xref: /linux/drivers/gpu/drm/xe/xe_migrate.c (revision 624e0d7f39cb5849016c2093e4ea620842e0cf8a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include "xe_migrate.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/sizes.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/ttm/ttm_tt.h>
13 #include <drm/xe_drm.h>
14 
15 #include "generated/xe_wa_oob.h"
16 #include "instructions/xe_mi_commands.h"
17 #include "regs/xe_gpu_commands.h"
18 #include "tests/xe_test.h"
19 #include "xe_assert.h"
20 #include "xe_bb.h"
21 #include "xe_bo.h"
22 #include "xe_exec_queue.h"
23 #include "xe_ggtt.h"
24 #include "xe_gt.h"
25 #include "xe_hw_engine.h"
26 #include "xe_lrc.h"
27 #include "xe_map.h"
28 #include "xe_mocs.h"
29 #include "xe_pt.h"
30 #include "xe_res_cursor.h"
31 #include "xe_sched_job.h"
32 #include "xe_sync.h"
33 #include "xe_trace.h"
34 #include "xe_vm.h"
35 #include "xe_wa.h"
36 
37 /**
38  * struct xe_migrate - migrate context.
39  */
40 struct xe_migrate {
41 	/** @q: Default exec queue used for migration */
42 	struct xe_exec_queue *q;
43 	/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
44 	struct xe_tile *tile;
45 	/** @job_mutex: Timeline mutex for @eng. */
46 	struct mutex job_mutex;
47 	/** @pt_bo: Page-table buffer object. */
48 	struct xe_bo *pt_bo;
49 	/** @batch_base_ofs: VM offset of the migration batch buffer */
50 	u64 batch_base_ofs;
51 	/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
52 	u64 usm_batch_base_ofs;
53 	/** @cleared_mem_ofs: VM offset of @cleared_bo. */
54 	u64 cleared_mem_ofs;
55 	/**
56 	 * @fence: dma-fence representing the last migration job batch.
57 	 * Protected by @job_mutex.
58 	 */
59 	struct dma_fence *fence;
60 	/**
61 	 * @vm_update_sa: For integrated, used to suballocate page-tables
62 	 * out of the pt_bo.
63 	 */
64 	struct drm_suballoc_manager vm_update_sa;
65 };
66 
67 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
68 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
69 #define NUM_KERNEL_PDE 17
70 #define NUM_PT_SLOTS 32
71 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
72 
73 /**
74  * xe_tile_migrate_engine() - Get this tile's migrate engine.
75  * @tile: The tile.
76  *
77  * Returns the default migrate engine of this tile.
78  * TODO: Perhaps this function is slightly misplaced, and even unneeded?
79  *
80  * Return: The default migrate engine
81  */
82 struct xe_exec_queue *xe_tile_migrate_engine(struct xe_tile *tile)
83 {
84 	return tile->migrate->q;
85 }
86 
87 static void xe_migrate_fini(struct drm_device *dev, void *arg)
88 {
89 	struct xe_migrate *m = arg;
90 
91 	xe_vm_lock(m->q->vm, false);
92 	xe_bo_unpin(m->pt_bo);
93 	xe_vm_unlock(m->q->vm);
94 
95 	dma_fence_put(m->fence);
96 	xe_bo_put(m->pt_bo);
97 	drm_suballoc_manager_fini(&m->vm_update_sa);
98 	mutex_destroy(&m->job_mutex);
99 	xe_vm_close_and_put(m->q->vm);
100 	xe_exec_queue_put(m->q);
101 }
102 
103 static u64 xe_migrate_vm_addr(u64 slot, u32 level)
104 {
105 	XE_WARN_ON(slot >= NUM_PT_SLOTS);
106 
107 	/* First slot is reserved for mapping of PT bo and bb, start from 1 */
108 	return (slot + 1ULL) << xe_pt_shift(level + 1);
109 }
110 
111 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr)
112 {
113 	/*
114 	 * Remove the DPA to get a correct offset into identity table for the
115 	 * migrate offset
116 	 */
117 	addr -= xe->mem.vram.dpa_base;
118 	return addr + (256ULL << xe_pt_shift(2));
119 }
120 
121 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
122 				 struct xe_vm *vm)
123 {
124 	struct xe_device *xe = tile_to_xe(tile);
125 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
126 	u8 id = tile->id;
127 	u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
128 	u32 map_ofs, level, i;
129 	struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
130 	u64 entry;
131 
132 	/* Can't bump NUM_PT_SLOTS too high */
133 	BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
134 	/* Must be a multiple of 64K to support all platforms */
135 	BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
136 	/* And one slot reserved for the 4KiB page table updates */
137 	BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
138 
139 	/* Need to be sure everything fits in the first PT, or create more */
140 	xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
141 
142 	bo = xe_bo_create_pin_map(vm->xe, tile, vm,
143 				  num_entries * XE_PAGE_SIZE,
144 				  ttm_bo_type_kernel,
145 				  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
146 				  XE_BO_CREATE_PINNED_BIT);
147 	if (IS_ERR(bo))
148 		return PTR_ERR(bo);
149 
150 	entry = vm->pt_ops->pde_encode_bo(bo, bo->size - XE_PAGE_SIZE, pat_index);
151 	xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
152 
153 	map_ofs = (num_entries - num_level) * XE_PAGE_SIZE;
154 
155 	/* Map the entire BO in our level 0 pt */
156 	for (i = 0, level = 0; i < num_entries; level++) {
157 		entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
158 						  pat_index, 0);
159 
160 		xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
161 
162 		if (vm->flags & XE_VM_FLAG_64K)
163 			i += 16;
164 		else
165 			i += 1;
166 	}
167 
168 	if (!IS_DGFX(xe)) {
169 		/* Write out batch too */
170 		m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
171 		if (xe->info.has_usm) {
172 			batch = tile->primary_gt->usm.bb_pool->bo;
173 			m->usm_batch_base_ofs = m->batch_base_ofs;
174 		}
175 
176 		for (i = 0; i < batch->size;
177 		     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
178 		     XE_PAGE_SIZE) {
179 			entry = vm->pt_ops->pte_encode_bo(batch, i,
180 							  pat_index, 0);
181 
182 			xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
183 				  entry);
184 			level++;
185 		}
186 	} else {
187 		u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
188 
189 		m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
190 
191 		if (xe->info.has_usm) {
192 			batch = tile->primary_gt->usm.bb_pool->bo;
193 			batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
194 			m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
195 		}
196 	}
197 
198 	for (level = 1; level < num_level; level++) {
199 		u32 flags = 0;
200 
201 		if (vm->flags & XE_VM_FLAG_64K && level == 1)
202 			flags = XE_PDE_64K;
203 
204 		entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (level - 1) *
205 						  XE_PAGE_SIZE, pat_index);
206 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
207 			  entry | flags);
208 	}
209 
210 	/* Write PDE's that point to our BO. */
211 	for (i = 0; i < num_entries - num_level; i++) {
212 		entry = vm->pt_ops->pde_encode_bo(bo, i * XE_PAGE_SIZE,
213 						  pat_index);
214 
215 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
216 			  (i + 1) * 8, u64, entry);
217 	}
218 
219 	/* Set up a 1GiB NULL mapping at 255GiB offset. */
220 	level = 2;
221 	xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
222 		  vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
223 		  | XE_PTE_NULL);
224 	m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
225 
226 	/* Identity map the entire vram at 256GiB offset */
227 	if (IS_DGFX(xe)) {
228 		u64 pos, ofs, flags;
229 
230 		level = 2;
231 		ofs = map_ofs + XE_PAGE_SIZE * level + 256 * 8;
232 		flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
233 						    true, 0);
234 
235 		/*
236 		 * Use 1GB pages, it shouldn't matter the physical amount of
237 		 * vram is less, when we don't access it.
238 		 */
239 		for (pos = xe->mem.vram.dpa_base;
240 		     pos < xe->mem.vram.actual_physical_size + xe->mem.vram.dpa_base;
241 		     pos += SZ_1G, ofs += 8)
242 			xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
243 	}
244 
245 	/*
246 	 * Example layout created above, with root level = 3:
247 	 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
248 	 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
249 	 * [PT9...PT28]: Userspace PT's for VM_BIND, 4 KiB PTE's
250 	 * [PT29 = PDE 0] [PT30 = PDE 1] [PT31 = PDE 2]
251 	 *
252 	 * This makes the lowest part of the VM point to the pagetables.
253 	 * Hence the lowest 2M in the vm should point to itself, with a few writes
254 	 * and flushes, other parts of the VM can be used either for copying and
255 	 * clearing.
256 	 *
257 	 * For performance, the kernel reserves PDE's, so about 20 are left
258 	 * for async VM updates.
259 	 *
260 	 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
261 	 * everywhere, this allows lockless updates to scratch pages by using
262 	 * the different addresses in VM.
263 	 */
264 #define NUM_VMUSA_UNIT_PER_PAGE	32
265 #define VM_SA_UPDATE_UNIT_SIZE		(XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
266 #define NUM_VMUSA_WRITES_PER_UNIT	(VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
267 	drm_suballoc_manager_init(&m->vm_update_sa,
268 				  (map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
269 				  NUM_VMUSA_UNIT_PER_PAGE, 0);
270 
271 	m->pt_bo = bo;
272 	return 0;
273 }
274 
275 /*
276  * Due to workaround 16017236439, odd instance hardware copy engines are
277  * faster than even instance ones.
278  * This function returns the mask involving all fast copy engines and the
279  * reserved copy engine to be used as logical mask for migrate engine.
280  * Including the reserved copy engine is required to avoid deadlocks due to
281  * migrate jobs servicing the faults gets stuck behind the job that faulted.
282  */
283 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
284 {
285 	u32 logical_mask = 0;
286 	struct xe_hw_engine *hwe;
287 	enum xe_hw_engine_id id;
288 
289 	for_each_hw_engine(hwe, gt, id) {
290 		if (hwe->class != XE_ENGINE_CLASS_COPY)
291 			continue;
292 
293 		if (!XE_WA(gt, 16017236439) ||
294 		    xe_gt_is_usm_hwe(gt, hwe) || hwe->instance & 1)
295 			logical_mask |= BIT(hwe->logical_instance);
296 	}
297 
298 	return logical_mask;
299 }
300 
301 /**
302  * xe_migrate_init() - Initialize a migrate context
303  * @tile: Back-pointer to the tile we're initializing for.
304  *
305  * Return: Pointer to a migrate context on success. Error pointer on error.
306  */
307 struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
308 {
309 	struct xe_device *xe = tile_to_xe(tile);
310 	struct xe_gt *primary_gt = tile->primary_gt;
311 	struct xe_migrate *m;
312 	struct xe_vm *vm;
313 	int err;
314 
315 	m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL);
316 	if (!m)
317 		return ERR_PTR(-ENOMEM);
318 
319 	m->tile = tile;
320 
321 	/* Special layout, prepared below.. */
322 	vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
323 			  XE_VM_FLAG_SET_TILE_ID(tile));
324 	if (IS_ERR(vm))
325 		return ERR_CAST(vm);
326 
327 	xe_vm_lock(vm, false);
328 	err = xe_migrate_prepare_vm(tile, m, vm);
329 	xe_vm_unlock(vm);
330 	if (err) {
331 		xe_vm_close_and_put(vm);
332 		return ERR_PTR(err);
333 	}
334 
335 	if (xe->info.has_usm) {
336 		struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
337 							   XE_ENGINE_CLASS_COPY,
338 							   primary_gt->usm.reserved_bcs_instance,
339 							   false);
340 		u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
341 
342 		if (!hwe || !logical_mask)
343 			return ERR_PTR(-EINVAL);
344 
345 		m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
346 					    EXEC_QUEUE_FLAG_KERNEL |
347 					    EXEC_QUEUE_FLAG_PERMANENT);
348 	} else {
349 		m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
350 						  XE_ENGINE_CLASS_COPY,
351 						  EXEC_QUEUE_FLAG_KERNEL |
352 						  EXEC_QUEUE_FLAG_PERMANENT);
353 	}
354 	if (IS_ERR(m->q)) {
355 		xe_vm_close_and_put(vm);
356 		return ERR_CAST(m->q);
357 	}
358 	if (xe->info.has_usm)
359 		m->q->priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
360 
361 	mutex_init(&m->job_mutex);
362 
363 	err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m);
364 	if (err)
365 		return ERR_PTR(err);
366 
367 	return m;
368 }
369 
370 static u64 max_mem_transfer_per_pass(struct xe_device *xe)
371 {
372 	if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
373 		return MAX_CCS_LIMITED_TRANSFER;
374 
375 	return MAX_PREEMPTDISABLE_TRANSFER;
376 }
377 
378 static u64 xe_migrate_res_sizes(struct xe_device *xe, struct xe_res_cursor *cur)
379 {
380 	/*
381 	 * For VRAM we use identity mapped pages so we are limited to current
382 	 * cursor size. For system we program the pages ourselves so we have no
383 	 * such limitation.
384 	 */
385 	return min_t(u64, max_mem_transfer_per_pass(xe),
386 		     mem_type_is_vram(cur->mem_type) ? cur->size :
387 		     cur->remaining);
388 }
389 
390 static u32 pte_update_size(struct xe_migrate *m,
391 			   bool is_vram,
392 			   struct ttm_resource *res,
393 			   struct xe_res_cursor *cur,
394 			   u64 *L0, u64 *L0_ofs, u32 *L0_pt,
395 			   u32 cmd_size, u32 pt_ofs, u32 avail_pts)
396 {
397 	u32 cmds = 0;
398 
399 	*L0_pt = pt_ofs;
400 	if (!is_vram) {
401 		/* Clip L0 to available size */
402 		u64 size = min(*L0, (u64)avail_pts * SZ_2M);
403 		u64 num_4k_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
404 
405 		*L0 = size;
406 		*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
407 
408 		/* MI_STORE_DATA_IMM */
409 		cmds += 3 * DIV_ROUND_UP(num_4k_pages, 0x1ff);
410 
411 		/* PDE qwords */
412 		cmds += num_4k_pages * 2;
413 
414 		/* Each chunk has a single blit command */
415 		cmds += cmd_size;
416 	} else {
417 		/* Offset into identity map. */
418 		*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
419 					      cur->start + vram_region_gpu_offset(res));
420 		cmds += cmd_size;
421 	}
422 
423 	return cmds;
424 }
425 
426 static void emit_pte(struct xe_migrate *m,
427 		     struct xe_bb *bb, u32 at_pt,
428 		     bool is_vram, bool is_comp_pte,
429 		     struct xe_res_cursor *cur,
430 		     u32 size, struct xe_bo *bo)
431 {
432 	struct xe_device *xe = tile_to_xe(m->tile);
433 
434 	u16 pat_index;
435 	u32 ptes;
436 	u64 ofs = at_pt * XE_PAGE_SIZE;
437 	u64 cur_ofs;
438 
439 	/* Indirect access needs compression enabled uncached PAT index */
440 	if (GRAPHICS_VERx100(xe) >= 2000)
441 		pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
442 					  xe->pat.idx[XE_CACHE_NONE];
443 	else
444 		pat_index = xe->pat.idx[XE_CACHE_WB];
445 
446 	/*
447 	 * FIXME: Emitting VRAM PTEs to L0 PTs is forbidden. Currently
448 	 * we're only emitting VRAM PTEs during sanity tests, so when
449 	 * that's moved to a Kunit test, we should condition VRAM PTEs
450 	 * on running tests.
451 	 */
452 
453 	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
454 
455 	while (ptes) {
456 		u32 chunk = min(0x1ffU, ptes);
457 
458 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
459 		bb->cs[bb->len++] = ofs;
460 		bb->cs[bb->len++] = 0;
461 
462 		cur_ofs = ofs;
463 		ofs += chunk * 8;
464 		ptes -= chunk;
465 
466 		while (chunk--) {
467 			u64 addr, flags = 0;
468 			bool devmem = false;
469 
470 			addr = xe_res_dma(cur) & PAGE_MASK;
471 			if (is_vram) {
472 				/* Is this a 64K PTE entry? */
473 				if ((m->q->vm->flags & XE_VM_FLAG_64K) &&
474 				    !(cur_ofs & (16 * 8 - 1))) {
475 					xe_tile_assert(m->tile, IS_ALIGNED(addr, SZ_64K));
476 					flags |= XE_PTE_PS64;
477 				}
478 
479 				addr += vram_region_gpu_offset(bo->ttm.resource);
480 				devmem = true;
481 			}
482 
483 			addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe,
484 								 addr, pat_index,
485 								 0, devmem, flags);
486 			bb->cs[bb->len++] = lower_32_bits(addr);
487 			bb->cs[bb->len++] = upper_32_bits(addr);
488 
489 			xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
490 			cur_ofs += 8;
491 		}
492 	}
493 }
494 
495 #define EMIT_COPY_CCS_DW 5
496 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
497 			  u64 dst_ofs, bool dst_is_indirect,
498 			  u64 src_ofs, bool src_is_indirect,
499 			  u32 size)
500 {
501 	struct xe_device *xe = gt_to_xe(gt);
502 	u32 *cs = bb->cs + bb->len;
503 	u32 num_ccs_blks;
504 	u32 num_pages;
505 	u32 ccs_copy_size;
506 	u32 mocs;
507 
508 	if (GRAPHICS_VERx100(xe) >= 2000) {
509 		num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
510 		xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
511 
512 		ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
513 		mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
514 
515 	} else {
516 		num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
517 					    NUM_CCS_BYTES_PER_BLOCK);
518 		xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
519 
520 		ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
521 		mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
522 	}
523 
524 	*cs++ = XY_CTRL_SURF_COPY_BLT |
525 		(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
526 		(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
527 		ccs_copy_size;
528 	*cs++ = lower_32_bits(src_ofs);
529 	*cs++ = upper_32_bits(src_ofs) | mocs;
530 	*cs++ = lower_32_bits(dst_ofs);
531 	*cs++ = upper_32_bits(dst_ofs) | mocs;
532 
533 	bb->len = cs - bb->cs;
534 }
535 
536 #define EMIT_COPY_DW 10
537 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
538 		      u64 src_ofs, u64 dst_ofs, unsigned int size,
539 		      unsigned int pitch)
540 {
541 	struct xe_device *xe = gt_to_xe(gt);
542 	u32 mocs = 0;
543 	u32 tile_y = 0;
544 
545 	xe_gt_assert(gt, size / pitch <= S16_MAX);
546 	xe_gt_assert(gt, pitch / 4 <= S16_MAX);
547 	xe_gt_assert(gt, pitch <= U16_MAX);
548 
549 	if (GRAPHICS_VER(xe) >= 20)
550 		mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
551 
552 	if (GRAPHICS_VERx100(xe) >= 1250)
553 		tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
554 
555 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
556 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
557 	bb->cs[bb->len++] = 0;
558 	bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
559 	bb->cs[bb->len++] = lower_32_bits(dst_ofs);
560 	bb->cs[bb->len++] = upper_32_bits(dst_ofs);
561 	bb->cs[bb->len++] = 0;
562 	bb->cs[bb->len++] = pitch | mocs;
563 	bb->cs[bb->len++] = lower_32_bits(src_ofs);
564 	bb->cs[bb->len++] = upper_32_bits(src_ofs);
565 }
566 
567 static int job_add_deps(struct xe_sched_job *job, struct dma_resv *resv,
568 			enum dma_resv_usage usage)
569 {
570 	return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage);
571 }
572 
573 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
574 {
575 	return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
576 }
577 
578 static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
579 			       struct xe_bb *bb,
580 			       u64 src_ofs, bool src_is_indirect,
581 			       u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
582 			       u64 ccs_ofs, bool copy_ccs)
583 {
584 	struct xe_gt *gt = m->tile->primary_gt;
585 	u32 flush_flags = 0;
586 
587 	if (xe_device_has_flat_ccs(gt_to_xe(gt)) && !copy_ccs && dst_is_indirect) {
588 		/*
589 		 * If the src is already in vram, then it should already
590 		 * have been cleared by us, or has been populated by the
591 		 * user. Make sure we copy the CCS aux state as-is.
592 		 *
593 		 * Otherwise if the bo doesn't have any CCS metadata attached,
594 		 * we still need to clear it for security reasons.
595 		 */
596 		u64 ccs_src_ofs =  src_is_indirect ? src_ofs : m->cleared_mem_ofs;
597 
598 		emit_copy_ccs(gt, bb,
599 			      dst_ofs, true,
600 			      ccs_src_ofs, src_is_indirect, dst_size);
601 
602 		flush_flags = MI_FLUSH_DW_CCS;
603 	} else if (copy_ccs) {
604 		if (!src_is_indirect)
605 			src_ofs = ccs_ofs;
606 		else if (!dst_is_indirect)
607 			dst_ofs = ccs_ofs;
608 
609 		xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
610 
611 		emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
612 			      src_is_indirect, dst_size);
613 		if (dst_is_indirect)
614 			flush_flags = MI_FLUSH_DW_CCS;
615 	}
616 
617 	return flush_flags;
618 }
619 
620 /**
621  * xe_migrate_copy() - Copy content of TTM resources.
622  * @m: The migration context.
623  * @src_bo: The buffer object @src is currently bound to.
624  * @dst_bo: If copying between resources created for the same bo, set this to
625  * the same value as @src_bo. If copying between buffer objects, set it to
626  * the buffer object @dst is currently bound to.
627  * @src: The source TTM resource.
628  * @dst: The dst TTM resource.
629  * @copy_only_ccs: If true copy only CCS metadata
630  *
631  * Copies the contents of @src to @dst: On flat CCS devices,
632  * the CCS metadata is copied as well if needed, or if not present,
633  * the CCS metadata of @dst is cleared for security reasons.
634  *
635  * Return: Pointer to a dma_fence representing the last copy batch, or
636  * an error pointer on failure. If there is a failure, any copy operation
637  * started by the function call has been synced.
638  */
639 struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
640 				  struct xe_bo *src_bo,
641 				  struct xe_bo *dst_bo,
642 				  struct ttm_resource *src,
643 				  struct ttm_resource *dst,
644 				  bool copy_only_ccs)
645 {
646 	struct xe_gt *gt = m->tile->primary_gt;
647 	struct xe_device *xe = gt_to_xe(gt);
648 	struct dma_fence *fence = NULL;
649 	u64 size = src_bo->size;
650 	struct xe_res_cursor src_it, dst_it, ccs_it;
651 	u64 src_L0_ofs, dst_L0_ofs;
652 	u32 src_L0_pt, dst_L0_pt;
653 	u64 src_L0, dst_L0;
654 	int pass = 0;
655 	int err;
656 	bool src_is_pltt = src->mem_type == XE_PL_TT;
657 	bool dst_is_pltt = dst->mem_type == XE_PL_TT;
658 	bool src_is_vram = mem_type_is_vram(src->mem_type);
659 	bool dst_is_vram = mem_type_is_vram(dst->mem_type);
660 	bool copy_ccs = xe_device_has_flat_ccs(xe) &&
661 		xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
662 	bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
663 
664 	/* Copying CCS between two different BOs is not supported yet. */
665 	if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
666 		return ERR_PTR(-EINVAL);
667 
668 	if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
669 		return ERR_PTR(-EINVAL);
670 
671 	if (!src_is_vram)
672 		xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
673 	else
674 		xe_res_first(src, 0, size, &src_it);
675 	if (!dst_is_vram)
676 		xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
677 	else
678 		xe_res_first(dst, 0, size, &dst_it);
679 
680 	if (copy_system_ccs)
681 		xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
682 				PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
683 				&ccs_it);
684 
685 	while (size) {
686 		u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
687 		struct xe_sched_job *job;
688 		struct xe_bb *bb;
689 		u32 flush_flags;
690 		u32 update_idx;
691 		u64 ccs_ofs, ccs_size;
692 		u32 ccs_pt;
693 
694 		bool usm = xe->info.has_usm;
695 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
696 
697 		src_L0 = xe_migrate_res_sizes(xe, &src_it);
698 		dst_L0 = xe_migrate_res_sizes(xe, &dst_it);
699 
700 		drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
701 			pass++, src_L0, dst_L0);
702 
703 		src_L0 = min(src_L0, dst_L0);
704 
705 		batch_size += pte_update_size(m, src_is_vram, src, &src_it, &src_L0,
706 					      &src_L0_ofs, &src_L0_pt, 0, 0,
707 					      avail_pts);
708 
709 		batch_size += pte_update_size(m, dst_is_vram, dst, &dst_it, &src_L0,
710 					      &dst_L0_ofs, &dst_L0_pt, 0,
711 					      avail_pts, avail_pts);
712 
713 		if (copy_system_ccs) {
714 			ccs_size = xe_device_ccs_bytes(xe, src_L0);
715 			batch_size += pte_update_size(m, false, NULL, &ccs_it, &ccs_size,
716 						      &ccs_ofs, &ccs_pt, 0,
717 						      2 * avail_pts,
718 						      avail_pts);
719 		}
720 
721 		/* Add copy commands size here */
722 		batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
723 			((xe_device_has_flat_ccs(xe) ? EMIT_COPY_CCS_DW : 0));
724 
725 		bb = xe_bb_new(gt, batch_size, usm);
726 		if (IS_ERR(bb)) {
727 			err = PTR_ERR(bb);
728 			goto err_sync;
729 		}
730 
731 		if (!src_is_vram)
732 			emit_pte(m, bb, src_L0_pt, src_is_vram, true, &src_it, src_L0,
733 				 src_bo);
734 		else
735 			xe_res_next(&src_it, src_L0);
736 
737 		if (!dst_is_vram)
738 			emit_pte(m, bb, dst_L0_pt, dst_is_vram, true, &dst_it, src_L0,
739 				 dst_bo);
740 		else
741 			xe_res_next(&dst_it, src_L0);
742 
743 		if (copy_system_ccs)
744 			emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src_bo);
745 
746 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
747 		update_idx = bb->len;
748 
749 		if (!copy_only_ccs)
750 			emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
751 
752 		flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
753 						  IS_DGFX(xe) ? src_is_vram : src_is_pltt,
754 						  dst_L0_ofs,
755 						  IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
756 						  src_L0, ccs_ofs, copy_ccs);
757 
758 		mutex_lock(&m->job_mutex);
759 		job = xe_bb_create_migration_job(m->q, bb,
760 						 xe_migrate_batch_base(m, usm),
761 						 update_idx);
762 		if (IS_ERR(job)) {
763 			err = PTR_ERR(job);
764 			goto err;
765 		}
766 
767 		xe_sched_job_add_migrate_flush(job, flush_flags);
768 		if (!fence) {
769 			err = job_add_deps(job, src_bo->ttm.base.resv,
770 					   DMA_RESV_USAGE_BOOKKEEP);
771 			if (!err && src_bo != dst_bo)
772 				err = job_add_deps(job, dst_bo->ttm.base.resv,
773 						   DMA_RESV_USAGE_BOOKKEEP);
774 			if (err)
775 				goto err_job;
776 		}
777 
778 		xe_sched_job_arm(job);
779 		dma_fence_put(fence);
780 		fence = dma_fence_get(&job->drm.s_fence->finished);
781 		xe_sched_job_push(job);
782 
783 		dma_fence_put(m->fence);
784 		m->fence = dma_fence_get(fence);
785 
786 		mutex_unlock(&m->job_mutex);
787 
788 		xe_bb_free(bb, fence);
789 		size -= src_L0;
790 		continue;
791 
792 err_job:
793 		xe_sched_job_put(job);
794 err:
795 		mutex_unlock(&m->job_mutex);
796 		xe_bb_free(bb, NULL);
797 
798 err_sync:
799 		/* Sync partial copy if any. FIXME: under job_mutex? */
800 		if (fence) {
801 			dma_fence_wait(fence, false);
802 			dma_fence_put(fence);
803 		}
804 
805 		return ERR_PTR(err);
806 	}
807 
808 	return fence;
809 }
810 
811 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
812 				 u32 size, u32 pitch)
813 {
814 	struct xe_device *xe = gt_to_xe(gt);
815 	u32 *cs = bb->cs + bb->len;
816 	u32 len = PVC_MEM_SET_CMD_LEN_DW;
817 
818 	*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
819 	*cs++ = pitch - 1;
820 	*cs++ = (size / pitch) - 1;
821 	*cs++ = pitch - 1;
822 	*cs++ = lower_32_bits(src_ofs);
823 	*cs++ = upper_32_bits(src_ofs);
824 	if (GRAPHICS_VERx100(xe) >= 2000)
825 		*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
826 	else
827 		*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
828 
829 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
830 
831 	bb->len += len;
832 }
833 
834 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
835 				 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
836 {
837 	struct xe_device *xe = gt_to_xe(gt);
838 	u32 *cs = bb->cs + bb->len;
839 	u32 len = XY_FAST_COLOR_BLT_DW;
840 
841 	if (GRAPHICS_VERx100(xe) < 1250)
842 		len = 11;
843 
844 	*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
845 		(len - 2);
846 	if (GRAPHICS_VERx100(xe) >= 2000)
847 		*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
848 			(pitch - 1);
849 	else
850 		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
851 			(pitch - 1);
852 	*cs++ = 0;
853 	*cs++ = (size / pitch) << 16 | pitch / 4;
854 	*cs++ = lower_32_bits(src_ofs);
855 	*cs++ = upper_32_bits(src_ofs);
856 	*cs++ = (is_vram ? 0x0 : 0x1) <<  XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
857 	*cs++ = 0;
858 	*cs++ = 0;
859 	*cs++ = 0;
860 	*cs++ = 0;
861 
862 	if (len > 11) {
863 		*cs++ = 0;
864 		*cs++ = 0;
865 		*cs++ = 0;
866 		*cs++ = 0;
867 		*cs++ = 0;
868 	}
869 
870 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
871 
872 	bb->len += len;
873 }
874 
875 static bool has_service_copy_support(struct xe_gt *gt)
876 {
877 	/*
878 	 * What we care about is whether the architecture was designed with
879 	 * service copy functionality (specifically the new MEM_SET / MEM_COPY
880 	 * instructions) so check the architectural engine list rather than the
881 	 * actual list since these instructions are usable on BCS0 even if
882 	 * all of the actual service copy engines (BCS1-BCS8) have been fused
883 	 * off.
884 	 */
885 	return gt->info.__engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
886 						XE_HW_ENGINE_BCS1);
887 }
888 
889 static u32 emit_clear_cmd_len(struct xe_gt *gt)
890 {
891 	if (has_service_copy_support(gt))
892 		return PVC_MEM_SET_CMD_LEN_DW;
893 	else
894 		return XY_FAST_COLOR_BLT_DW;
895 }
896 
897 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
898 		       u32 size, u32 pitch, bool is_vram)
899 {
900 	if (has_service_copy_support(gt))
901 		emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
902 	else
903 		emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
904 				     is_vram);
905 }
906 
907 /**
908  * xe_migrate_clear() - Copy content of TTM resources.
909  * @m: The migration context.
910  * @bo: The buffer object @dst is currently bound to.
911  * @dst: The dst TTM resource to be cleared.
912  *
913  * Clear the contents of @dst to zero. On flat CCS devices,
914  * the CCS metadata is cleared to zero as well on VRAM destinations.
915  * TODO: Eliminate the @bo argument.
916  *
917  * Return: Pointer to a dma_fence representing the last clear batch, or
918  * an error pointer on failure. If there is a failure, any clear operation
919  * started by the function call has been synced.
920  */
921 struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
922 				   struct xe_bo *bo,
923 				   struct ttm_resource *dst)
924 {
925 	bool clear_vram = mem_type_is_vram(dst->mem_type);
926 	struct xe_gt *gt = m->tile->primary_gt;
927 	struct xe_device *xe = gt_to_xe(gt);
928 	bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false;
929 	struct dma_fence *fence = NULL;
930 	u64 size = bo->size;
931 	struct xe_res_cursor src_it;
932 	struct ttm_resource *src = dst;
933 	int err;
934 	int pass = 0;
935 
936 	if (!clear_vram)
937 		xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
938 	else
939 		xe_res_first(src, 0, bo->size, &src_it);
940 
941 	while (size) {
942 		u64 clear_L0_ofs;
943 		u32 clear_L0_pt;
944 		u32 flush_flags = 0;
945 		u64 clear_L0;
946 		struct xe_sched_job *job;
947 		struct xe_bb *bb;
948 		u32 batch_size, update_idx;
949 
950 		bool usm = xe->info.has_usm;
951 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
952 
953 		clear_L0 = xe_migrate_res_sizes(xe, &src_it);
954 
955 		drm_dbg(&xe->drm, "Pass %u, size: %llu\n", pass++, clear_L0);
956 
957 		/* Calculate final sizes and batch size.. */
958 		batch_size = 2 +
959 			pte_update_size(m, clear_vram, src, &src_it,
960 					&clear_L0, &clear_L0_ofs, &clear_L0_pt,
961 					clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0,
962 					avail_pts);
963 
964 		if (xe_device_has_flat_ccs(xe))
965 			batch_size += EMIT_COPY_CCS_DW;
966 
967 		/* Clear commands */
968 
969 		if (WARN_ON_ONCE(!clear_L0))
970 			break;
971 
972 		bb = xe_bb_new(gt, batch_size, usm);
973 		if (IS_ERR(bb)) {
974 			err = PTR_ERR(bb);
975 			goto err_sync;
976 		}
977 
978 		size -= clear_L0;
979 		/* Preemption is enabled again by the ring ops. */
980 		if (!clear_vram) {
981 			emit_pte(m, bb, clear_L0_pt, clear_vram, true, &src_it, clear_L0,
982 				 bo);
983 		} else {
984 			xe_res_next(&src_it, clear_L0);
985 		}
986 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
987 		update_idx = bb->len;
988 
989 		if (!clear_system_ccs)
990 			emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
991 
992 		if (xe_device_has_flat_ccs(xe)) {
993 			emit_copy_ccs(gt, bb, clear_L0_ofs, true,
994 				      m->cleared_mem_ofs, false, clear_L0);
995 			flush_flags = MI_FLUSH_DW_CCS;
996 		}
997 
998 		mutex_lock(&m->job_mutex);
999 		job = xe_bb_create_migration_job(m->q, bb,
1000 						 xe_migrate_batch_base(m, usm),
1001 						 update_idx);
1002 		if (IS_ERR(job)) {
1003 			err = PTR_ERR(job);
1004 			goto err;
1005 		}
1006 
1007 		xe_sched_job_add_migrate_flush(job, flush_flags);
1008 		if (!fence) {
1009 			/*
1010 			 * There can't be anything userspace related at this
1011 			 * point, so we just need to respect any potential move
1012 			 * fences, which are always tracked as
1013 			 * DMA_RESV_USAGE_KERNEL.
1014 			 */
1015 			err = job_add_deps(job, bo->ttm.base.resv,
1016 					   DMA_RESV_USAGE_KERNEL);
1017 			if (err)
1018 				goto err_job;
1019 		}
1020 
1021 		xe_sched_job_arm(job);
1022 		dma_fence_put(fence);
1023 		fence = dma_fence_get(&job->drm.s_fence->finished);
1024 		xe_sched_job_push(job);
1025 
1026 		dma_fence_put(m->fence);
1027 		m->fence = dma_fence_get(fence);
1028 
1029 		mutex_unlock(&m->job_mutex);
1030 
1031 		xe_bb_free(bb, fence);
1032 		continue;
1033 
1034 err_job:
1035 		xe_sched_job_put(job);
1036 err:
1037 		mutex_unlock(&m->job_mutex);
1038 		xe_bb_free(bb, NULL);
1039 err_sync:
1040 		/* Sync partial copies if any. FIXME: job_mutex? */
1041 		if (fence) {
1042 			dma_fence_wait(m->fence, false);
1043 			dma_fence_put(fence);
1044 		}
1045 
1046 		return ERR_PTR(err);
1047 	}
1048 
1049 	if (clear_system_ccs)
1050 		bo->ccs_cleared = true;
1051 
1052 	return fence;
1053 }
1054 
1055 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1056 			  const struct xe_vm_pgtable_update *update,
1057 			  struct xe_migrate_pt_update *pt_update)
1058 {
1059 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1060 	u32 chunk;
1061 	u32 ofs = update->ofs, size = update->qwords;
1062 
1063 	/*
1064 	 * If we have 512 entries (max), we would populate it ourselves,
1065 	 * and update the PDE above it to the new pointer.
1066 	 * The only time this can only happen if we have to update the top
1067 	 * PDE. This requires a BO that is almost vm->size big.
1068 	 *
1069 	 * This shouldn't be possible in practice.. might change when 16K
1070 	 * pages are used. Hence the assert.
1071 	 */
1072 	xe_tile_assert(tile, update->qwords <= 0x1ff);
1073 	if (!ppgtt_ofs)
1074 		ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1075 						xe_bo_addr(update->pt_bo, 0,
1076 							   XE_PAGE_SIZE));
1077 
1078 	do {
1079 		u64 addr = ppgtt_ofs + ofs * 8;
1080 
1081 		chunk = min(update->qwords, 0x1ffU);
1082 
1083 		/* Ensure populatefn can do memset64 by aligning bb->cs */
1084 		if (!(bb->len & 1))
1085 			bb->cs[bb->len++] = MI_NOOP;
1086 
1087 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1088 		bb->cs[bb->len++] = lower_32_bits(addr);
1089 		bb->cs[bb->len++] = upper_32_bits(addr);
1090 		ops->populate(pt_update, tile, NULL, bb->cs + bb->len, ofs, chunk,
1091 			      update);
1092 
1093 		bb->len += chunk * 2;
1094 		ofs += chunk;
1095 		size -= chunk;
1096 	} while (size);
1097 }
1098 
1099 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1100 {
1101 	return xe_vm_get(m->q->vm);
1102 }
1103 
1104 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1105 struct migrate_test_params {
1106 	struct xe_test_priv base;
1107 	bool force_gpu;
1108 };
1109 
1110 #define to_migrate_test_params(_priv) \
1111 	container_of(_priv, struct migrate_test_params, base)
1112 #endif
1113 
1114 static struct dma_fence *
1115 xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1116 			       struct xe_vm *vm, struct xe_bo *bo,
1117 			       const struct  xe_vm_pgtable_update *updates,
1118 			       u32 num_updates, bool wait_vm,
1119 			       struct xe_migrate_pt_update *pt_update)
1120 {
1121 	XE_TEST_DECLARE(struct migrate_test_params *test =
1122 			to_migrate_test_params
1123 			(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1124 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1125 	struct dma_fence *fence;
1126 	int err;
1127 	u32 i;
1128 
1129 	if (XE_TEST_ONLY(test && test->force_gpu))
1130 		return ERR_PTR(-ETIME);
1131 
1132 	if (bo && !dma_resv_test_signaled(bo->ttm.base.resv,
1133 					  DMA_RESV_USAGE_KERNEL))
1134 		return ERR_PTR(-ETIME);
1135 
1136 	if (wait_vm && !dma_resv_test_signaled(xe_vm_resv(vm),
1137 					       DMA_RESV_USAGE_BOOKKEEP))
1138 		return ERR_PTR(-ETIME);
1139 
1140 	if (ops->pre_commit) {
1141 		pt_update->job = NULL;
1142 		err = ops->pre_commit(pt_update);
1143 		if (err)
1144 			return ERR_PTR(err);
1145 	}
1146 	for (i = 0; i < num_updates; i++) {
1147 		const struct xe_vm_pgtable_update *update = &updates[i];
1148 
1149 		ops->populate(pt_update, m->tile, &update->pt_bo->vmap, NULL,
1150 			      update->ofs, update->qwords, update);
1151 	}
1152 
1153 	if (vm) {
1154 		trace_xe_vm_cpu_bind(vm);
1155 		xe_device_wmb(vm->xe);
1156 	}
1157 
1158 	fence = dma_fence_get_stub();
1159 
1160 	return fence;
1161 }
1162 
1163 static bool no_in_syncs(struct xe_vm *vm, struct xe_exec_queue *q,
1164 			struct xe_sync_entry *syncs, u32 num_syncs)
1165 {
1166 	struct dma_fence *fence;
1167 	int i;
1168 
1169 	for (i = 0; i < num_syncs; i++) {
1170 		fence = syncs[i].fence;
1171 
1172 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1173 				       &fence->flags))
1174 			return false;
1175 	}
1176 	if (q) {
1177 		fence = xe_exec_queue_last_fence_get(q, vm);
1178 		if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1179 			return false;
1180 	}
1181 
1182 	return true;
1183 }
1184 
1185 /**
1186  * xe_migrate_update_pgtables() - Pipelined page-table update
1187  * @m: The migrate context.
1188  * @vm: The vm we'll be updating.
1189  * @bo: The bo whose dma-resv we will await before updating, or NULL if userptr.
1190  * @q: The exec queue to be used for the update or NULL if the default
1191  * migration engine is to be used.
1192  * @updates: An array of update descriptors.
1193  * @num_updates: Number of descriptors in @updates.
1194  * @syncs: Array of xe_sync_entry to await before updating. Note that waits
1195  * will block the engine timeline.
1196  * @num_syncs: Number of entries in @syncs.
1197  * @pt_update: Pointer to a struct xe_migrate_pt_update, which contains
1198  * pointers to callback functions and, if subclassed, private arguments to
1199  * those.
1200  *
1201  * Perform a pipelined page-table update. The update descriptors are typically
1202  * built under the same lock critical section as a call to this function. If
1203  * using the default engine for the updates, they will be performed in the
1204  * order they grab the job_mutex. If different engines are used, external
1205  * synchronization is needed for overlapping updates to maintain page-table
1206  * consistency. Note that the meaing of "overlapping" is that the updates
1207  * touch the same page-table, which might be a higher-level page-directory.
1208  * If no pipelining is needed, then updates may be performed by the cpu.
1209  *
1210  * Return: A dma_fence that, when signaled, indicates the update completion.
1211  */
1212 struct dma_fence *
1213 xe_migrate_update_pgtables(struct xe_migrate *m,
1214 			   struct xe_vm *vm,
1215 			   struct xe_bo *bo,
1216 			   struct xe_exec_queue *q,
1217 			   const struct xe_vm_pgtable_update *updates,
1218 			   u32 num_updates,
1219 			   struct xe_sync_entry *syncs, u32 num_syncs,
1220 			   struct xe_migrate_pt_update *pt_update)
1221 {
1222 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1223 	struct xe_tile *tile = m->tile;
1224 	struct xe_gt *gt = tile->primary_gt;
1225 	struct xe_device *xe = tile_to_xe(tile);
1226 	struct xe_sched_job *job;
1227 	struct dma_fence *fence;
1228 	struct drm_suballoc *sa_bo = NULL;
1229 	struct xe_vma *vma = pt_update->vma;
1230 	struct xe_bb *bb;
1231 	u32 i, batch_size, ppgtt_ofs, update_idx, page_ofs = 0;
1232 	u64 addr;
1233 	int err = 0;
1234 	bool usm = !q && xe->info.has_usm;
1235 	bool first_munmap_rebind = vma &&
1236 		vma->gpuva.flags & XE_VMA_FIRST_REBIND;
1237 	struct xe_exec_queue *q_override = !q ? m->q : q;
1238 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
1239 
1240 	/* Use the CPU if no in syncs and engine is idle */
1241 	if (no_in_syncs(vm, q, syncs, num_syncs) && xe_exec_queue_is_idle(q_override)) {
1242 		fence =  xe_migrate_update_pgtables_cpu(m, vm, bo, updates,
1243 							num_updates,
1244 							first_munmap_rebind,
1245 							pt_update);
1246 		if (!IS_ERR(fence) || fence == ERR_PTR(-EAGAIN))
1247 			return fence;
1248 	}
1249 
1250 	/* fixed + PTE entries */
1251 	if (IS_DGFX(xe))
1252 		batch_size = 2;
1253 	else
1254 		batch_size = 6 + num_updates * 2;
1255 
1256 	for (i = 0; i < num_updates; i++) {
1257 		u32 num_cmds = DIV_ROUND_UP(updates[i].qwords, 0x1ff);
1258 
1259 		/* align noop + MI_STORE_DATA_IMM cmd prefix */
1260 		batch_size += 4 * num_cmds + updates[i].qwords * 2;
1261 	}
1262 
1263 	/*
1264 	 * XXX: Create temp bo to copy from, if batch_size becomes too big?
1265 	 *
1266 	 * Worst case: Sum(2 * (each lower level page size) + (top level page size))
1267 	 * Should be reasonably bound..
1268 	 */
1269 	xe_tile_assert(tile, batch_size < SZ_128K);
1270 
1271 	bb = xe_bb_new(gt, batch_size, !q && xe->info.has_usm);
1272 	if (IS_ERR(bb))
1273 		return ERR_CAST(bb);
1274 
1275 	/* For sysmem PTE's, need to map them in our hole.. */
1276 	if (!IS_DGFX(xe)) {
1277 		ppgtt_ofs = NUM_KERNEL_PDE - 1;
1278 		if (q) {
1279 			xe_tile_assert(tile, num_updates <= NUM_VMUSA_WRITES_PER_UNIT);
1280 
1281 			sa_bo = drm_suballoc_new(&m->vm_update_sa, 1,
1282 						 GFP_KERNEL, true, 0);
1283 			if (IS_ERR(sa_bo)) {
1284 				err = PTR_ERR(sa_bo);
1285 				goto err;
1286 			}
1287 
1288 			ppgtt_ofs = NUM_KERNEL_PDE +
1289 				(drm_suballoc_soffset(sa_bo) /
1290 				 NUM_VMUSA_UNIT_PER_PAGE);
1291 			page_ofs = (drm_suballoc_soffset(sa_bo) %
1292 				    NUM_VMUSA_UNIT_PER_PAGE) *
1293 				VM_SA_UPDATE_UNIT_SIZE;
1294 		}
1295 
1296 		/* Map our PT's to gtt */
1297 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(num_updates);
1298 		bb->cs[bb->len++] = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1299 		bb->cs[bb->len++] = 0; /* upper_32_bits */
1300 
1301 		for (i = 0; i < num_updates; i++) {
1302 			struct xe_bo *pt_bo = updates[i].pt_bo;
1303 
1304 			xe_tile_assert(tile, pt_bo->size == SZ_4K);
1305 
1306 			addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, pat_index, 0);
1307 			bb->cs[bb->len++] = lower_32_bits(addr);
1308 			bb->cs[bb->len++] = upper_32_bits(addr);
1309 		}
1310 
1311 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1312 		update_idx = bb->len;
1313 
1314 		addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1315 			(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1316 		for (i = 0; i < num_updates; i++)
1317 			write_pgtable(tile, bb, addr + i * XE_PAGE_SIZE,
1318 				      &updates[i], pt_update);
1319 	} else {
1320 		/* phys pages, no preamble required */
1321 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1322 		update_idx = bb->len;
1323 
1324 		for (i = 0; i < num_updates; i++)
1325 			write_pgtable(tile, bb, 0, &updates[i], pt_update);
1326 	}
1327 
1328 	if (!q)
1329 		mutex_lock(&m->job_mutex);
1330 
1331 	job = xe_bb_create_migration_job(q ?: m->q, bb,
1332 					 xe_migrate_batch_base(m, usm),
1333 					 update_idx);
1334 	if (IS_ERR(job)) {
1335 		err = PTR_ERR(job);
1336 		goto err_bb;
1337 	}
1338 
1339 	/* Wait on BO move */
1340 	if (bo) {
1341 		err = job_add_deps(job, bo->ttm.base.resv,
1342 				   DMA_RESV_USAGE_KERNEL);
1343 		if (err)
1344 			goto err_job;
1345 	}
1346 
1347 	/*
1348 	 * Munmap style VM unbind, need to wait for all jobs to be complete /
1349 	 * trigger preempts before moving forward
1350 	 */
1351 	if (first_munmap_rebind) {
1352 		err = job_add_deps(job, xe_vm_resv(vm),
1353 				   DMA_RESV_USAGE_BOOKKEEP);
1354 		if (err)
1355 			goto err_job;
1356 	}
1357 
1358 	err = xe_sched_job_last_fence_add_dep(job, vm);
1359 	for (i = 0; !err && i < num_syncs; i++)
1360 		err = xe_sync_entry_add_deps(&syncs[i], job);
1361 
1362 	if (err)
1363 		goto err_job;
1364 
1365 	if (ops->pre_commit) {
1366 		pt_update->job = job;
1367 		err = ops->pre_commit(pt_update);
1368 		if (err)
1369 			goto err_job;
1370 	}
1371 	xe_sched_job_arm(job);
1372 	fence = dma_fence_get(&job->drm.s_fence->finished);
1373 	xe_sched_job_push(job);
1374 
1375 	if (!q)
1376 		mutex_unlock(&m->job_mutex);
1377 
1378 	xe_bb_free(bb, fence);
1379 	drm_suballoc_free(sa_bo, fence);
1380 
1381 	return fence;
1382 
1383 err_job:
1384 	xe_sched_job_put(job);
1385 err_bb:
1386 	if (!q)
1387 		mutex_unlock(&m->job_mutex);
1388 	xe_bb_free(bb, NULL);
1389 err:
1390 	drm_suballoc_free(sa_bo, NULL);
1391 	return ERR_PTR(err);
1392 }
1393 
1394 /**
1395  * xe_migrate_wait() - Complete all operations using the xe_migrate context
1396  * @m: Migrate context to wait for.
1397  *
1398  * Waits until the GPU no longer uses the migrate context's default engine
1399  * or its page-table objects. FIXME: What about separate page-table update
1400  * engines?
1401  */
1402 void xe_migrate_wait(struct xe_migrate *m)
1403 {
1404 	if (m->fence)
1405 		dma_fence_wait(m->fence, false);
1406 }
1407 
1408 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1409 #include "tests/xe_migrate.c"
1410 #endif
1411