61 	/**
62 	 * @vm_update_sa: For integrated, used to suballocate page-tables
63 	 * out of the pt_bo.
64 	 */
65 	struct drm_suballoc_manager vm_update_sa;
66 	/** @min_chunk_size: For dgfx, Minimum chunk size */
67 	u64 min_chunk_size;
68 };
69 
70 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
71 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
72 #define NUM_KERNEL_PDE 17
73 #define NUM_PT_SLOTS 32
74 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
75 #define MAX_NUM_PTE 512
76 
77 /*
78  * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
79  * legal value accepted.  Since that instruction field is always stored in
80  * (val-2) format, this translates to 0x400 dwords for the true maximum length
81  * of the instruction.  Subtracting the instruction header (1 dword) and
82  * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
83  */
84 #define MAX_PTE_PER_SDI 0x1FE
85 
86 /**
87  * xe_tile_migrate_engine() - Get this tile's migrate engine.
88  * @tile: The tile.
89  *
90  * Returns the default migrate engine of this tile.
91  * TODO: Perhaps this function is slightly misplaced, and even unneeded?
92  *
93  * Return: The default migrate engine
94  */
95 struct xe_exec_queue *xe_tile_migrate_engine(struct xe_tile *tile)
96 {
97 	return tile->migrate->q;
98 }
99 
100 static void xe_migrate_fini(struct drm_device *dev, void *arg)
101 {
102 	struct xe_migrate *m = arg;
103 
104 	xe_vm_lock(m->q->vm, false);
105 	xe_bo_unpin(m->pt_bo);
106 	xe_vm_unlock(m->q->vm);
107 
108 	dma_fence_put(m->fence);
109 	xe_bo_put(m->pt_bo);
110 	drm_suballoc_manager_fini(&m->vm_update_sa);
111 	mutex_destroy(&m->job_mutex);
112 	xe_vm_close_and_put(m->q->vm);
113 	xe_exec_queue_put(m->q);
114 }
115 
116 static u64 xe_migrate_vm_addr(u64 slot, u32 level)
117 {
118 	XE_WARN_ON(slot >= NUM_PT_SLOTS);
119 
120 	/* First slot is reserved for mapping of PT bo and bb, start from 1 */
121 	return (slot + 1ULL) << xe_pt_shift(level + 1);
122 }
123 
124 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr)
125 {
126 	/*
127 	 * Remove the DPA to get a correct offset into identity table for the
128 	 * migrate offset
129 	 */
130 	addr -= xe->mem.vram.dpa_base;
131 	return addr + (256ULL << xe_pt_shift(2));
132 }
133 
134 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
135 				 struct xe_vm *vm)
136 {
137 	struct xe_device *xe = tile_to_xe(tile);
138 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
139 	u8 id = tile->id;
140 	u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
141 	u32 map_ofs, level, i;
142 	struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
143 	u64 entry;
144 
145 	/* Can't bump NUM_PT_SLOTS too high */
146 	BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
147 	/* Must be a multiple of 64K to support all platforms */
148 	BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
149 	/* And one slot reserved for the 4KiB page table updates */
150 	BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
151 
152 	/* Need to be sure everything fits in the first PT, or create more */
153 	xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
154 
155 	bo = xe_bo_create_pin_map(vm->xe, tile, vm,
156 				  num_entries * XE_PAGE_SIZE,
157 				  ttm_bo_type_kernel,
158 				  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
159 				  XE_BO_CREATE_PINNED_BIT);
160 	if (IS_ERR(bo))
161 		return PTR_ERR(bo);
162 
163 	entry = vm->pt_ops->pde_encode_bo(bo, bo->size - XE_PAGE_SIZE, pat_index);
164 	xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
165 
166 	map_ofs = (num_entries - num_level) * XE_PAGE_SIZE;
167 
168 	/* Map the entire BO in our level 0 pt */
169 	for (i = 0, level = 0; i < num_entries; level++) {
170 		entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
171 						  pat_index, 0);
172 
173 		xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
174 
175 		if (vm->flags & XE_VM_FLAG_64K)
176 			i += 16;
177 		else
178 			i += 1;
179 	}
180 
181 	if (!IS_DGFX(xe)) {
182 		/* Write out batch too */
183 		m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
184 		for (i = 0; i < batch->size;
185 		     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
186 		     XE_PAGE_SIZE) {
187 			entry = vm->pt_ops->pte_encode_bo(batch, i,
188 							  pat_index, 0);
189 
190 			xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
191 				  entry);
192 			level++;
193 		}
194 		if (xe->info.has_usm) {
195 			xe_tile_assert(tile, batch->size == SZ_1M);
196 
197 			batch = tile->primary_gt->usm.bb_pool->bo;
198 			m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
199 			xe_tile_assert(tile, batch->size == SZ_512K);
200 
201 			for (i = 0; i < batch->size;
202 			     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
203 			     XE_PAGE_SIZE) {
204 				entry = vm->pt_ops->pte_encode_bo(batch, i,
205 								  pat_index, 0);
206 
207 				xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
208 					  entry);
209 				level++;
210 			}
211 		}
212 	} else {
213 		u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
214 
215 		m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
216 
217 		if (xe->info.has_usm) {
218 			batch = tile->primary_gt->usm.bb_pool->bo;
219 			batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
220 			m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
221 		}
222 	}
223 
224 	for (level = 1; level < num_level; level++) {
225 		u32 flags = 0;
226 
227 		if (vm->flags & XE_VM_FLAG_64K && level == 1)
228 			flags = XE_PDE_64K;
229 
230 		entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (level - 1) *
231 						  XE_PAGE_SIZE, pat_index);
232 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
233 			  entry | flags);
234 	}
235 
236 	/* Write PDE's that point to our BO. */
237 	for (i = 0; i < num_entries - num_level; i++) {
238 		entry = vm->pt_ops->pde_encode_bo(bo, i * XE_PAGE_SIZE,
239 						  pat_index);
240 
241 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
242 			  (i + 1) * 8, u64, entry);
243 	}
244 
245 	/* Set up a 1GiB NULL mapping at 255GiB offset. */
246 	level = 2;
247 	xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
248 		  vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
249 		  | XE_PTE_NULL);
250 	m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
251 
252 	/* Identity map the entire vram at 256GiB offset */
253 	if (IS_DGFX(xe)) {
254 		u64 pos, ofs, flags;
255 
256 		level = 2;
257 		ofs = map_ofs + XE_PAGE_SIZE * level + 256 * 8;
258 		flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
259 						    true, 0);
260 
261 		/*
262 		 * Use 1GB pages, it shouldn't matter the physical amount of
263 		 * vram is less, when we don't access it.
264 		 */
265 		for (pos = xe->mem.vram.dpa_base;
266 		     pos < xe->mem.vram.actual_physical_size + xe->mem.vram.dpa_base;
267 		     pos += SZ_1G, ofs += 8)
268 			xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
269 	}
270 
271 	/*
272 	 * Example layout created above, with root level = 3:
273 	 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
274 	 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
275 	 * [PT9...PT28]: Userspace PT's for VM_BIND, 4 KiB PTE's
276 	 * [PT29 = PDE 0] [PT30 = PDE 1] [PT31 = PDE 2]
277 	 *
278 	 * This makes the lowest part of the VM point to the pagetables.
279 	 * Hence the lowest 2M in the vm should point to itself, with a few writes
280 	 * and flushes, other parts of the VM can be used either for copying and
281 	 * clearing.
282 	 *
283 	 * For performance, the kernel reserves PDE's, so about 20 are left
284 	 * for async VM updates.
285 	 *
286 	 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
287 	 * everywhere, this allows lockless updates to scratch pages by using
288 	 * the different addresses in VM.
289 	 */
290 #define NUM_VMUSA_UNIT_PER_PAGE	32
291 #define VM_SA_UPDATE_UNIT_SIZE		(XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
292 #define NUM_VMUSA_WRITES_PER_UNIT	(VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
293 	drm_suballoc_manager_init(&m->vm_update_sa,
294 				  (map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
295 				  NUM_VMUSA_UNIT_PER_PAGE, 0);
296 
297 	m->pt_bo = bo;
298 	return 0;
299 }
300 
301 /*
302  * Due to workaround 16017236439, odd instance hardware copy engines are
303  * faster than even instance ones.
304  * This function returns the mask involving all fast copy engines and the
305  * reserved copy engine to be used as logical mask for migrate engine.
306  * Including the reserved copy engine is required to avoid deadlocks due to
307  * migrate jobs servicing the faults gets stuck behind the job that faulted.
308  */
309 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
310 {
311 	u32 logical_mask = 0;
312 	struct xe_hw_engine *hwe;
313 	enum xe_hw_engine_id id;
314 
315 	for_each_hw_engine(hwe, gt, id) {
316 		if (hwe->class != XE_ENGINE_CLASS_COPY)
317 			continue;
318 
319 		if (!XE_WA(gt, 16017236439) ||
320 		    xe_gt_is_usm_hwe(gt, hwe) || hwe->instance & 1)
321 			logical_mask |= BIT(hwe->logical_instance);
322 	}
323 
324 	return logical_mask;
325 }
326 
327 /**
328  * xe_migrate_init() - Initialize a migrate context
329  * @tile: Back-pointer to the tile we're initializing for.
330  *
331  * Return: Pointer to a migrate context on success. Error pointer on error.
332  */
333 struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
334 {
335 	struct xe_device *xe = tile_to_xe(tile);
336 	struct xe_gt *primary_gt = tile->primary_gt;
337 	struct xe_migrate *m;
338 	struct xe_vm *vm;
339 	int err;
340 
341 	m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL);
342 	if (!m)
343 		return ERR_PTR(-ENOMEM);
344 
345 	m->tile = tile;
346 
347 	/* Special layout, prepared below.. */
348 	vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
349 			  XE_VM_FLAG_SET_TILE_ID(tile));
350 	if (IS_ERR(vm))
351 		return ERR_CAST(vm);
352 
353 	xe_vm_lock(vm, false);
354 	err = xe_migrate_prepare_vm(tile, m, vm);
355 	xe_vm_unlock(vm);
356 	if (err) {
357 		xe_vm_close_and_put(vm);
358 		return ERR_PTR(err);
359 	}
360 
361 	if (xe->info.has_usm) {
362 		struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
363 							   XE_ENGINE_CLASS_COPY,
364 							   primary_gt->usm.reserved_bcs_instance,
365 							   false);
366 		u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
367 
368 		if (!hwe || !logical_mask)
369 			return ERR_PTR(-EINVAL);
370 
371 		m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
372 					    EXEC_QUEUE_FLAG_KERNEL |
373 					    EXEC_QUEUE_FLAG_PERMANENT |
374 					    EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
375 	} else {
376 		m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
377 						  XE_ENGINE_CLASS_COPY,
378 						  EXEC_QUEUE_FLAG_KERNEL |
379 						  EXEC_QUEUE_FLAG_PERMANENT);
380 	}
381 	if (IS_ERR(m->q)) {
382 		xe_vm_close_and_put(vm);
383 		return ERR_CAST(m->q);
384 	}
385 
386 	mutex_init(&m->job_mutex);
387 
388 	err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m);
389 	if (err)
390 		return ERR_PTR(err);
391 
392 	if (IS_DGFX(xe)) {
393 		if (xe_device_has_flat_ccs(xe))
394 			/* min chunk size corresponds to 4K of CCS Metadata */
395 			m->min_chunk_size = SZ_4K * SZ_64K /
396 				xe_device_ccs_bytes(xe, SZ_64K);
397 		else
398 			/* Somewhat arbitrary to avoid a huge amount of blits */
399 			m->min_chunk_size = SZ_64K;
400 		m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
401 		drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
402 			(unsigned long long)m->min_chunk_size);
403 	}
404 
405 	return m;
406 }
407 
408 static u64 max_mem_transfer_per_pass(struct xe_device *xe)
409 {
410 	if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
411 		return MAX_CCS_LIMITED_TRANSFER;
412 
413 	return MAX_PREEMPTDISABLE_TRANSFER;
414 }
415 
416 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
417 {
418 	struct xe_device *xe = tile_to_xe(m->tile);
419 	u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
420 
421 	if (mem_type_is_vram(cur->mem_type)) {
422 		/*
423 		 * VRAM we want to blit in chunks with sizes aligned to
424 		 * min_chunk_size in order for the offset to CCS metadata to be
425 		 * page-aligned. If it's the last chunk it may be smaller.
426 		 *
427 		 * Another constraint is that we need to limit the blit to
428 		 * the VRAM block size, unless size is smaller than
429 		 * min_chunk_size.
430 		 */
431 		u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
432 
433 		size = min_t(u64, size, chunk);
434 		if (size > m->min_chunk_size)
435 			size = round_down(size, m->min_chunk_size);
436 	}
437 
438 	return size;
439 }
440 
441 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
442 {
443 	/* If the chunk is not fragmented, allow identity map. */
444 	return cur->size >= size;
445 }
446 
447 static u32 pte_update_size(struct xe_migrate *m,
448 			   bool is_vram,
449 			   struct ttm_resource *res,
450 			   struct xe_res_cursor *cur,
451 			   u64 *L0, u64 *L0_ofs, u32 *L0_pt,
452 			   u32 cmd_size, u32 pt_ofs, u32 avail_pts)
453 {
454 	u32 cmds = 0;
455 
456 	*L0_pt = pt_ofs;
457 	if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
458 		/* Offset into identity map. */
459 		*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
460 					      cur->start + vram_region_gpu_offset(res));
461 		cmds += cmd_size;
462 	} else {
463 		/* Clip L0 to available size */
464 		u64 size = min(*L0, (u64)avail_pts * SZ_2M);
465 		u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;
466 
467 		*L0 = size;
468 		*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
469 
470 		/* MI_STORE_DATA_IMM */
471 		cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
472 
473 		/* PDE qwords */
474 		cmds += num_4k_pages * 2;
475 
476 		/* Each chunk has a single blit command */
477 		cmds += cmd_size;
478 	}
479 
480 	return cmds;
481 }
482 
483 static void emit_pte(struct xe_migrate *m,
484 		     struct xe_bb *bb, u32 at_pt,
485 		     bool is_vram, bool is_comp_pte,
486 		     struct xe_res_cursor *cur,
487 		     u32 size, struct ttm_resource *res)
488 {
489 	struct xe_device *xe = tile_to_xe(m->tile);
490 	struct xe_vm *vm = m->q->vm;
491 	u16 pat_index;
492 	u32 ptes;
493 	u64 ofs = at_pt * XE_PAGE_SIZE;
494 	u64 cur_ofs;
495 
496 	/* Indirect access needs compression enabled uncached PAT index */
497 	if (GRAPHICS_VERx100(xe) >= 2000)
498 		pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
499 					  xe->pat.idx[XE_CACHE_WB];
500 	else
501 		pat_index = xe->pat.idx[XE_CACHE_WB];
502 
503 	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
504 
505 	while (ptes) {
506 		u32 chunk = min(MAX_PTE_PER_SDI, ptes);
507 
508 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
509 		bb->cs[bb->len++] = ofs;
510 		bb->cs[bb->len++] = 0;
511 
512 		cur_ofs = ofs;
513 		ofs += chunk * 8;
514 		ptes -= chunk;
515 
516 		while (chunk--) {
517 			u64 addr, flags = 0;
518 			bool devmem = false;
519 
520 			addr = xe_res_dma(cur) & PAGE_MASK;
521 			if (is_vram) {
522 				if (vm->flags & XE_VM_FLAG_64K) {
523 					u64 va = cur_ofs * XE_PAGE_SIZE / 8;
524 
525 					xe_assert(xe, (va & (SZ_64K - 1)) ==
526 						  (addr & (SZ_64K - 1)));
527 
528 					flags |= XE_PTE_PS64;
529 				}
530 
531 				addr += vram_region_gpu_offset(res);
532 				devmem = true;
533 			}
534 
535 			addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
536 							   addr, pat_index,
537 							   0, devmem, flags);
538 			bb->cs[bb->len++] = lower_32_bits(addr);
539 			bb->cs[bb->len++] = upper_32_bits(addr);
540 
541 			xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
542 			cur_ofs += 8;
543 		}
544 	}
545 }
546 
547 #define EMIT_COPY_CCS_DW 5
548 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
549 			  u64 dst_ofs, bool dst_is_indirect,
550 			  u64 src_ofs, bool src_is_indirect,
551 			  u32 size)
552 {
553 	struct xe_device *xe = gt_to_xe(gt);
554 	u32 *cs = bb->cs + bb->len;
555 	u32 num_ccs_blks;
556 	u32 num_pages;
557 	u32 ccs_copy_size;
558 	u32 mocs;
559 
560 	if (GRAPHICS_VERx100(xe) >= 2000) {
561 		num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
562 		xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
563 
564 		ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
565 		mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
566 
567 	} else {
568 		num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
569 					    NUM_CCS_BYTES_PER_BLOCK);
570 		xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
571 
572 		ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
573 		mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
574 	}
575 
576 	*cs++ = XY_CTRL_SURF_COPY_BLT |
577 		(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
578 		(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
579 		ccs_copy_size;
580 	*cs++ = lower_32_bits(src_ofs);
581 	*cs++ = upper_32_bits(src_ofs) | mocs;
582 	*cs++ = lower_32_bits(dst_ofs);
583 	*cs++ = upper_32_bits(dst_ofs) | mocs;
584 
585 	bb->len = cs - bb->cs;
586 }
587 
588 #define EMIT_COPY_DW 10
589 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
590 		      u64 src_ofs, u64 dst_ofs, unsigned int size,
591 		      unsigned int pitch)
592 {
593 	struct xe_device *xe = gt_to_xe(gt);
594 	u32 mocs = 0;
595 	u32 tile_y = 0;
596 
597 	xe_gt_assert(gt, size / pitch <= S16_MAX);
598 	xe_gt_assert(gt, pitch / 4 <= S16_MAX);
599 	xe_gt_assert(gt, pitch <= U16_MAX);
600 
601 	if (GRAPHICS_VER(xe) >= 20)
602 		mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
603 
604 	if (GRAPHICS_VERx100(xe) >= 1250)
605 		tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
606 
607 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
608 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
609 	bb->cs[bb->len++] = 0;
610 	bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
611 	bb->cs[bb->len++] = lower_32_bits(dst_ofs);
612 	bb->cs[bb->len++] = upper_32_bits(dst_ofs);
613 	bb->cs[bb->len++] = 0;
614 	bb->cs[bb->len++] = pitch | mocs;
615 	bb->cs[bb->len++] = lower_32_bits(src_ofs);
616 	bb->cs[bb->len++] = upper_32_bits(src_ofs);
617 }
618 
619 static int job_add_deps(struct xe_sched_job *job, struct dma_resv *resv,
620 			enum dma_resv_usage usage)
621 {
622 	return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage);
623 }
624 
625 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
626 {
627 	return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
628 }
629 
630 static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
631 			       struct xe_bb *bb,
632 			       u64 src_ofs, bool src_is_indirect,
633 			       u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
634 			       u64 ccs_ofs, bool copy_ccs)
635 {
636 	struct xe_gt *gt = m->tile->primary_gt;
637 	u32 flush_flags = 0;
638 
639 	if (xe_device_has_flat_ccs(gt_to_xe(gt)) && !copy_ccs && dst_is_indirect) {
640 		/*
641 		 * If the src is already in vram, then it should already
642 		 * have been cleared by us, or has been populated by the
643 		 * user. Make sure we copy the CCS aux state as-is.
644 		 *
645 		 * Otherwise if the bo doesn't have any CCS metadata attached,
646 		 * we still need to clear it for security reasons.
647 		 */
648 		u64 ccs_src_ofs =  src_is_indirect ? src_ofs : m->cleared_mem_ofs;
649 
650 		emit_copy_ccs(gt, bb,
651 			      dst_ofs, true,
652 			      ccs_src_ofs, src_is_indirect, dst_size);
653 
654 		flush_flags = MI_FLUSH_DW_CCS;
655 	} else if (copy_ccs) {
656 		if (!src_is_indirect)
657 			src_ofs = ccs_ofs;
658 		else if (!dst_is_indirect)
659 			dst_ofs = ccs_ofs;
660 
661 		xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
662 
663 		emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
664 			      src_is_indirect, dst_size);
665 		if (dst_is_indirect)
666 			flush_flags = MI_FLUSH_DW_CCS;
667 	}
668 
669 	return flush_flags;
670 }
671 
672 /**
673  * xe_migrate_copy() - Copy content of TTM resources.
674  * @m: The migration context.
675  * @src_bo: The buffer object @src is currently bound to.
676  * @dst_bo: If copying between resources created for the same bo, set this to
677  * the same value as @src_bo. If copying between buffer objects, set it to
678  * the buffer object @dst is currently bound to.
679  * @src: The source TTM resource.
680  * @dst: The dst TTM resource.
681  * @copy_only_ccs: If true copy only CCS metadata
682  *
683  * Copies the contents of @src to @dst: On flat CCS devices,
684  * the CCS metadata is copied as well if needed, or if not present,
685  * the CCS metadata of @dst is cleared for security reasons.
686  *
687  * Return: Pointer to a dma_fence representing the last copy batch, or
688  * an error pointer on failure. If there is a failure, any copy operation
689  * started by the function call has been synced.
690  */
691 struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
692 				  struct xe_bo *src_bo,
693 				  struct xe_bo *dst_bo,
694 				  struct ttm_resource *src,
695 				  struct ttm_resource *dst,
696 				  bool copy_only_ccs)
697 {
698 	struct xe_gt *gt = m->tile->primary_gt;
699 	struct xe_device *xe = gt_to_xe(gt);
700 	struct dma_fence *fence = NULL;
701 	u64 size = src_bo->size;
702 	struct xe_res_cursor src_it, dst_it, ccs_it;
703 	u64 src_L0_ofs, dst_L0_ofs;
704 	u32 src_L0_pt, dst_L0_pt;
705 	u64 src_L0, dst_L0;
706 	int pass = 0;
707 	int err;
708 	bool src_is_pltt = src->mem_type == XE_PL_TT;
709 	bool dst_is_pltt = dst->mem_type == XE_PL_TT;
710 	bool src_is_vram = mem_type_is_vram(src->mem_type);
711 	bool dst_is_vram = mem_type_is_vram(dst->mem_type);
712 	bool copy_ccs = xe_device_has_flat_ccs(xe) &&
713 		xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
714 	bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
715 
716 	/* Copying CCS between two different BOs is not supported yet. */
717 	if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
718 		return ERR_PTR(-EINVAL);
719 
720 	if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
721 		return ERR_PTR(-EINVAL);
722 
723 	if (!src_is_vram)
724 		xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
725 	else
726 		xe_res_first(src, 0, size, &src_it);
727 	if (!dst_is_vram)
728 		xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
729 	else
730 		xe_res_first(dst, 0, size, &dst_it);
731 
732 	if (copy_system_ccs)
733 		xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
734 				PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
735 				&ccs_it);
736 
737 	while (size) {
738 		u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
739 		struct xe_sched_job *job;
740 		struct xe_bb *bb;
741 		u32 flush_flags;
742 		u32 update_idx;
743 		u64 ccs_ofs, ccs_size;
744 		u32 ccs_pt;
745 
746 		bool usm = xe->info.has_usm;
747 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
748 
749 		src_L0 = xe_migrate_res_sizes(m, &src_it);
750 		dst_L0 = xe_migrate_res_sizes(m, &dst_it);
751 
752 		drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
753 			pass++, src_L0, dst_L0);
754 
755 		src_L0 = min(src_L0, dst_L0);
756 
757 		batch_size += pte_update_size(m, src_is_vram, src, &src_it, &src_L0,
758 					      &src_L0_ofs, &src_L0_pt, 0, 0,
759 					      avail_pts);
760 
761 		batch_size += pte_update_size(m, dst_is_vram, dst, &dst_it, &src_L0,
762 					      &dst_L0_ofs, &dst_L0_pt, 0,
763 					      avail_pts, avail_pts);
764 
765 		if (copy_system_ccs) {
766 			ccs_size = xe_device_ccs_bytes(xe, src_L0);
767 			batch_size += pte_update_size(m, false, NULL, &ccs_it, &ccs_size,
768 						      &ccs_ofs, &ccs_pt, 0,
769 						      2 * avail_pts,
770 						      avail_pts);
771 			xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
772 		}
773 
774 		/* Add copy commands size here */
775 		batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
776 			((xe_device_has_flat_ccs(xe) ? EMIT_COPY_CCS_DW : 0));
777 
778 		bb = xe_bb_new(gt, batch_size, usm);
779 		if (IS_ERR(bb)) {
780 			err = PTR_ERR(bb);
781 			goto err_sync;
782 		}
783 
784 		if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
785 			xe_res_next(&src_it, src_L0);
786 		else
787 			emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs,
788 				 &src_it, src_L0, src);
789 
790 		if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
791 			xe_res_next(&dst_it, src_L0);
792 		else
793 			emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
794 				 &dst_it, src_L0, dst);
795 
796 		if (copy_system_ccs)
797 			emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
798 
799 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
800 		update_idx = bb->len;
801 
802 		if (!copy_only_ccs)
803 			emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
804 
805 		flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
806 						  IS_DGFX(xe) ? src_is_vram : src_is_pltt,
807 						  dst_L0_ofs,
808 						  IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
809 						  src_L0, ccs_ofs, copy_ccs);
810 
811 		mutex_lock(&m->job_mutex);
812 		job = xe_bb_create_migration_job(m->q, bb,
813 						 xe_migrate_batch_base(m, usm),
814 						 update_idx);
815 		if (IS_ERR(job)) {
816 			err = PTR_ERR(job);
817 			goto err;
818 		}
819 
820 		xe_sched_job_add_migrate_flush(job, flush_flags);
821 		if (!fence) {
822 			err = job_add_deps(job, src_bo->ttm.base.resv,
823 					   DMA_RESV_USAGE_BOOKKEEP);
824 			if (!err && src_bo != dst_bo)
825 				err = job_add_deps(job, dst_bo->ttm.base.resv,
826 						   DMA_RESV_USAGE_BOOKKEEP);
827 			if (err)
828 				goto err_job;
829 		}
830 
831 		xe_sched_job_arm(job);
832 		dma_fence_put(fence);
833 		fence = dma_fence_get(&job->drm.s_fence->finished);
834 		xe_sched_job_push(job);
835 
836 		dma_fence_put(m->fence);
837 		m->fence = dma_fence_get(fence);
838 
839 		mutex_unlock(&m->job_mutex);
840 
841 		xe_bb_free(bb, fence);
842 		size -= src_L0;
843 		continue;
844 
845 err_job:
846 		xe_sched_job_put(job);
847 err:
848 		mutex_unlock(&m->job_mutex);
849 		xe_bb_free(bb, NULL);
850 
851 err_sync:
852 		/* Sync partial copy if any. FIXME: under job_mutex? */
853 		if (fence) {
854 			dma_fence_wait(fence, false);
855 			dma_fence_put(fence);
856 		}
857 
858 		return ERR_PTR(err);
859 	}
860 
861 	return fence;
862 }
863 
864 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
865 				 u32 size, u32 pitch)
866 {
867 	struct xe_device *xe = gt_to_xe(gt);
868 	u32 *cs = bb->cs + bb->len;
869 	u32 len = PVC_MEM_SET_CMD_LEN_DW;
870 
871 	*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
872 	*cs++ = pitch - 1;
873 	*cs++ = (size / pitch) - 1;
874 	*cs++ = pitch - 1;
875 	*cs++ = lower_32_bits(src_ofs);
876 	*cs++ = upper_32_bits(src_ofs);
877 	if (GRAPHICS_VERx100(xe) >= 2000)
878 		*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
879 	else
880 		*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
881 
882 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
883 
884 	bb->len += len;
885 }
886 
887 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
888 				 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
889 {
890 	struct xe_device *xe = gt_to_xe(gt);
891 	u32 *cs = bb->cs + bb->len;
892 	u32 len = XY_FAST_COLOR_BLT_DW;
893 
894 	if (GRAPHICS_VERx100(xe) < 1250)
895 		len = 11;
896 
897 	*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
898 		(len - 2);
899 	if (GRAPHICS_VERx100(xe) >= 2000)
900 		*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
901 			(pitch - 1);
902 	else
903 		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
904 			(pitch - 1);
905 	*cs++ = 0;
906 	*cs++ = (size / pitch) << 16 | pitch / 4;
907 	*cs++ = lower_32_bits(src_ofs);
908 	*cs++ = upper_32_bits(src_ofs);
909 	*cs++ = (is_vram ? 0x0 : 0x1) <<  XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
910 	*cs++ = 0;
911 	*cs++ = 0;
912 	*cs++ = 0;
913 	*cs++ = 0;
914 
915 	if (len > 11) {
916 		*cs++ = 0;
917 		*cs++ = 0;
918 		*cs++ = 0;
919 		*cs++ = 0;
920 		*cs++ = 0;
921 	}
922 
923 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
924 
925 	bb->len += len;
926 }
927 
928 static bool has_service_copy_support(struct xe_gt *gt)
929 {
930 	/*
931 	 * What we care about is whether the architecture was designed with
932 	 * service copy functionality (specifically the new MEM_SET / MEM_COPY
933 	 * instructions) so check the architectural engine list rather than the
934 	 * actual list since these instructions are usable on BCS0 even if
935 	 * all of the actual service copy engines (BCS1-BCS8) have been fused
936 	 * off.
937 	 */
938 	return gt->info.__engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
939 						XE_HW_ENGINE_BCS1);
940 }
941 
942 static u32 emit_clear_cmd_len(struct xe_gt *gt)
943 {
944 	if (has_service_copy_support(gt))
945 		return PVC_MEM_SET_CMD_LEN_DW;
946 	else
947 		return XY_FAST_COLOR_BLT_DW;
948 }
949 
950 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
951 		       u32 size, u32 pitch, bool is_vram)
952 {
953 	if (has_service_copy_support(gt))
954 		emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
955 	else
956 		emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
957 				     is_vram);
958 }
959 
960 /**
961  * xe_migrate_clear() - Copy content of TTM resources.
962  * @m: The migration context.
963  * @bo: The buffer object @dst is currently bound to.
964  * @dst: The dst TTM resource to be cleared.
965  *
966  * Clear the contents of @dst to zero. On flat CCS devices,
967  * the CCS metadata is cleared to zero as well on VRAM destinations.
968  * TODO: Eliminate the @bo argument.
969  *
970  * Return: Pointer to a dma_fence representing the last clear batch, or
971  * an error pointer on failure. If there is a failure, any clear operation
972  * started by the function call has been synced.
973  */
974 struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
975 				   struct xe_bo *bo,
976 				   struct ttm_resource *dst)
977 {
978 	bool clear_vram = mem_type_is_vram(dst->mem_type);
979 	struct xe_gt *gt = m->tile->primary_gt;
980 	struct xe_device *xe = gt_to_xe(gt);
981 	bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false;
982 	struct dma_fence *fence = NULL;
983 	u64 size = bo->size;
984 	struct xe_res_cursor src_it;
985 	struct ttm_resource *src = dst;
986 	int err;
987 	int pass = 0;
988 
989 	if (!clear_vram)
990 		xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
991 	else
992 		xe_res_first(src, 0, bo->size, &src_it);
993 
994 	while (size) {
995 		u64 clear_L0_ofs;
996 		u32 clear_L0_pt;
997 		u32 flush_flags = 0;
998 		u64 clear_L0;
999 		struct xe_sched_job *job;
1000 		struct xe_bb *bb;
1001 		u32 batch_size, update_idx;
1002 
1003 		bool usm = xe->info.has_usm;
1004 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1005 
1006 		clear_L0 = xe_migrate_res_sizes(m, &src_it);
1007 
1008 		drm_dbg(&xe->drm, "Pass %u, size: %llu\n", pass++, clear_L0);
1009 
1010 		/* Calculate final sizes and batch size.. */
1011 		batch_size = 2 +
1012 			pte_update_size(m, clear_vram, src, &src_it,
1013 					&clear_L0, &clear_L0_ofs, &clear_L0_pt,
1014 					clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0,
1015 					avail_pts);
1016 
1017 		if (xe_device_has_flat_ccs(xe))
1018 			batch_size += EMIT_COPY_CCS_DW;
1019 
1020 		/* Clear commands */
1021 
1022 		if (WARN_ON_ONCE(!clear_L0))
1023 			break;
1024 
1025 		bb = xe_bb_new(gt, batch_size, usm);
1026 		if (IS_ERR(bb)) {
1027 			err = PTR_ERR(bb);
1028 			goto err_sync;
1029 		}
1030 
1031 		size -= clear_L0;
1032 		/* Preemption is enabled again by the ring ops. */
1033 		if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
1034 			xe_res_next(&src_it, clear_L0);
1035 		else
1036 			emit_pte(m, bb, clear_L0_pt, clear_vram, clear_system_ccs,
1037 				 &src_it, clear_L0, dst);
1038 
1039 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1040 		update_idx = bb->len;
1041 
1042 		if (!clear_system_ccs)
1043 			emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
1044 
1045 		if (xe_device_has_flat_ccs(xe)) {
1046 			emit_copy_ccs(gt, bb, clear_L0_ofs, true,
1047 				      m->cleared_mem_ofs, false, clear_L0);
1048 			flush_flags = MI_FLUSH_DW_CCS;
1049 		}
1050 
1051 		mutex_lock(&m->job_mutex);
1052 		job = xe_bb_create_migration_job(m->q, bb,
1053 						 xe_migrate_batch_base(m, usm),
1054 						 update_idx);
1055 		if (IS_ERR(job)) {
1056 			err = PTR_ERR(job);
1057 			goto err;
1058 		}
1059 
1060 		xe_sched_job_add_migrate_flush(job, flush_flags);
1061 		if (!fence) {
1062 			/*
1063 			 * There can't be anything userspace related at this
1064 			 * point, so we just need to respect any potential move
1065 			 * fences, which are always tracked as
1066 			 * DMA_RESV_USAGE_KERNEL.
1067 			 */
1068 			err = job_add_deps(job, bo->ttm.base.resv,
1069 					   DMA_RESV_USAGE_KERNEL);
1070 			if (err)
1071 				goto err_job;
1072 		}
1073 
1074 		xe_sched_job_arm(job);
1075 		dma_fence_put(fence);
1076 		fence = dma_fence_get(&job->drm.s_fence->finished);
1077 		xe_sched_job_push(job);
1078 
1079 		dma_fence_put(m->fence);
1080 		m->fence = dma_fence_get(fence);
1081 
1082 		mutex_unlock(&m->job_mutex);
1083 
1084 		xe_bb_free(bb, fence);
1085 		continue;
1086 
1087 err_job:
1088 		xe_sched_job_put(job);
1089 err:
1090 		mutex_unlock(&m->job_mutex);
1091 		xe_bb_free(bb, NULL);
1092 err_sync:
1093 		/* Sync partial copies if any. FIXME: job_mutex? */
1094 		if (fence) {
1095 			dma_fence_wait(m->fence, false);
1096 			dma_fence_put(fence);
1097 		}
1098 
1099 		return ERR_PTR(err);
1100 	}
1101 
1102 	if (clear_system_ccs)
1103 		bo->ccs_cleared = true;
1104 
1105 	return fence;
1106 }
1107 
1108 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1109 			  const struct xe_vm_pgtable_update *update,
1110 			  struct xe_migrate_pt_update *pt_update)
1111 {
1112 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1113 	u32 chunk;
1114 	u32 ofs = update->ofs, size = update->qwords;
1115 
1116 	/*
1117 	 * If we have 512 entries (max), we would populate it ourselves,
1118 	 * and update the PDE above it to the new pointer.
1119 	 * The only time this can only happen if we have to update the top
1120 	 * PDE. This requires a BO that is almost vm->size big.
1121 	 *
1122 	 * This shouldn't be possible in practice.. might change when 16K
1123 	 * pages are used. Hence the assert.
1124 	 */
1125 	xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
1126 	if (!ppgtt_ofs)
1127 		ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1128 						xe_bo_addr(update->pt_bo, 0,
1129 							   XE_PAGE_SIZE));
1130 
1131 	do {
1132 		u64 addr = ppgtt_ofs + ofs * 8;
1133 
1134 		chunk = min(size, MAX_PTE_PER_SDI);
1135 
1136 		/* Ensure populatefn can do memset64 by aligning bb->cs */
1137 		if (!(bb->len & 1))
1138 			bb->cs[bb->len++] = MI_NOOP;
1139 
1140 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1141 		bb->cs[bb->len++] = lower_32_bits(addr);
1142 		bb->cs[bb->len++] = upper_32_bits(addr);
1143 		ops->populate(pt_update, tile, NULL, bb->cs + bb->len, ofs, chunk,
1144 			      update);
1145 
1146 		bb->len += chunk * 2;
1147 		ofs += chunk;
1148 		size -= chunk;
1149 	} while (size);
1150 }
1151 
1152 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1153 {
1154 	return xe_vm_get(m->q->vm);
1155 }
1156 
1157 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1158 struct migrate_test_params {
1159 	struct xe_test_priv base;
1160 	bool force_gpu;
1161 };
1162 
1163 #define to_migrate_test_params(_priv) \
1164 	container_of(_priv, struct migrate_test_params, base)
1165 #endif
1166 
1167 static struct dma_fence *
1168 xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1169 			       struct xe_vm *vm, struct xe_bo *bo,
1170 			       const struct  xe_vm_pgtable_update *updates,
1171 			       u32 num_updates, bool wait_vm,
1172 			       struct xe_migrate_pt_update *pt_update)
1173 {
1174 	XE_TEST_DECLARE(struct migrate_test_params *test =
1175 			to_migrate_test_params
1176 			(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1177 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1178 	struct dma_fence *fence;
1179 	int err;
1180 	u32 i;
1181 
1182 	if (XE_TEST_ONLY(test && test->force_gpu))
1183 		return ERR_PTR(-ETIME);
1184 
1185 	if (bo && !dma_resv_test_signaled(bo->ttm.base.resv,
1186 					  DMA_RESV_USAGE_KERNEL))
1187 		return ERR_PTR(-ETIME);
1188 
1189 	if (wait_vm && !dma_resv_test_signaled(xe_vm_resv(vm),
1190 					       DMA_RESV_USAGE_BOOKKEEP))
1191 		return ERR_PTR(-ETIME);
1192 
1193 	if (ops->pre_commit) {
1194 		pt_update->job = NULL;
1195 		err = ops->pre_commit(pt_update);
1196 		if (err)
1197 			return ERR_PTR(err);
1198 	}
1199 	for (i = 0; i < num_updates; i++) {
1200 		const struct xe_vm_pgtable_update *update = &updates[i];
1201 
1202 		ops->populate(pt_update, m->tile, &update->pt_bo->vmap, NULL,
1203 			      update->ofs, update->qwords, update);
1204 	}
1205 
1206 	if (vm) {
1207 		trace_xe_vm_cpu_bind(vm);
1208 		xe_device_wmb(vm->xe);
1209 	}
1210 
1211 	fence = dma_fence_get_stub();
1212 
1213 	return fence;
1214 }
1215 
1216 static bool no_in_syncs(struct xe_vm *vm, struct xe_exec_queue *q,
1217 			struct xe_sync_entry *syncs, u32 num_syncs)
1218 {
1219 	struct dma_fence *fence;
1220 	int i;
1221 
1222 	for (i = 0; i < num_syncs; i++) {
1223 		fence = syncs[i].fence;
1224 
1225 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1226 				       &fence->flags))
1227 			return false;
1228 	}
1229 	if (q) {
1230 		fence = xe_exec_queue_last_fence_get(q, vm);
1231 		if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1232 			dma_fence_put(fence);
1233 			return false;
1234 		}
1235 		dma_fence_put(fence);
1236 	}
1237 
1238 	return true;
1239 }
1240 
1241 /**
1242  * xe_migrate_update_pgtables() - Pipelined page-table update
1243  * @m: The migrate context.
1244  * @vm: The vm we'll be updating.
1245  * @bo: The bo whose dma-resv we will await before updating, or NULL if userptr.
1246  * @q: The exec queue to be used for the update or NULL if the default
1247  * migration engine is to be used.
1248  * @updates: An array of update descriptors.
1249  * @num_updates: Number of descriptors in @updates.
1250  * @syncs: Array of xe_sync_entry to await before updating. Note that waits
1251  * will block the engine timeline.
1252  * @num_syncs: Number of entries in @syncs.
1253  * @pt_update: Pointer to a struct xe_migrate_pt_update, which contains
1254  * pointers to callback functions and, if subclassed, private arguments to
1255  * those.
1256  *
1257  * Perform a pipelined page-table update. The update descriptors are typically
1258  * built under the same lock critical section as a call to this function. If
1259  * using the default engine for the updates, they will be performed in the
1260  * order they grab the job_mutex. If different engines are used, external
1261  * synchronization is needed for overlapping updates to maintain page-table
1262  * consistency. Note that the meaing of "overlapping" is that the updates
1263  * touch the same page-table, which might be a higher-level page-directory.
1264  * If no pipelining is needed, then updates may be performed by the cpu.
1265  *
1266  * Return: A dma_fence that, when signaled, indicates the update completion.
1267  */
1268 struct dma_fence *
1269 xe_migrate_update_pgtables(struct xe_migrate *m,
1270 			   struct xe_vm *vm,
1271 			   struct xe_bo *bo,
1272 			   struct xe_exec_queue *q,
1273 			   const struct xe_vm_pgtable_update *updates,
1274 			   u32 num_updates,
1275 			   struct xe_sync_entry *syncs, u32 num_syncs,
1276 			   struct xe_migrate_pt_update *pt_update)
1277 {
1278 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1279 	struct xe_tile *tile = m->tile;
1280 	struct xe_gt *gt = tile->primary_gt;
1281 	struct xe_device *xe = tile_to_xe(tile);
1282 	struct xe_sched_job *job;
1283 	struct dma_fence *fence;
1284 	struct drm_suballoc *sa_bo = NULL;
1285 	struct xe_vma *vma = pt_update->vma;
1286 	struct xe_bb *bb;
1287 	u32 i, batch_size, ppgtt_ofs, update_idx, page_ofs = 0;
1288 	u64 addr;
1289 	int err = 0;
1290 	bool usm = !q && xe->info.has_usm;
1291 	bool first_munmap_rebind = vma &&
1292 		vma->gpuva.flags & XE_VMA_FIRST_REBIND;
1293 	struct xe_exec_queue *q_override = !q ? m->q : q;
1294 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
1295 
1296 	/* Use the CPU if no in syncs and engine is idle */
1297 	if (no_in_syncs(vm, q, syncs, num_syncs) && xe_exec_queue_is_idle(q_override)) {
1298 		fence =  xe_migrate_update_pgtables_cpu(m, vm, bo, updates,
1299 							num_updates,
1300 							first_munmap_rebind,
1301 							pt_update);
1302 		if (!IS_ERR(fence) || fence == ERR_PTR(-EAGAIN))
1303 			return fence;
1304 	}
1305 
1306 	/* fixed + PTE entries */
1307 	if (IS_DGFX(xe))
1308 		batch_size = 2;
1309 	else
1310 		batch_size = 6 + num_updates * 2;
1311 
1312 	for (i = 0; i < num_updates; i++) {
1313 		u32 num_cmds = DIV_ROUND_UP(updates[i].qwords, MAX_PTE_PER_SDI);
1314 
1315 		/* align noop + MI_STORE_DATA_IMM cmd prefix */
1316 		batch_size += 4 * num_cmds + updates[i].qwords * 2;
1317 	}
1318 
1319 	/*
1320 	 * XXX: Create temp bo to copy from, if batch_size becomes too big?
1321 	 *
1322 	 * Worst case: Sum(2 * (each lower level page size) + (top level page size))
1323 	 * Should be reasonably bound..
1324 	 */
1325 	xe_tile_assert(tile, batch_size < SZ_128K);
1326 
1327 	bb = xe_bb_new(gt, batch_size, !q && xe->info.has_usm);
1328 	if (IS_ERR(bb))
1329 		return ERR_CAST(bb);
1330 
1331 	/* For sysmem PTE's, need to map them in our hole.. */
1332 	if (!IS_DGFX(xe)) {
1333 		ppgtt_ofs = NUM_KERNEL_PDE - 1;
1334 		if (q) {
1335 			xe_tile_assert(tile, num_updates <= NUM_VMUSA_WRITES_PER_UNIT);
1336 
1337 			sa_bo = drm_suballoc_new(&m->vm_update_sa, 1,
1338 						 GFP_KERNEL, true, 0);
1339 			if (IS_ERR(sa_bo)) {
1340 				err = PTR_ERR(sa_bo);
1341 				goto err;
1342 			}
1343 
1344 			ppgtt_ofs = NUM_KERNEL_PDE +
1345 				(drm_suballoc_soffset(sa_bo) /
1346 				 NUM_VMUSA_UNIT_PER_PAGE);
1347 			page_ofs = (drm_suballoc_soffset(sa_bo) %
1348 				    NUM_VMUSA_UNIT_PER_PAGE) *
1349 				VM_SA_UPDATE_UNIT_SIZE;
1350 		}
1351 
1352 		/* Map our PT's to gtt */
1353 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(num_updates);
1354 		bb->cs[bb->len++] = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1355 		bb->cs[bb->len++] = 0; /* upper_32_bits */
1356 
1357 		for (i = 0; i < num_updates; i++) {
1358 			struct xe_bo *pt_bo = updates[i].pt_bo;
1359 
1360 			xe_tile_assert(tile, pt_bo->size == SZ_4K);
1361 
1362 			addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, pat_index, 0);
1363 			bb->cs[bb->len++] = lower_32_bits(addr);
1364 			bb->cs[bb->len++] = upper_32_bits(addr);
1365 		}
1366 
1367 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1368 		update_idx = bb->len;
1369 
1370 		addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1371 			(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1372 		for (i = 0; i < num_updates; i++)
1373 			write_pgtable(tile, bb, addr + i * XE_PAGE_SIZE,
1374 				      &updates[i], pt_update);
1375 	} else {
1376 		/* phys pages, no preamble required */
1377 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1378 		update_idx = bb->len;
1379 
1380 		for (i = 0; i < num_updates; i++)
1381 			write_pgtable(tile, bb, 0, &updates[i], pt_update);
1382 	}
1383 
1384 	if (!q)
1385 		mutex_lock(&m->job_mutex);
1386 
1387 	job = xe_bb_create_migration_job(q ?: m->q, bb,
1388 					 xe_migrate_batch_base(m, usm),
1389 					 update_idx);
1390 	if (IS_ERR(job)) {
1391 		err = PTR_ERR(job);
1392 		goto err_bb;
1393 	}
1394 
1395 	/* Wait on BO move */
1396 	if (bo) {
1397 		err = job_add_deps(job, bo->ttm.base.resv,
1398 				   DMA_RESV_USAGE_KERNEL);
1399 		if (err)
1400 			goto err_job;
1401 	}
1402 
1403 	/*
1404 	 * Munmap style VM unbind, need to wait for all jobs to be complete /
1405 	 * trigger preempts before moving forward
1406 	 */
1407 	if (first_munmap_rebind) {
1408 		err = job_add_deps(job, xe_vm_resv(vm),
1409 				   DMA_RESV_USAGE_BOOKKEEP);
1410 		if (err)
1411 			goto err_job;
1412 	}
1413 
1414 	err = xe_sched_job_last_fence_add_dep(job, vm);
1415 	for (i = 0; !err && i < num_syncs; i++)
1416 		err = xe_sync_entry_add_deps(&syncs[i], job);
1417 
1418 	if (err)
1419 		goto err_job;
1420 
1421 	if (ops->pre_commit) {
1422 		pt_update->job = job;
1423 		err = ops->pre_commit(pt_update);
1424 		if (err)
1425 			goto err_job;
1426 	}
1427 	xe_sched_job_arm(job);
1428 	fence = dma_fence_get(&job->drm.s_fence->finished);
1429 	xe_sched_job_push(job);
1430 
1431 	if (!q)
1432 		mutex_unlock(&m->job_mutex);
1433 
1434 	xe_bb_free(bb, fence);
1435 	drm_suballoc_free(sa_bo, fence);
1436 
1437 	return fence;
1438 
1439 err_job:
1440 	xe_sched_job_put(job);
1441 err_bb:
1442 	if (!q)
1443 		mutex_unlock(&m->job_mutex);
1444 	xe_bb_free(bb, NULL);
1445 err:
1446 	drm_suballoc_free(sa_bo, NULL);
1447 	return ERR_PTR(err);
1448 }
1449 
1450 /**
1451  * xe_migrate_wait() - Complete all operations using the xe_migrate context
1452  * @m: Migrate context to wait for.
1453  *
1454  * Waits until the GPU no longer uses the migrate context's default engine
1455  * or its page-table objects. FIXME: What about separate page-table update
1456  * engines?
1457  */
1458 void xe_migrate_wait(struct xe_migrate *m)
1459 {
1460 	if (m->fence)
1461 		dma_fence_wait(m->fence, false);
1462 }
1463 
1464 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1465 #include "tests/xe_migrate.c"
1466 #endif
1467