1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include "xe_migrate.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/sizes.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/drm_pagemap.h> 13 #include <drm/ttm/ttm_tt.h> 14 #include <uapi/drm/xe_drm.h> 15 16 #include <generated/xe_wa_oob.h> 17 18 #include "instructions/xe_gpu_commands.h" 19 #include "instructions/xe_mi_commands.h" 20 #include "regs/xe_gtt_defs.h" 21 #include "tests/xe_test.h" 22 #include "xe_assert.h" 23 #include "xe_bb.h" 24 #include "xe_bo.h" 25 #include "xe_exec_queue.h" 26 #include "xe_ggtt.h" 27 #include "xe_gt.h" 28 #include "xe_hw_engine.h" 29 #include "xe_lrc.h" 30 #include "xe_map.h" 31 #include "xe_mocs.h" 32 #include "xe_pt.h" 33 #include "xe_res_cursor.h" 34 #include "xe_sa.h" 35 #include "xe_sched_job.h" 36 #include "xe_sync.h" 37 #include "xe_trace_bo.h" 38 #include "xe_validation.h" 39 #include "xe_vm.h" 40 #include "xe_vram.h" 41 42 /** 43 * struct xe_migrate - migrate context. 44 */ 45 struct xe_migrate { 46 /** @q: Default exec queue used for migration */ 47 struct xe_exec_queue *q; 48 /** @tile: Backpointer to the tile this struct xe_migrate belongs to. */ 49 struct xe_tile *tile; 50 /** @job_mutex: Timeline mutex for @eng. */ 51 struct mutex job_mutex; 52 /** @pt_bo: Page-table buffer object. */ 53 struct xe_bo *pt_bo; 54 /** @batch_base_ofs: VM offset of the migration batch buffer */ 55 u64 batch_base_ofs; 56 /** @usm_batch_base_ofs: VM offset of the usm batch buffer */ 57 u64 usm_batch_base_ofs; 58 /** @cleared_mem_ofs: VM offset of @cleared_bo. */ 59 u64 cleared_mem_ofs; 60 /** 61 * @fence: dma-fence representing the last migration job batch. 62 * Protected by @job_mutex. 63 */ 64 struct dma_fence *fence; 65 /** 66 * @vm_update_sa: For integrated, used to suballocate page-tables 67 * out of the pt_bo. 68 */ 69 struct drm_suballoc_manager vm_update_sa; 70 /** @min_chunk_size: For dgfx, Minimum chunk size */ 71 u64 min_chunk_size; 72 }; 73 74 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */ 75 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */ 76 #define NUM_KERNEL_PDE 15 77 #define NUM_PT_SLOTS 32 78 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M 79 #define MAX_NUM_PTE 512 80 #define IDENTITY_OFFSET 256ULL 81 82 /* 83 * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest 84 * legal value accepted. Since that instruction field is always stored in 85 * (val-2) format, this translates to 0x400 dwords for the true maximum length 86 * of the instruction. Subtracting the instruction header (1 dword) and 87 * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values. 88 */ 89 #define MAX_PTE_PER_SDI 0x1FEU 90 91 static void xe_migrate_fini(void *arg) 92 { 93 struct xe_migrate *m = arg; 94 95 xe_vm_lock(m->q->vm, false); 96 xe_bo_unpin(m->pt_bo); 97 xe_vm_unlock(m->q->vm); 98 99 dma_fence_put(m->fence); 100 xe_bo_put(m->pt_bo); 101 drm_suballoc_manager_fini(&m->vm_update_sa); 102 mutex_destroy(&m->job_mutex); 103 xe_vm_close_and_put(m->q->vm); 104 xe_exec_queue_put(m->q); 105 } 106 107 static u64 xe_migrate_vm_addr(u64 slot, u32 level) 108 { 109 XE_WARN_ON(slot >= NUM_PT_SLOTS); 110 111 /* First slot is reserved for mapping of PT bo and bb, start from 1 */ 112 return (slot + 1ULL) << xe_pt_shift(level + 1); 113 } 114 115 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte) 116 { 117 /* 118 * Remove the DPA to get a correct offset into identity table for the 119 * migrate offset 120 */ 121 u64 identity_offset = IDENTITY_OFFSET; 122 123 if (GRAPHICS_VER(xe) >= 20 && is_comp_pte) 124 identity_offset += DIV_ROUND_UP_ULL(xe_vram_region_actual_physical_size 125 (xe->mem.vram), SZ_1G); 126 127 addr -= xe_vram_region_dpa_base(xe->mem.vram); 128 return addr + (identity_offset << xe_pt_shift(2)); 129 } 130 131 static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo, 132 u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs) 133 { 134 struct xe_vram_region *vram = xe->mem.vram; 135 resource_size_t dpa_base = xe_vram_region_dpa_base(vram); 136 u64 pos, ofs, flags; 137 u64 entry; 138 /* XXX: Unclear if this should be usable_size? */ 139 u64 vram_limit = xe_vram_region_actual_physical_size(vram) + dpa_base; 140 u32 level = 2; 141 142 ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8; 143 flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, 144 true, 0); 145 146 xe_assert(xe, IS_ALIGNED(xe_vram_region_usable_size(vram), SZ_2M)); 147 148 /* 149 * Use 1GB pages when possible, last chunk always use 2M 150 * pages as mixing reserved memory (stolen, WOCPM) with a single 151 * mapping is not allowed on certain platforms. 152 */ 153 for (pos = dpa_base; pos < vram_limit; 154 pos += SZ_1G, ofs += 8) { 155 if (pos + SZ_1G >= vram_limit) { 156 entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs); 157 xe_map_wr(xe, &bo->vmap, ofs, u64, entry); 158 159 flags = vm->pt_ops->pte_encode_addr(xe, 0, 160 pat_index, 161 level - 1, 162 true, 0); 163 164 for (ofs = pt_2m_ofs; pos < vram_limit; 165 pos += SZ_2M, ofs += 8) 166 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); 167 break; /* Ensure pos == vram_limit assert correct */ 168 } 169 170 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); 171 } 172 173 xe_assert(xe, pos == vram_limit); 174 } 175 176 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, 177 struct xe_vm *vm, struct drm_exec *exec) 178 { 179 struct xe_device *xe = tile_to_xe(tile); 180 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 181 u8 id = tile->id; 182 u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level; 183 #define VRAM_IDENTITY_MAP_COUNT 2 184 u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT; 185 #undef VRAM_IDENTITY_MAP_COUNT 186 u32 map_ofs, level, i; 187 struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo; 188 u64 entry, pt29_ofs; 189 190 /* Can't bump NUM_PT_SLOTS too high */ 191 BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE); 192 /* Must be a multiple of 64K to support all platforms */ 193 BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K); 194 /* And one slot reserved for the 4KiB page table updates */ 195 BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1)); 196 197 /* Need to be sure everything fits in the first PT, or create more */ 198 xe_tile_assert(tile, m->batch_base_ofs + xe_bo_size(batch) < SZ_2M); 199 200 bo = xe_bo_create_pin_map(vm->xe, tile, vm, 201 num_entries * XE_PAGE_SIZE, 202 ttm_bo_type_kernel, 203 XE_BO_FLAG_VRAM_IF_DGFX(tile) | 204 XE_BO_FLAG_PAGETABLE, exec); 205 if (IS_ERR(bo)) 206 return PTR_ERR(bo); 207 208 /* PT30 & PT31 reserved for 2M identity map */ 209 pt29_ofs = xe_bo_size(bo) - 3 * XE_PAGE_SIZE; 210 entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs); 211 xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry); 212 213 map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE; 214 215 /* Map the entire BO in our level 0 pt */ 216 for (i = 0, level = 0; i < num_entries; level++) { 217 entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE, 218 pat_index, 0); 219 220 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry); 221 222 if (vm->flags & XE_VM_FLAG_64K) 223 i += 16; 224 else 225 i += 1; 226 } 227 228 if (!IS_DGFX(xe)) { 229 /* Write out batch too */ 230 m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE; 231 for (i = 0; i < xe_bo_size(batch); 232 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : 233 XE_PAGE_SIZE) { 234 entry = vm->pt_ops->pte_encode_bo(batch, i, 235 pat_index, 0); 236 237 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, 238 entry); 239 level++; 240 } 241 if (xe->info.has_usm) { 242 xe_tile_assert(tile, xe_bo_size(batch) == SZ_1M); 243 244 batch = tile->primary_gt->usm.bb_pool->bo; 245 m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M; 246 xe_tile_assert(tile, xe_bo_size(batch) == SZ_512K); 247 248 for (i = 0; i < xe_bo_size(batch); 249 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : 250 XE_PAGE_SIZE) { 251 entry = vm->pt_ops->pte_encode_bo(batch, i, 252 pat_index, 0); 253 254 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, 255 entry); 256 level++; 257 } 258 } 259 } else { 260 u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); 261 262 m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false); 263 264 if (xe->info.has_usm) { 265 batch = tile->primary_gt->usm.bb_pool->bo; 266 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); 267 m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false); 268 } 269 } 270 271 for (level = 1; level < num_level; level++) { 272 u32 flags = 0; 273 274 if (vm->flags & XE_VM_FLAG_64K && level == 1) 275 flags = XE_PDE_64K; 276 277 entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) * 278 XE_PAGE_SIZE); 279 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64, 280 entry | flags); 281 } 282 283 /* Write PDE's that point to our BO. */ 284 for (i = 0; i < map_ofs / XE_PAGE_SIZE; i++) { 285 entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE); 286 287 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE + 288 (i + 1) * 8, u64, entry); 289 } 290 291 /* Set up a 1GiB NULL mapping at 255GiB offset. */ 292 level = 2; 293 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64, 294 vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) 295 | XE_PTE_NULL); 296 m->cleared_mem_ofs = (255ULL << xe_pt_shift(level)); 297 298 /* Identity map the entire vram at 256GiB offset */ 299 if (IS_DGFX(xe)) { 300 u64 pt30_ofs = xe_bo_size(bo) - 2 * XE_PAGE_SIZE; 301 resource_size_t actual_phy_size = xe_vram_region_actual_physical_size(xe->mem.vram); 302 303 xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET, 304 pat_index, pt30_ofs); 305 xe_assert(xe, actual_phy_size <= (MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G); 306 307 /* 308 * Identity map the entire vram for compressed pat_index for xe2+ 309 * if flat ccs is enabled. 310 */ 311 if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) { 312 u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION]; 313 u64 vram_offset = IDENTITY_OFFSET + 314 DIV_ROUND_UP_ULL(actual_phy_size, SZ_1G); 315 u64 pt31_ofs = xe_bo_size(bo) - XE_PAGE_SIZE; 316 317 xe_assert(xe, actual_phy_size <= (MAX_NUM_PTE - IDENTITY_OFFSET - 318 IDENTITY_OFFSET / 2) * SZ_1G); 319 xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset, 320 comp_pat_index, pt31_ofs); 321 } 322 } 323 324 /* 325 * Example layout created above, with root level = 3: 326 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's 327 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's 328 * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's 329 * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map] 330 * 331 * This makes the lowest part of the VM point to the pagetables. 332 * Hence the lowest 2M in the vm should point to itself, with a few writes 333 * and flushes, other parts of the VM can be used either for copying and 334 * clearing. 335 * 336 * For performance, the kernel reserves PDE's, so about 20 are left 337 * for async VM updates. 338 * 339 * To make it easier to work, each scratch PT is put in slot (1 + PT #) 340 * everywhere, this allows lockless updates to scratch pages by using 341 * the different addresses in VM. 342 */ 343 #define NUM_VMUSA_UNIT_PER_PAGE 32 344 #define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE) 345 #define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64)) 346 drm_suballoc_manager_init(&m->vm_update_sa, 347 (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) * 348 NUM_VMUSA_UNIT_PER_PAGE, 0); 349 350 m->pt_bo = bo; 351 return 0; 352 } 353 354 /* 355 * Including the reserved copy engine is required to avoid deadlocks due to 356 * migrate jobs servicing the faults gets stuck behind the job that faulted. 357 */ 358 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt) 359 { 360 u32 logical_mask = 0; 361 struct xe_hw_engine *hwe; 362 enum xe_hw_engine_id id; 363 364 for_each_hw_engine(hwe, gt, id) { 365 if (hwe->class != XE_ENGINE_CLASS_COPY) 366 continue; 367 368 if (xe_gt_is_usm_hwe(gt, hwe)) 369 logical_mask |= BIT(hwe->logical_instance); 370 } 371 372 return logical_mask; 373 } 374 375 static bool xe_migrate_needs_ccs_emit(struct xe_device *xe) 376 { 377 return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)); 378 } 379 380 /** 381 * xe_migrate_alloc - Allocate a migrate struct for a given &xe_tile 382 * @tile: &xe_tile 383 * 384 * Allocates a &xe_migrate for a given tile. 385 * 386 * Return: &xe_migrate on success, or NULL when out of memory. 387 */ 388 struct xe_migrate *xe_migrate_alloc(struct xe_tile *tile) 389 { 390 struct xe_migrate *m = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*m), GFP_KERNEL); 391 392 if (m) 393 m->tile = tile; 394 return m; 395 } 396 397 static int xe_migrate_lock_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, struct xe_vm *vm) 398 { 399 struct xe_device *xe = tile_to_xe(tile); 400 struct xe_validation_ctx ctx; 401 struct drm_exec exec; 402 int err = 0; 403 404 xe_validation_guard(&ctx, &xe->val, &exec, (struct xe_val_flags) {}, err) { 405 err = xe_vm_drm_exec_lock(vm, &exec); 406 drm_exec_retry_on_contention(&exec); 407 err = xe_migrate_prepare_vm(tile, m, vm, &exec); 408 drm_exec_retry_on_contention(&exec); 409 xe_validation_retry_on_oom(&ctx, &err); 410 } 411 412 return err; 413 } 414 415 /** 416 * xe_migrate_init() - Initialize a migrate context 417 * @m: The migration context 418 * 419 * Return: 0 if successful, negative error code on failure 420 */ 421 int xe_migrate_init(struct xe_migrate *m) 422 { 423 struct xe_tile *tile = m->tile; 424 struct xe_gt *primary_gt = tile->primary_gt; 425 struct xe_device *xe = tile_to_xe(tile); 426 struct xe_vm *vm; 427 int err; 428 429 /* Special layout, prepared below.. */ 430 vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION | 431 XE_VM_FLAG_SET_TILE_ID(tile), NULL); 432 if (IS_ERR(vm)) 433 return PTR_ERR(vm); 434 435 err = xe_migrate_lock_prepare_vm(tile, m, vm); 436 if (err) 437 return err; 438 439 if (xe->info.has_usm) { 440 struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt, 441 XE_ENGINE_CLASS_COPY, 442 primary_gt->usm.reserved_bcs_instance, 443 false); 444 u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt); 445 446 if (!hwe || !logical_mask) { 447 err = -EINVAL; 448 goto err_out; 449 } 450 451 /* 452 * XXX: Currently only reserving 1 (likely slow) BCS instance on 453 * PVC, may want to revisit if performance is needed. 454 */ 455 m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe, 456 EXEC_QUEUE_FLAG_KERNEL | 457 EXEC_QUEUE_FLAG_PERMANENT | 458 EXEC_QUEUE_FLAG_HIGH_PRIORITY | 459 EXEC_QUEUE_FLAG_MIGRATE, 0); 460 } else { 461 m->q = xe_exec_queue_create_class(xe, primary_gt, vm, 462 XE_ENGINE_CLASS_COPY, 463 EXEC_QUEUE_FLAG_KERNEL | 464 EXEC_QUEUE_FLAG_PERMANENT | 465 EXEC_QUEUE_FLAG_MIGRATE, 0); 466 } 467 if (IS_ERR(m->q)) { 468 err = PTR_ERR(m->q); 469 goto err_out; 470 } 471 472 mutex_init(&m->job_mutex); 473 fs_reclaim_acquire(GFP_KERNEL); 474 might_lock(&m->job_mutex); 475 fs_reclaim_release(GFP_KERNEL); 476 477 err = devm_add_action_or_reset(xe->drm.dev, xe_migrate_fini, m); 478 if (err) 479 return err; 480 481 if (IS_DGFX(xe)) { 482 if (xe_migrate_needs_ccs_emit(xe)) 483 /* min chunk size corresponds to 4K of CCS Metadata */ 484 m->min_chunk_size = SZ_4K * SZ_64K / 485 xe_device_ccs_bytes(xe, SZ_64K); 486 else 487 /* Somewhat arbitrary to avoid a huge amount of blits */ 488 m->min_chunk_size = SZ_64K; 489 m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size); 490 drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n", 491 (unsigned long long)m->min_chunk_size); 492 } 493 494 return err; 495 496 err_out: 497 xe_vm_close_and_put(vm); 498 return err; 499 500 } 501 502 static u64 max_mem_transfer_per_pass(struct xe_device *xe) 503 { 504 if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe)) 505 return MAX_CCS_LIMITED_TRANSFER; 506 507 return MAX_PREEMPTDISABLE_TRANSFER; 508 } 509 510 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur) 511 { 512 struct xe_device *xe = tile_to_xe(m->tile); 513 u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining); 514 515 if (mem_type_is_vram(cur->mem_type)) { 516 /* 517 * VRAM we want to blit in chunks with sizes aligned to 518 * min_chunk_size in order for the offset to CCS metadata to be 519 * page-aligned. If it's the last chunk it may be smaller. 520 * 521 * Another constraint is that we need to limit the blit to 522 * the VRAM block size, unless size is smaller than 523 * min_chunk_size. 524 */ 525 u64 chunk = max_t(u64, cur->size, m->min_chunk_size); 526 527 size = min_t(u64, size, chunk); 528 if (size > m->min_chunk_size) 529 size = round_down(size, m->min_chunk_size); 530 } 531 532 return size; 533 } 534 535 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur) 536 { 537 /* If the chunk is not fragmented, allow identity map. */ 538 return cur->size >= size; 539 } 540 541 #define PTE_UPDATE_FLAG_IS_VRAM BIT(0) 542 #define PTE_UPDATE_FLAG_IS_COMP_PTE BIT(1) 543 544 static u32 pte_update_size(struct xe_migrate *m, 545 u32 flags, 546 struct ttm_resource *res, 547 struct xe_res_cursor *cur, 548 u64 *L0, u64 *L0_ofs, u32 *L0_pt, 549 u32 cmd_size, u32 pt_ofs, u32 avail_pts) 550 { 551 u32 cmds = 0; 552 bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags; 553 bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags; 554 555 *L0_pt = pt_ofs; 556 if (is_vram && xe_migrate_allow_identity(*L0, cur)) { 557 /* Offset into identity map. */ 558 *L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile), 559 cur->start + vram_region_gpu_offset(res), 560 is_comp_pte); 561 cmds += cmd_size; 562 } else { 563 /* Clip L0 to available size */ 564 u64 size = min(*L0, (u64)avail_pts * SZ_2M); 565 u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT; 566 567 *L0 = size; 568 *L0_ofs = xe_migrate_vm_addr(pt_ofs, 0); 569 570 /* MI_STORE_DATA_IMM */ 571 cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI); 572 573 /* PDE qwords */ 574 cmds += num_4k_pages * 2; 575 576 /* Each chunk has a single blit command */ 577 cmds += cmd_size; 578 } 579 580 return cmds; 581 } 582 583 static void emit_pte(struct xe_migrate *m, 584 struct xe_bb *bb, u32 at_pt, 585 bool is_vram, bool is_comp_pte, 586 struct xe_res_cursor *cur, 587 u32 size, struct ttm_resource *res) 588 { 589 struct xe_device *xe = tile_to_xe(m->tile); 590 struct xe_vm *vm = m->q->vm; 591 u16 pat_index; 592 u32 ptes; 593 u64 ofs = (u64)at_pt * XE_PAGE_SIZE; 594 u64 cur_ofs; 595 596 /* Indirect access needs compression enabled uncached PAT index */ 597 if (GRAPHICS_VERx100(xe) >= 2000) 598 pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] : 599 xe->pat.idx[XE_CACHE_WB]; 600 else 601 pat_index = xe->pat.idx[XE_CACHE_WB]; 602 603 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE); 604 605 while (ptes) { 606 u32 chunk = min(MAX_PTE_PER_SDI, ptes); 607 608 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 609 bb->cs[bb->len++] = ofs; 610 bb->cs[bb->len++] = 0; 611 612 cur_ofs = ofs; 613 ofs += chunk * 8; 614 ptes -= chunk; 615 616 while (chunk--) { 617 u64 addr, flags = 0; 618 bool devmem = false; 619 620 addr = xe_res_dma(cur) & PAGE_MASK; 621 if (is_vram) { 622 if (vm->flags & XE_VM_FLAG_64K) { 623 u64 va = cur_ofs * XE_PAGE_SIZE / 8; 624 625 xe_assert(xe, (va & (SZ_64K - 1)) == 626 (addr & (SZ_64K - 1))); 627 628 flags |= XE_PTE_PS64; 629 } 630 631 addr += vram_region_gpu_offset(res); 632 devmem = true; 633 } 634 635 addr = vm->pt_ops->pte_encode_addr(m->tile->xe, 636 addr, pat_index, 637 0, devmem, flags); 638 bb->cs[bb->len++] = lower_32_bits(addr); 639 bb->cs[bb->len++] = upper_32_bits(addr); 640 641 xe_res_next(cur, min_t(u32, size, PAGE_SIZE)); 642 cur_ofs += 8; 643 } 644 } 645 } 646 647 #define EMIT_COPY_CCS_DW 5 648 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb, 649 u64 dst_ofs, bool dst_is_indirect, 650 u64 src_ofs, bool src_is_indirect, 651 u32 size) 652 { 653 struct xe_device *xe = gt_to_xe(gt); 654 u32 *cs = bb->cs + bb->len; 655 u32 num_ccs_blks; 656 u32 num_pages; 657 u32 ccs_copy_size; 658 u32 mocs; 659 660 if (GRAPHICS_VERx100(xe) >= 2000) { 661 num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE); 662 xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1)); 663 664 ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1); 665 mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index); 666 667 } else { 668 num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size), 669 NUM_CCS_BYTES_PER_BLOCK); 670 xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1)); 671 672 ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1); 673 mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index); 674 } 675 676 *cs++ = XY_CTRL_SURF_COPY_BLT | 677 (src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT | 678 (dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT | 679 ccs_copy_size; 680 *cs++ = lower_32_bits(src_ofs); 681 *cs++ = upper_32_bits(src_ofs) | mocs; 682 *cs++ = lower_32_bits(dst_ofs); 683 *cs++ = upper_32_bits(dst_ofs) | mocs; 684 685 bb->len = cs - bb->cs; 686 } 687 688 #define EMIT_COPY_DW 10 689 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb, 690 u64 src_ofs, u64 dst_ofs, unsigned int size, 691 unsigned int pitch) 692 { 693 struct xe_device *xe = gt_to_xe(gt); 694 u32 mocs = 0; 695 u32 tile_y = 0; 696 697 xe_gt_assert(gt, !(pitch & 3)); 698 xe_gt_assert(gt, size / pitch <= S16_MAX); 699 xe_gt_assert(gt, pitch / 4 <= S16_MAX); 700 xe_gt_assert(gt, pitch <= U16_MAX); 701 702 if (GRAPHICS_VER(xe) >= 20) 703 mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index); 704 705 if (GRAPHICS_VERx100(xe) >= 1250) 706 tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4; 707 708 bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2); 709 bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs; 710 bb->cs[bb->len++] = 0; 711 bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4; 712 bb->cs[bb->len++] = lower_32_bits(dst_ofs); 713 bb->cs[bb->len++] = upper_32_bits(dst_ofs); 714 bb->cs[bb->len++] = 0; 715 bb->cs[bb->len++] = pitch | mocs; 716 bb->cs[bb->len++] = lower_32_bits(src_ofs); 717 bb->cs[bb->len++] = upper_32_bits(src_ofs); 718 } 719 720 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm) 721 { 722 return usm ? m->usm_batch_base_ofs : m->batch_base_ofs; 723 } 724 725 static u32 xe_migrate_ccs_copy(struct xe_migrate *m, 726 struct xe_bb *bb, 727 u64 src_ofs, bool src_is_indirect, 728 u64 dst_ofs, bool dst_is_indirect, u32 dst_size, 729 u64 ccs_ofs, bool copy_ccs) 730 { 731 struct xe_gt *gt = m->tile->primary_gt; 732 u32 flush_flags = 0; 733 734 if (!copy_ccs && dst_is_indirect) { 735 /* 736 * If the src is already in vram, then it should already 737 * have been cleared by us, or has been populated by the 738 * user. Make sure we copy the CCS aux state as-is. 739 * 740 * Otherwise if the bo doesn't have any CCS metadata attached, 741 * we still need to clear it for security reasons. 742 */ 743 u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs; 744 745 emit_copy_ccs(gt, bb, 746 dst_ofs, true, 747 ccs_src_ofs, src_is_indirect, dst_size); 748 749 flush_flags = MI_FLUSH_DW_CCS; 750 } else if (copy_ccs) { 751 if (!src_is_indirect) 752 src_ofs = ccs_ofs; 753 else if (!dst_is_indirect) 754 dst_ofs = ccs_ofs; 755 756 xe_gt_assert(gt, src_is_indirect || dst_is_indirect); 757 758 emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs, 759 src_is_indirect, dst_size); 760 if (dst_is_indirect) 761 flush_flags = MI_FLUSH_DW_CCS; 762 } 763 764 return flush_flags; 765 } 766 767 /** 768 * xe_migrate_copy() - Copy content of TTM resources. 769 * @m: The migration context. 770 * @src_bo: The buffer object @src is currently bound to. 771 * @dst_bo: If copying between resources created for the same bo, set this to 772 * the same value as @src_bo. If copying between buffer objects, set it to 773 * the buffer object @dst is currently bound to. 774 * @src: The source TTM resource. 775 * @dst: The dst TTM resource. 776 * @copy_only_ccs: If true copy only CCS metadata 777 * 778 * Copies the contents of @src to @dst: On flat CCS devices, 779 * the CCS metadata is copied as well if needed, or if not present, 780 * the CCS metadata of @dst is cleared for security reasons. 781 * 782 * Return: Pointer to a dma_fence representing the last copy batch, or 783 * an error pointer on failure. If there is a failure, any copy operation 784 * started by the function call has been synced. 785 */ 786 struct dma_fence *xe_migrate_copy(struct xe_migrate *m, 787 struct xe_bo *src_bo, 788 struct xe_bo *dst_bo, 789 struct ttm_resource *src, 790 struct ttm_resource *dst, 791 bool copy_only_ccs) 792 { 793 struct xe_gt *gt = m->tile->primary_gt; 794 struct xe_device *xe = gt_to_xe(gt); 795 struct dma_fence *fence = NULL; 796 u64 size = xe_bo_size(src_bo); 797 struct xe_res_cursor src_it, dst_it, ccs_it; 798 u64 src_L0_ofs, dst_L0_ofs; 799 u32 src_L0_pt, dst_L0_pt; 800 u64 src_L0, dst_L0; 801 int pass = 0; 802 int err; 803 bool src_is_pltt = src->mem_type == XE_PL_TT; 804 bool dst_is_pltt = dst->mem_type == XE_PL_TT; 805 bool src_is_vram = mem_type_is_vram(src->mem_type); 806 bool dst_is_vram = mem_type_is_vram(dst->mem_type); 807 bool type_device = src_bo->ttm.type == ttm_bo_type_device; 808 bool needs_ccs_emit = type_device && xe_migrate_needs_ccs_emit(xe); 809 bool copy_ccs = xe_device_has_flat_ccs(xe) && 810 xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo); 811 bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram); 812 bool use_comp_pat = type_device && xe_device_has_flat_ccs(xe) && 813 GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram; 814 815 /* Copying CCS between two different BOs is not supported yet. */ 816 if (XE_WARN_ON(copy_ccs && src_bo != dst_bo)) 817 return ERR_PTR(-EINVAL); 818 819 if (src_bo != dst_bo && XE_WARN_ON(xe_bo_size(src_bo) != xe_bo_size(dst_bo))) 820 return ERR_PTR(-EINVAL); 821 822 if (!src_is_vram) 823 xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it); 824 else 825 xe_res_first(src, 0, size, &src_it); 826 if (!dst_is_vram) 827 xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it); 828 else 829 xe_res_first(dst, 0, size, &dst_it); 830 831 if (copy_system_ccs) 832 xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo), 833 PAGE_ALIGN(xe_device_ccs_bytes(xe, size)), 834 &ccs_it); 835 836 while (size) { 837 u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */ 838 struct xe_sched_job *job; 839 struct xe_bb *bb; 840 u32 flush_flags = 0; 841 u32 update_idx; 842 u64 ccs_ofs, ccs_size; 843 u32 ccs_pt; 844 u32 pte_flags; 845 846 bool usm = xe->info.has_usm; 847 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 848 849 src_L0 = xe_migrate_res_sizes(m, &src_it); 850 dst_L0 = xe_migrate_res_sizes(m, &dst_it); 851 852 drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n", 853 pass++, src_L0, dst_L0); 854 855 src_L0 = min(src_L0, dst_L0); 856 857 pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; 858 pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0; 859 batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0, 860 &src_L0_ofs, &src_L0_pt, 0, 0, 861 avail_pts); 862 if (copy_only_ccs) { 863 dst_L0_ofs = src_L0_ofs; 864 } else { 865 pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; 866 batch_size += pte_update_size(m, pte_flags, dst, 867 &dst_it, &src_L0, 868 &dst_L0_ofs, &dst_L0_pt, 869 0, avail_pts, avail_pts); 870 } 871 872 if (copy_system_ccs) { 873 xe_assert(xe, type_device); 874 ccs_size = xe_device_ccs_bytes(xe, src_L0); 875 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, 876 &ccs_ofs, &ccs_pt, 0, 877 2 * avail_pts, 878 avail_pts); 879 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); 880 } 881 882 /* Add copy commands size here */ 883 batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) + 884 ((needs_ccs_emit ? EMIT_COPY_CCS_DW : 0)); 885 886 bb = xe_bb_new(gt, batch_size, usm); 887 if (IS_ERR(bb)) { 888 err = PTR_ERR(bb); 889 goto err_sync; 890 } 891 892 if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it)) 893 xe_res_next(&src_it, src_L0); 894 else 895 emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs || use_comp_pat, 896 &src_it, src_L0, src); 897 898 if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it)) 899 xe_res_next(&dst_it, src_L0); 900 else if (!copy_only_ccs) 901 emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs, 902 &dst_it, src_L0, dst); 903 904 if (copy_system_ccs) 905 emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src); 906 907 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 908 update_idx = bb->len; 909 910 if (!copy_only_ccs) 911 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE); 912 913 if (needs_ccs_emit) 914 flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, 915 IS_DGFX(xe) ? src_is_vram : src_is_pltt, 916 dst_L0_ofs, 917 IS_DGFX(xe) ? dst_is_vram : dst_is_pltt, 918 src_L0, ccs_ofs, copy_ccs); 919 920 job = xe_bb_create_migration_job(m->q, bb, 921 xe_migrate_batch_base(m, usm), 922 update_idx); 923 if (IS_ERR(job)) { 924 err = PTR_ERR(job); 925 goto err; 926 } 927 928 xe_sched_job_add_migrate_flush(job, flush_flags | MI_INVALIDATE_TLB); 929 if (!fence) { 930 err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv, 931 DMA_RESV_USAGE_BOOKKEEP); 932 if (!err && src_bo->ttm.base.resv != dst_bo->ttm.base.resv) 933 err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv, 934 DMA_RESV_USAGE_BOOKKEEP); 935 if (err) 936 goto err_job; 937 } 938 939 mutex_lock(&m->job_mutex); 940 xe_sched_job_arm(job); 941 dma_fence_put(fence); 942 fence = dma_fence_get(&job->drm.s_fence->finished); 943 xe_sched_job_push(job); 944 945 dma_fence_put(m->fence); 946 m->fence = dma_fence_get(fence); 947 948 mutex_unlock(&m->job_mutex); 949 950 xe_bb_free(bb, fence); 951 size -= src_L0; 952 continue; 953 954 err_job: 955 xe_sched_job_put(job); 956 err: 957 xe_bb_free(bb, NULL); 958 959 err_sync: 960 /* Sync partial copy if any. FIXME: under job_mutex? */ 961 if (fence) { 962 dma_fence_wait(fence, false); 963 dma_fence_put(fence); 964 } 965 966 return ERR_PTR(err); 967 } 968 969 return fence; 970 } 971 972 /** 973 * xe_migrate_lrc() - Get the LRC from migrate context. 974 * @migrate: Migrate context. 975 * 976 * Return: Pointer to LRC on success, error on failure 977 */ 978 struct xe_lrc *xe_migrate_lrc(struct xe_migrate *migrate) 979 { 980 return migrate->q->lrc[0]; 981 } 982 983 static int emit_flush_invalidate(struct xe_exec_queue *q, u32 *dw, int i, 984 u32 flags) 985 { 986 struct xe_lrc *lrc = xe_exec_queue_lrc(q); 987 dw[i++] = MI_FLUSH_DW | MI_INVALIDATE_TLB | MI_FLUSH_DW_OP_STOREDW | 988 MI_FLUSH_IMM_DW | flags; 989 dw[i++] = lower_32_bits(xe_lrc_start_seqno_ggtt_addr(lrc)) | 990 MI_FLUSH_DW_USE_GTT; 991 dw[i++] = upper_32_bits(xe_lrc_start_seqno_ggtt_addr(lrc)); 992 dw[i++] = MI_NOOP; 993 dw[i++] = MI_NOOP; 994 995 return i; 996 } 997 998 /** 999 * xe_migrate_ccs_rw_copy() - Copy content of TTM resources. 1000 * @tile: Tile whose migration context to be used. 1001 * @q : Execution to be used along with migration context. 1002 * @src_bo: The buffer object @src is currently bound to. 1003 * @read_write : Creates BB commands for CCS read/write. 1004 * 1005 * Creates batch buffer instructions to copy CCS metadata from CCS pool to 1006 * memory and vice versa. 1007 * 1008 * This function should only be called for IGPU. 1009 * 1010 * Return: 0 if successful, negative error code on failure. 1011 */ 1012 int xe_migrate_ccs_rw_copy(struct xe_tile *tile, struct xe_exec_queue *q, 1013 struct xe_bo *src_bo, 1014 enum xe_sriov_vf_ccs_rw_ctxs read_write) 1015 1016 { 1017 bool src_is_pltt = read_write == XE_SRIOV_VF_CCS_READ_CTX; 1018 bool dst_is_pltt = read_write == XE_SRIOV_VF_CCS_WRITE_CTX; 1019 struct ttm_resource *src = src_bo->ttm.resource; 1020 struct xe_migrate *m = tile->migrate; 1021 struct xe_gt *gt = tile->primary_gt; 1022 u32 batch_size, batch_size_allocated; 1023 struct xe_device *xe = gt_to_xe(gt); 1024 struct xe_res_cursor src_it, ccs_it; 1025 u64 size = xe_bo_size(src_bo); 1026 struct xe_bb *bb = NULL; 1027 u64 src_L0, src_L0_ofs; 1028 u32 src_L0_pt; 1029 int err; 1030 1031 xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it); 1032 1033 xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo), 1034 PAGE_ALIGN(xe_device_ccs_bytes(xe, size)), 1035 &ccs_it); 1036 1037 /* Calculate Batch buffer size */ 1038 batch_size = 0; 1039 while (size) { 1040 batch_size += 10; /* Flush + ggtt addr + 2 NOP */ 1041 u64 ccs_ofs, ccs_size; 1042 u32 ccs_pt; 1043 1044 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 1045 1046 src_L0 = min_t(u64, max_mem_transfer_per_pass(xe), size); 1047 1048 batch_size += pte_update_size(m, false, src, &src_it, &src_L0, 1049 &src_L0_ofs, &src_L0_pt, 0, 0, 1050 avail_pts); 1051 1052 ccs_size = xe_device_ccs_bytes(xe, src_L0); 1053 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, &ccs_ofs, 1054 &ccs_pt, 0, avail_pts, avail_pts); 1055 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); 1056 1057 /* Add copy commands size here */ 1058 batch_size += EMIT_COPY_CCS_DW; 1059 1060 size -= src_L0; 1061 } 1062 1063 bb = xe_bb_ccs_new(gt, batch_size, read_write); 1064 if (IS_ERR(bb)) { 1065 drm_err(&xe->drm, "BB allocation failed.\n"); 1066 err = PTR_ERR(bb); 1067 goto err_ret; 1068 } 1069 1070 batch_size_allocated = batch_size; 1071 size = xe_bo_size(src_bo); 1072 batch_size = 0; 1073 1074 /* 1075 * Emit PTE and copy commands here. 1076 * The CCS copy command can only support limited size. If the size to be 1077 * copied is more than the limit, divide copy into chunks. So, calculate 1078 * sizes here again before copy command is emitted. 1079 */ 1080 while (size) { 1081 batch_size += 10; /* Flush + ggtt addr + 2 NOP */ 1082 u32 flush_flags = 0; 1083 u64 ccs_ofs, ccs_size; 1084 u32 ccs_pt; 1085 1086 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 1087 1088 src_L0 = xe_migrate_res_sizes(m, &src_it); 1089 1090 batch_size += pte_update_size(m, false, src, &src_it, &src_L0, 1091 &src_L0_ofs, &src_L0_pt, 0, 0, 1092 avail_pts); 1093 1094 ccs_size = xe_device_ccs_bytes(xe, src_L0); 1095 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, &ccs_ofs, 1096 &ccs_pt, 0, avail_pts, avail_pts); 1097 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); 1098 batch_size += EMIT_COPY_CCS_DW; 1099 1100 emit_pte(m, bb, src_L0_pt, false, true, &src_it, src_L0, src); 1101 1102 emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src); 1103 1104 bb->len = emit_flush_invalidate(q, bb->cs, bb->len, flush_flags); 1105 flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, src_is_pltt, 1106 src_L0_ofs, dst_is_pltt, 1107 src_L0, ccs_ofs, true); 1108 bb->len = emit_flush_invalidate(q, bb->cs, bb->len, flush_flags); 1109 1110 size -= src_L0; 1111 } 1112 1113 xe_assert(xe, (batch_size_allocated == bb->len)); 1114 src_bo->bb_ccs[read_write] = bb; 1115 1116 return 0; 1117 1118 err_ret: 1119 return err; 1120 } 1121 1122 /** 1123 * xe_get_migrate_exec_queue() - Get the execution queue from migrate context. 1124 * @migrate: Migrate context. 1125 * 1126 * Return: Pointer to execution queue on success, error on failure 1127 */ 1128 struct xe_exec_queue *xe_migrate_exec_queue(struct xe_migrate *migrate) 1129 { 1130 return migrate->q; 1131 } 1132 1133 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, 1134 u32 size, u32 pitch) 1135 { 1136 struct xe_device *xe = gt_to_xe(gt); 1137 u32 *cs = bb->cs + bb->len; 1138 u32 len = PVC_MEM_SET_CMD_LEN_DW; 1139 1140 *cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2); 1141 *cs++ = pitch - 1; 1142 *cs++ = (size / pitch) - 1; 1143 *cs++ = pitch - 1; 1144 *cs++ = lower_32_bits(src_ofs); 1145 *cs++ = upper_32_bits(src_ofs); 1146 if (GRAPHICS_VERx100(xe) >= 2000) 1147 *cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); 1148 else 1149 *cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); 1150 1151 xe_gt_assert(gt, cs - bb->cs == len + bb->len); 1152 1153 bb->len += len; 1154 } 1155 1156 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb, 1157 u64 src_ofs, u32 size, u32 pitch, bool is_vram) 1158 { 1159 struct xe_device *xe = gt_to_xe(gt); 1160 u32 *cs = bb->cs + bb->len; 1161 u32 len = XY_FAST_COLOR_BLT_DW; 1162 1163 if (GRAPHICS_VERx100(xe) < 1250) 1164 len = 11; 1165 1166 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | 1167 (len - 2); 1168 if (GRAPHICS_VERx100(xe) >= 2000) 1169 *cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) | 1170 (pitch - 1); 1171 else 1172 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) | 1173 (pitch - 1); 1174 *cs++ = 0; 1175 *cs++ = (size / pitch) << 16 | pitch / 4; 1176 *cs++ = lower_32_bits(src_ofs); 1177 *cs++ = upper_32_bits(src_ofs); 1178 *cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; 1179 *cs++ = 0; 1180 *cs++ = 0; 1181 *cs++ = 0; 1182 *cs++ = 0; 1183 1184 if (len > 11) { 1185 *cs++ = 0; 1186 *cs++ = 0; 1187 *cs++ = 0; 1188 *cs++ = 0; 1189 *cs++ = 0; 1190 } 1191 1192 xe_gt_assert(gt, cs - bb->cs == len + bb->len); 1193 1194 bb->len += len; 1195 } 1196 1197 static bool has_service_copy_support(struct xe_gt *gt) 1198 { 1199 /* 1200 * What we care about is whether the architecture was designed with 1201 * service copy functionality (specifically the new MEM_SET / MEM_COPY 1202 * instructions) so check the architectural engine list rather than the 1203 * actual list since these instructions are usable on BCS0 even if 1204 * all of the actual service copy engines (BCS1-BCS8) have been fused 1205 * off. 1206 */ 1207 return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8, 1208 XE_HW_ENGINE_BCS1); 1209 } 1210 1211 static u32 emit_clear_cmd_len(struct xe_gt *gt) 1212 { 1213 if (has_service_copy_support(gt)) 1214 return PVC_MEM_SET_CMD_LEN_DW; 1215 else 1216 return XY_FAST_COLOR_BLT_DW; 1217 } 1218 1219 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, 1220 u32 size, u32 pitch, bool is_vram) 1221 { 1222 if (has_service_copy_support(gt)) 1223 emit_clear_link_copy(gt, bb, src_ofs, size, pitch); 1224 else 1225 emit_clear_main_copy(gt, bb, src_ofs, size, pitch, 1226 is_vram); 1227 } 1228 1229 /** 1230 * xe_migrate_clear() - Copy content of TTM resources. 1231 * @m: The migration context. 1232 * @bo: The buffer object @dst is currently bound to. 1233 * @dst: The dst TTM resource to be cleared. 1234 * @clear_flags: flags to specify which data to clear: CCS, BO, or both. 1235 * 1236 * Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set. 1237 * On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA. 1238 * Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata. 1239 * TODO: Eliminate the @bo argument. 1240 * 1241 * Return: Pointer to a dma_fence representing the last clear batch, or 1242 * an error pointer on failure. If there is a failure, any clear operation 1243 * started by the function call has been synced. 1244 */ 1245 struct dma_fence *xe_migrate_clear(struct xe_migrate *m, 1246 struct xe_bo *bo, 1247 struct ttm_resource *dst, 1248 u32 clear_flags) 1249 { 1250 bool clear_vram = mem_type_is_vram(dst->mem_type); 1251 bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags; 1252 bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags; 1253 struct xe_gt *gt = m->tile->primary_gt; 1254 struct xe_device *xe = gt_to_xe(gt); 1255 bool clear_only_system_ccs = false; 1256 struct dma_fence *fence = NULL; 1257 u64 size = xe_bo_size(bo); 1258 struct xe_res_cursor src_it; 1259 struct ttm_resource *src = dst; 1260 int err; 1261 1262 if (WARN_ON(!clear_bo_data && !clear_ccs)) 1263 return NULL; 1264 1265 if (!clear_bo_data && clear_ccs && !IS_DGFX(xe)) 1266 clear_only_system_ccs = true; 1267 1268 if (!clear_vram) 1269 xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &src_it); 1270 else 1271 xe_res_first(src, 0, xe_bo_size(bo), &src_it); 1272 1273 while (size) { 1274 u64 clear_L0_ofs; 1275 u32 clear_L0_pt; 1276 u32 flush_flags = 0; 1277 u64 clear_L0; 1278 struct xe_sched_job *job; 1279 struct xe_bb *bb; 1280 u32 batch_size, update_idx; 1281 u32 pte_flags; 1282 1283 bool usm = xe->info.has_usm; 1284 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 1285 1286 clear_L0 = xe_migrate_res_sizes(m, &src_it); 1287 1288 /* Calculate final sizes and batch size.. */ 1289 pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; 1290 batch_size = 2 + 1291 pte_update_size(m, pte_flags, src, &src_it, 1292 &clear_L0, &clear_L0_ofs, &clear_L0_pt, 1293 clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0, 1294 avail_pts); 1295 1296 if (xe_migrate_needs_ccs_emit(xe)) 1297 batch_size += EMIT_COPY_CCS_DW; 1298 1299 /* Clear commands */ 1300 1301 if (WARN_ON_ONCE(!clear_L0)) 1302 break; 1303 1304 bb = xe_bb_new(gt, batch_size, usm); 1305 if (IS_ERR(bb)) { 1306 err = PTR_ERR(bb); 1307 goto err_sync; 1308 } 1309 1310 size -= clear_L0; 1311 /* Preemption is enabled again by the ring ops. */ 1312 if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it)) { 1313 xe_res_next(&src_it, clear_L0); 1314 } else { 1315 emit_pte(m, bb, clear_L0_pt, clear_vram, 1316 clear_only_system_ccs, &src_it, clear_L0, dst); 1317 flush_flags |= MI_INVALIDATE_TLB; 1318 } 1319 1320 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1321 update_idx = bb->len; 1322 1323 if (clear_bo_data) 1324 emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram); 1325 1326 if (xe_migrate_needs_ccs_emit(xe)) { 1327 emit_copy_ccs(gt, bb, clear_L0_ofs, true, 1328 m->cleared_mem_ofs, false, clear_L0); 1329 flush_flags |= MI_FLUSH_DW_CCS; 1330 } 1331 1332 job = xe_bb_create_migration_job(m->q, bb, 1333 xe_migrate_batch_base(m, usm), 1334 update_idx); 1335 if (IS_ERR(job)) { 1336 err = PTR_ERR(job); 1337 goto err; 1338 } 1339 1340 xe_sched_job_add_migrate_flush(job, flush_flags); 1341 if (!fence) { 1342 /* 1343 * There can't be anything userspace related at this 1344 * point, so we just need to respect any potential move 1345 * fences, which are always tracked as 1346 * DMA_RESV_USAGE_KERNEL. 1347 */ 1348 err = xe_sched_job_add_deps(job, bo->ttm.base.resv, 1349 DMA_RESV_USAGE_KERNEL); 1350 if (err) 1351 goto err_job; 1352 } 1353 1354 mutex_lock(&m->job_mutex); 1355 xe_sched_job_arm(job); 1356 dma_fence_put(fence); 1357 fence = dma_fence_get(&job->drm.s_fence->finished); 1358 xe_sched_job_push(job); 1359 1360 dma_fence_put(m->fence); 1361 m->fence = dma_fence_get(fence); 1362 1363 mutex_unlock(&m->job_mutex); 1364 1365 xe_bb_free(bb, fence); 1366 continue; 1367 1368 err_job: 1369 xe_sched_job_put(job); 1370 err: 1371 xe_bb_free(bb, NULL); 1372 err_sync: 1373 /* Sync partial copies if any. FIXME: job_mutex? */ 1374 if (fence) { 1375 dma_fence_wait(fence, false); 1376 dma_fence_put(fence); 1377 } 1378 1379 return ERR_PTR(err); 1380 } 1381 1382 if (clear_ccs) 1383 bo->ccs_cleared = true; 1384 1385 return fence; 1386 } 1387 1388 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs, 1389 const struct xe_vm_pgtable_update_op *pt_op, 1390 const struct xe_vm_pgtable_update *update, 1391 struct xe_migrate_pt_update *pt_update) 1392 { 1393 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1394 u32 chunk; 1395 u32 ofs = update->ofs, size = update->qwords; 1396 1397 /* 1398 * If we have 512 entries (max), we would populate it ourselves, 1399 * and update the PDE above it to the new pointer. 1400 * The only time this can only happen if we have to update the top 1401 * PDE. This requires a BO that is almost vm->size big. 1402 * 1403 * This shouldn't be possible in practice.. might change when 16K 1404 * pages are used. Hence the assert. 1405 */ 1406 xe_tile_assert(tile, update->qwords < MAX_NUM_PTE); 1407 if (!ppgtt_ofs) 1408 ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile), 1409 xe_bo_addr(update->pt_bo, 0, 1410 XE_PAGE_SIZE), false); 1411 1412 do { 1413 u64 addr = ppgtt_ofs + ofs * 8; 1414 1415 chunk = min(size, MAX_PTE_PER_SDI); 1416 1417 /* Ensure populatefn can do memset64 by aligning bb->cs */ 1418 if (!(bb->len & 1)) 1419 bb->cs[bb->len++] = MI_NOOP; 1420 1421 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 1422 bb->cs[bb->len++] = lower_32_bits(addr); 1423 bb->cs[bb->len++] = upper_32_bits(addr); 1424 if (pt_op->bind) 1425 ops->populate(pt_update, tile, NULL, bb->cs + bb->len, 1426 ofs, chunk, update); 1427 else 1428 ops->clear(pt_update, tile, NULL, bb->cs + bb->len, 1429 ofs, chunk, update); 1430 1431 bb->len += chunk * 2; 1432 ofs += chunk; 1433 size -= chunk; 1434 } while (size); 1435 } 1436 1437 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m) 1438 { 1439 return xe_vm_get(m->q->vm); 1440 } 1441 1442 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 1443 struct migrate_test_params { 1444 struct xe_test_priv base; 1445 bool force_gpu; 1446 }; 1447 1448 #define to_migrate_test_params(_priv) \ 1449 container_of(_priv, struct migrate_test_params, base) 1450 #endif 1451 1452 static struct dma_fence * 1453 xe_migrate_update_pgtables_cpu(struct xe_migrate *m, 1454 struct xe_migrate_pt_update *pt_update) 1455 { 1456 XE_TEST_DECLARE(struct migrate_test_params *test = 1457 to_migrate_test_params 1458 (xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));) 1459 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1460 struct xe_vm *vm = pt_update->vops->vm; 1461 struct xe_vm_pgtable_update_ops *pt_update_ops = 1462 &pt_update->vops->pt_update_ops[pt_update->tile_id]; 1463 int err; 1464 u32 i, j; 1465 1466 if (XE_TEST_ONLY(test && test->force_gpu)) 1467 return ERR_PTR(-ETIME); 1468 1469 if (ops->pre_commit) { 1470 pt_update->job = NULL; 1471 err = ops->pre_commit(pt_update); 1472 if (err) 1473 return ERR_PTR(err); 1474 } 1475 1476 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1477 const struct xe_vm_pgtable_update_op *pt_op = 1478 &pt_update_ops->ops[i]; 1479 1480 for (j = 0; j < pt_op->num_entries; j++) { 1481 const struct xe_vm_pgtable_update *update = 1482 &pt_op->entries[j]; 1483 1484 if (pt_op->bind) 1485 ops->populate(pt_update, m->tile, 1486 &update->pt_bo->vmap, NULL, 1487 update->ofs, update->qwords, 1488 update); 1489 else 1490 ops->clear(pt_update, m->tile, 1491 &update->pt_bo->vmap, NULL, 1492 update->ofs, update->qwords, update); 1493 } 1494 } 1495 1496 trace_xe_vm_cpu_bind(vm); 1497 xe_device_wmb(vm->xe); 1498 1499 return dma_fence_get_stub(); 1500 } 1501 1502 static struct dma_fence * 1503 __xe_migrate_update_pgtables(struct xe_migrate *m, 1504 struct xe_migrate_pt_update *pt_update, 1505 struct xe_vm_pgtable_update_ops *pt_update_ops) 1506 { 1507 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1508 struct xe_tile *tile = m->tile; 1509 struct xe_gt *gt = tile->primary_gt; 1510 struct xe_device *xe = tile_to_xe(tile); 1511 struct xe_sched_job *job; 1512 struct dma_fence *fence; 1513 struct drm_suballoc *sa_bo = NULL; 1514 struct xe_bb *bb; 1515 u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0; 1516 u32 num_updates = 0, current_update = 0; 1517 u64 addr; 1518 int err = 0; 1519 bool is_migrate = pt_update_ops->q == m->q; 1520 bool usm = is_migrate && xe->info.has_usm; 1521 1522 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1523 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 1524 struct xe_vm_pgtable_update *updates = pt_op->entries; 1525 1526 num_updates += pt_op->num_entries; 1527 for (j = 0; j < pt_op->num_entries; ++j) { 1528 u32 num_cmds = DIV_ROUND_UP(updates[j].qwords, 1529 MAX_PTE_PER_SDI); 1530 1531 /* align noop + MI_STORE_DATA_IMM cmd prefix */ 1532 batch_size += 4 * num_cmds + updates[j].qwords * 2; 1533 } 1534 } 1535 1536 /* fixed + PTE entries */ 1537 if (IS_DGFX(xe)) 1538 batch_size += 2; 1539 else 1540 batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) + 1541 num_updates * 2; 1542 1543 bb = xe_bb_new(gt, batch_size, usm); 1544 if (IS_ERR(bb)) 1545 return ERR_CAST(bb); 1546 1547 /* For sysmem PTE's, need to map them in our hole.. */ 1548 if (!IS_DGFX(xe)) { 1549 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 1550 u32 ptes, ofs; 1551 1552 ppgtt_ofs = NUM_KERNEL_PDE - 1; 1553 if (!is_migrate) { 1554 u32 num_units = DIV_ROUND_UP(num_updates, 1555 NUM_VMUSA_WRITES_PER_UNIT); 1556 1557 if (num_units > m->vm_update_sa.size) { 1558 err = -ENOBUFS; 1559 goto err_bb; 1560 } 1561 sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units, 1562 GFP_KERNEL, true, 0); 1563 if (IS_ERR(sa_bo)) { 1564 err = PTR_ERR(sa_bo); 1565 goto err_bb; 1566 } 1567 1568 ppgtt_ofs = NUM_KERNEL_PDE + 1569 (drm_suballoc_soffset(sa_bo) / 1570 NUM_VMUSA_UNIT_PER_PAGE); 1571 page_ofs = (drm_suballoc_soffset(sa_bo) % 1572 NUM_VMUSA_UNIT_PER_PAGE) * 1573 VM_SA_UPDATE_UNIT_SIZE; 1574 } 1575 1576 /* Map our PT's to gtt */ 1577 i = 0; 1578 j = 0; 1579 ptes = num_updates; 1580 ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs; 1581 while (ptes) { 1582 u32 chunk = min(MAX_PTE_PER_SDI, ptes); 1583 u32 idx = 0; 1584 1585 bb->cs[bb->len++] = MI_STORE_DATA_IMM | 1586 MI_SDI_NUM_QW(chunk); 1587 bb->cs[bb->len++] = ofs; 1588 bb->cs[bb->len++] = 0; /* upper_32_bits */ 1589 1590 for (; i < pt_update_ops->num_ops; ++i) { 1591 struct xe_vm_pgtable_update_op *pt_op = 1592 &pt_update_ops->ops[i]; 1593 struct xe_vm_pgtable_update *updates = pt_op->entries; 1594 1595 for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) { 1596 struct xe_vm *vm = pt_update->vops->vm; 1597 struct xe_bo *pt_bo = updates[j].pt_bo; 1598 1599 if (idx == chunk) 1600 goto next_cmd; 1601 1602 xe_tile_assert(tile, xe_bo_size(pt_bo) == SZ_4K); 1603 1604 /* Map a PT at most once */ 1605 if (pt_bo->update_index < 0) 1606 pt_bo->update_index = current_update; 1607 1608 addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, 1609 pat_index, 0); 1610 bb->cs[bb->len++] = lower_32_bits(addr); 1611 bb->cs[bb->len++] = upper_32_bits(addr); 1612 } 1613 1614 j = 0; 1615 } 1616 1617 next_cmd: 1618 ptes -= chunk; 1619 ofs += chunk * sizeof(u64); 1620 } 1621 1622 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1623 update_idx = bb->len; 1624 1625 addr = xe_migrate_vm_addr(ppgtt_ofs, 0) + 1626 (page_ofs / sizeof(u64)) * XE_PAGE_SIZE; 1627 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1628 struct xe_vm_pgtable_update_op *pt_op = 1629 &pt_update_ops->ops[i]; 1630 struct xe_vm_pgtable_update *updates = pt_op->entries; 1631 1632 for (j = 0; j < pt_op->num_entries; ++j) { 1633 struct xe_bo *pt_bo = updates[j].pt_bo; 1634 1635 write_pgtable(tile, bb, addr + 1636 pt_bo->update_index * XE_PAGE_SIZE, 1637 pt_op, &updates[j], pt_update); 1638 } 1639 } 1640 } else { 1641 /* phys pages, no preamble required */ 1642 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1643 update_idx = bb->len; 1644 1645 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1646 struct xe_vm_pgtable_update_op *pt_op = 1647 &pt_update_ops->ops[i]; 1648 struct xe_vm_pgtable_update *updates = pt_op->entries; 1649 1650 for (j = 0; j < pt_op->num_entries; ++j) 1651 write_pgtable(tile, bb, 0, pt_op, &updates[j], 1652 pt_update); 1653 } 1654 } 1655 1656 job = xe_bb_create_migration_job(pt_update_ops->q, bb, 1657 xe_migrate_batch_base(m, usm), 1658 update_idx); 1659 if (IS_ERR(job)) { 1660 err = PTR_ERR(job); 1661 goto err_sa; 1662 } 1663 1664 xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB); 1665 1666 if (ops->pre_commit) { 1667 pt_update->job = job; 1668 err = ops->pre_commit(pt_update); 1669 if (err) 1670 goto err_job; 1671 } 1672 if (is_migrate) 1673 mutex_lock(&m->job_mutex); 1674 1675 xe_sched_job_arm(job); 1676 fence = dma_fence_get(&job->drm.s_fence->finished); 1677 xe_sched_job_push(job); 1678 1679 if (is_migrate) 1680 mutex_unlock(&m->job_mutex); 1681 1682 xe_bb_free(bb, fence); 1683 drm_suballoc_free(sa_bo, fence); 1684 1685 return fence; 1686 1687 err_job: 1688 xe_sched_job_put(job); 1689 err_sa: 1690 drm_suballoc_free(sa_bo, NULL); 1691 err_bb: 1692 xe_bb_free(bb, NULL); 1693 return ERR_PTR(err); 1694 } 1695 1696 /** 1697 * xe_migrate_update_pgtables() - Pipelined page-table update 1698 * @m: The migrate context. 1699 * @pt_update: PT update arguments 1700 * 1701 * Perform a pipelined page-table update. The update descriptors are typically 1702 * built under the same lock critical section as a call to this function. If 1703 * using the default engine for the updates, they will be performed in the 1704 * order they grab the job_mutex. If different engines are used, external 1705 * synchronization is needed for overlapping updates to maintain page-table 1706 * consistency. Note that the meaning of "overlapping" is that the updates 1707 * touch the same page-table, which might be a higher-level page-directory. 1708 * If no pipelining is needed, then updates may be performed by the cpu. 1709 * 1710 * Return: A dma_fence that, when signaled, indicates the update completion. 1711 */ 1712 struct dma_fence * 1713 xe_migrate_update_pgtables(struct xe_migrate *m, 1714 struct xe_migrate_pt_update *pt_update) 1715 1716 { 1717 struct xe_vm_pgtable_update_ops *pt_update_ops = 1718 &pt_update->vops->pt_update_ops[pt_update->tile_id]; 1719 struct dma_fence *fence; 1720 1721 fence = xe_migrate_update_pgtables_cpu(m, pt_update); 1722 1723 /* -ETIME indicates a job is needed, anything else is legit error */ 1724 if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME) 1725 return fence; 1726 1727 return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops); 1728 } 1729 1730 /** 1731 * xe_migrate_wait() - Complete all operations using the xe_migrate context 1732 * @m: Migrate context to wait for. 1733 * 1734 * Waits until the GPU no longer uses the migrate context's default engine 1735 * or its page-table objects. FIXME: What about separate page-table update 1736 * engines? 1737 */ 1738 void xe_migrate_wait(struct xe_migrate *m) 1739 { 1740 if (m->fence) 1741 dma_fence_wait(m->fence, false); 1742 } 1743 1744 static u32 pte_update_cmd_size(u64 size) 1745 { 1746 u32 num_dword; 1747 u64 entries = DIV_U64_ROUND_UP(size, XE_PAGE_SIZE); 1748 1749 XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER); 1750 1751 /* 1752 * MI_STORE_DATA_IMM command is used to update page table. Each 1753 * instruction can update maximumly MAX_PTE_PER_SDI pte entries. To 1754 * update n (n <= MAX_PTE_PER_SDI) pte entries, we need: 1755 * 1756 * - 1 dword for the MI_STORE_DATA_IMM command header (opcode etc) 1757 * - 2 dword for the page table's physical location 1758 * - 2*n dword for value of pte to fill (each pte entry is 2 dwords) 1759 */ 1760 num_dword = (1 + 2) * DIV_U64_ROUND_UP(entries, MAX_PTE_PER_SDI); 1761 num_dword += entries * 2; 1762 1763 return num_dword; 1764 } 1765 1766 static void build_pt_update_batch_sram(struct xe_migrate *m, 1767 struct xe_bb *bb, u32 pt_offset, 1768 struct drm_pagemap_addr *sram_addr, 1769 u32 size) 1770 { 1771 u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB]; 1772 u32 ptes; 1773 int i = 0; 1774 1775 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE); 1776 while (ptes) { 1777 u32 chunk = min(MAX_PTE_PER_SDI, ptes); 1778 1779 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 1780 bb->cs[bb->len++] = pt_offset; 1781 bb->cs[bb->len++] = 0; 1782 1783 pt_offset += chunk * 8; 1784 ptes -= chunk; 1785 1786 while (chunk--) { 1787 u64 addr = sram_addr[i].addr & PAGE_MASK; 1788 1789 xe_tile_assert(m->tile, sram_addr[i].proto == 1790 DRM_INTERCONNECT_SYSTEM); 1791 xe_tile_assert(m->tile, addr); 1792 addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe, 1793 addr, pat_index, 1794 0, false, 0); 1795 bb->cs[bb->len++] = lower_32_bits(addr); 1796 bb->cs[bb->len++] = upper_32_bits(addr); 1797 1798 i++; 1799 } 1800 } 1801 } 1802 1803 enum xe_migrate_copy_dir { 1804 XE_MIGRATE_COPY_TO_VRAM, 1805 XE_MIGRATE_COPY_TO_SRAM, 1806 }; 1807 1808 #define XE_CACHELINE_BYTES 64ull 1809 #define XE_CACHELINE_MASK (XE_CACHELINE_BYTES - 1) 1810 1811 static struct dma_fence *xe_migrate_vram(struct xe_migrate *m, 1812 unsigned long len, 1813 unsigned long sram_offset, 1814 struct drm_pagemap_addr *sram_addr, 1815 u64 vram_addr, 1816 const enum xe_migrate_copy_dir dir) 1817 { 1818 struct xe_gt *gt = m->tile->primary_gt; 1819 struct xe_device *xe = gt_to_xe(gt); 1820 bool use_usm_batch = xe->info.has_usm; 1821 struct dma_fence *fence = NULL; 1822 u32 batch_size = 2; 1823 u64 src_L0_ofs, dst_L0_ofs; 1824 struct xe_sched_job *job; 1825 struct xe_bb *bb; 1826 u32 update_idx, pt_slot = 0; 1827 unsigned long npages = DIV_ROUND_UP(len + sram_offset, PAGE_SIZE); 1828 unsigned int pitch = len >= PAGE_SIZE && !(len & ~PAGE_MASK) ? 1829 PAGE_SIZE : 4; 1830 int err; 1831 unsigned long i, j; 1832 1833 if (drm_WARN_ON(&xe->drm, (len & XE_CACHELINE_MASK) || 1834 (sram_offset | vram_addr) & XE_CACHELINE_MASK)) 1835 return ERR_PTR(-EOPNOTSUPP); 1836 1837 xe_assert(xe, npages * PAGE_SIZE <= MAX_PREEMPTDISABLE_TRANSFER); 1838 1839 batch_size += pte_update_cmd_size(len); 1840 batch_size += EMIT_COPY_DW; 1841 1842 bb = xe_bb_new(gt, batch_size, use_usm_batch); 1843 if (IS_ERR(bb)) { 1844 err = PTR_ERR(bb); 1845 return ERR_PTR(err); 1846 } 1847 1848 /* 1849 * If the order of a struct drm_pagemap_addr entry is greater than 0, 1850 * the entry is populated by GPU pagemap but subsequent entries within 1851 * the range of that order are not populated. 1852 * build_pt_update_batch_sram() expects a fully populated array of 1853 * struct drm_pagemap_addr. Ensure this is the case even with higher 1854 * orders. 1855 */ 1856 for (i = 0; i < npages;) { 1857 unsigned int order = sram_addr[i].order; 1858 1859 for (j = 1; j < NR_PAGES(order) && i + j < npages; j++) 1860 if (!sram_addr[i + j].addr) 1861 sram_addr[i + j].addr = sram_addr[i].addr + j * PAGE_SIZE; 1862 1863 i += NR_PAGES(order); 1864 } 1865 1866 build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE, 1867 sram_addr, len + sram_offset); 1868 1869 if (dir == XE_MIGRATE_COPY_TO_VRAM) { 1870 src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset; 1871 dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false); 1872 1873 } else { 1874 src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false); 1875 dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset; 1876 } 1877 1878 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1879 update_idx = bb->len; 1880 1881 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, len, pitch); 1882 1883 job = xe_bb_create_migration_job(m->q, bb, 1884 xe_migrate_batch_base(m, use_usm_batch), 1885 update_idx); 1886 if (IS_ERR(job)) { 1887 err = PTR_ERR(job); 1888 goto err; 1889 } 1890 1891 xe_sched_job_add_migrate_flush(job, MI_INVALIDATE_TLB); 1892 1893 mutex_lock(&m->job_mutex); 1894 xe_sched_job_arm(job); 1895 fence = dma_fence_get(&job->drm.s_fence->finished); 1896 xe_sched_job_push(job); 1897 1898 dma_fence_put(m->fence); 1899 m->fence = dma_fence_get(fence); 1900 mutex_unlock(&m->job_mutex); 1901 1902 xe_bb_free(bb, fence); 1903 1904 return fence; 1905 1906 err: 1907 xe_bb_free(bb, NULL); 1908 1909 return ERR_PTR(err); 1910 } 1911 1912 /** 1913 * xe_migrate_to_vram() - Migrate to VRAM 1914 * @m: The migration context. 1915 * @npages: Number of pages to migrate. 1916 * @src_addr: Array of DMA information (source of migrate) 1917 * @dst_addr: Device physical address of VRAM (destination of migrate) 1918 * 1919 * Copy from an array dma addresses to a VRAM device physical address 1920 * 1921 * Return: dma fence for migrate to signal completion on succees, ERR_PTR on 1922 * failure 1923 */ 1924 struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m, 1925 unsigned long npages, 1926 struct drm_pagemap_addr *src_addr, 1927 u64 dst_addr) 1928 { 1929 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, src_addr, dst_addr, 1930 XE_MIGRATE_COPY_TO_VRAM); 1931 } 1932 1933 /** 1934 * xe_migrate_from_vram() - Migrate from VRAM 1935 * @m: The migration context. 1936 * @npages: Number of pages to migrate. 1937 * @src_addr: Device physical address of VRAM (source of migrate) 1938 * @dst_addr: Array of DMA information (destination of migrate) 1939 * 1940 * Copy from a VRAM device physical address to an array dma addresses 1941 * 1942 * Return: dma fence for migrate to signal completion on succees, ERR_PTR on 1943 * failure 1944 */ 1945 struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m, 1946 unsigned long npages, 1947 u64 src_addr, 1948 struct drm_pagemap_addr *dst_addr) 1949 { 1950 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, dst_addr, src_addr, 1951 XE_MIGRATE_COPY_TO_SRAM); 1952 } 1953 1954 static void xe_migrate_dma_unmap(struct xe_device *xe, 1955 struct drm_pagemap_addr *pagemap_addr, 1956 int len, int write) 1957 { 1958 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE); 1959 1960 for (i = 0; i < npages; ++i) { 1961 if (!pagemap_addr[i].addr) 1962 break; 1963 1964 dma_unmap_page(xe->drm.dev, pagemap_addr[i].addr, PAGE_SIZE, 1965 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1966 } 1967 kfree(pagemap_addr); 1968 } 1969 1970 static struct drm_pagemap_addr *xe_migrate_dma_map(struct xe_device *xe, 1971 void *buf, int len, 1972 int write) 1973 { 1974 struct drm_pagemap_addr *pagemap_addr; 1975 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE); 1976 1977 pagemap_addr = kcalloc(npages, sizeof(*pagemap_addr), GFP_KERNEL); 1978 if (!pagemap_addr) 1979 return ERR_PTR(-ENOMEM); 1980 1981 for (i = 0; i < npages; ++i) { 1982 dma_addr_t addr; 1983 struct page *page; 1984 enum dma_data_direction dir = write ? DMA_TO_DEVICE : 1985 DMA_FROM_DEVICE; 1986 1987 if (is_vmalloc_addr(buf)) 1988 page = vmalloc_to_page(buf); 1989 else 1990 page = virt_to_page(buf); 1991 1992 addr = dma_map_page(xe->drm.dev, page, 0, PAGE_SIZE, dir); 1993 if (dma_mapping_error(xe->drm.dev, addr)) 1994 goto err_fault; 1995 1996 pagemap_addr[i] = 1997 drm_pagemap_addr_encode(addr, 1998 DRM_INTERCONNECT_SYSTEM, 1999 0, dir); 2000 buf += PAGE_SIZE; 2001 } 2002 2003 return pagemap_addr; 2004 2005 err_fault: 2006 xe_migrate_dma_unmap(xe, pagemap_addr, len, write); 2007 return ERR_PTR(-EFAULT); 2008 } 2009 2010 /** 2011 * xe_migrate_access_memory - Access memory of a BO via GPU 2012 * 2013 * @m: The migration context. 2014 * @bo: buffer object 2015 * @offset: access offset into buffer object 2016 * @buf: pointer to caller memory to read into or write from 2017 * @len: length of access 2018 * @write: write access 2019 * 2020 * Access memory of a BO via GPU either reading in or writing from a passed in 2021 * pointer. Pointer is dma mapped for GPU access and GPU commands are issued to 2022 * read to or write from pointer. 2023 * 2024 * Returns: 2025 * 0 if successful, negative error code on failure. 2026 */ 2027 int xe_migrate_access_memory(struct xe_migrate *m, struct xe_bo *bo, 2028 unsigned long offset, void *buf, int len, 2029 int write) 2030 { 2031 struct xe_tile *tile = m->tile; 2032 struct xe_device *xe = tile_to_xe(tile); 2033 struct xe_res_cursor cursor; 2034 struct dma_fence *fence = NULL; 2035 struct drm_pagemap_addr *pagemap_addr; 2036 unsigned long page_offset = (unsigned long)buf & ~PAGE_MASK; 2037 int bytes_left = len, current_page = 0; 2038 void *orig_buf = buf; 2039 2040 xe_bo_assert_held(bo); 2041 2042 /* Use bounce buffer for small access and unaligned access */ 2043 if (!IS_ALIGNED(len, XE_CACHELINE_BYTES) || 2044 !IS_ALIGNED((unsigned long)buf + offset, XE_CACHELINE_BYTES)) { 2045 int buf_offset = 0; 2046 void *bounce; 2047 int err; 2048 2049 BUILD_BUG_ON(!is_power_of_2(XE_CACHELINE_BYTES)); 2050 bounce = kmalloc(XE_CACHELINE_BYTES, GFP_KERNEL); 2051 if (!bounce) 2052 return -ENOMEM; 2053 2054 /* 2055 * Less than ideal for large unaligned access but this should be 2056 * fairly rare, can fixup if this becomes common. 2057 */ 2058 do { 2059 int copy_bytes = min_t(int, bytes_left, 2060 XE_CACHELINE_BYTES - 2061 (offset & XE_CACHELINE_MASK)); 2062 int ptr_offset = offset & XE_CACHELINE_MASK; 2063 2064 err = xe_migrate_access_memory(m, bo, 2065 offset & 2066 ~XE_CACHELINE_MASK, 2067 bounce, 2068 XE_CACHELINE_BYTES, 0); 2069 if (err) 2070 break; 2071 2072 if (write) { 2073 memcpy(bounce + ptr_offset, buf + buf_offset, copy_bytes); 2074 2075 err = xe_migrate_access_memory(m, bo, 2076 offset & ~XE_CACHELINE_MASK, 2077 bounce, 2078 XE_CACHELINE_BYTES, write); 2079 if (err) 2080 break; 2081 } else { 2082 memcpy(buf + buf_offset, bounce + ptr_offset, 2083 copy_bytes); 2084 } 2085 2086 bytes_left -= copy_bytes; 2087 buf_offset += copy_bytes; 2088 offset += copy_bytes; 2089 } while (bytes_left); 2090 2091 kfree(bounce); 2092 return err; 2093 } 2094 2095 pagemap_addr = xe_migrate_dma_map(xe, buf, len + page_offset, write); 2096 if (IS_ERR(pagemap_addr)) 2097 return PTR_ERR(pagemap_addr); 2098 2099 xe_res_first(bo->ttm.resource, offset, xe_bo_size(bo) - offset, &cursor); 2100 2101 do { 2102 struct dma_fence *__fence; 2103 u64 vram_addr = vram_region_gpu_offset(bo->ttm.resource) + 2104 cursor.start; 2105 int current_bytes; 2106 2107 if (cursor.size > MAX_PREEMPTDISABLE_TRANSFER) 2108 current_bytes = min_t(int, bytes_left, 2109 MAX_PREEMPTDISABLE_TRANSFER); 2110 else 2111 current_bytes = min_t(int, bytes_left, cursor.size); 2112 2113 if (current_bytes & ~PAGE_MASK) { 2114 int pitch = 4; 2115 2116 current_bytes = min_t(int, current_bytes, S16_MAX * pitch); 2117 } 2118 2119 __fence = xe_migrate_vram(m, current_bytes, 2120 (unsigned long)buf & ~PAGE_MASK, 2121 &pagemap_addr[current_page], 2122 vram_addr, write ? 2123 XE_MIGRATE_COPY_TO_VRAM : 2124 XE_MIGRATE_COPY_TO_SRAM); 2125 if (IS_ERR(__fence)) { 2126 if (fence) { 2127 dma_fence_wait(fence, false); 2128 dma_fence_put(fence); 2129 } 2130 fence = __fence; 2131 goto out_err; 2132 } 2133 2134 dma_fence_put(fence); 2135 fence = __fence; 2136 2137 buf += current_bytes; 2138 offset += current_bytes; 2139 current_page = (int)(buf - orig_buf) / PAGE_SIZE; 2140 bytes_left -= current_bytes; 2141 if (bytes_left) 2142 xe_res_next(&cursor, current_bytes); 2143 } while (bytes_left); 2144 2145 dma_fence_wait(fence, false); 2146 dma_fence_put(fence); 2147 2148 out_err: 2149 xe_migrate_dma_unmap(xe, pagemap_addr, len + page_offset, write); 2150 return IS_ERR(fence) ? PTR_ERR(fence) : 0; 2151 } 2152 2153 /** 2154 * xe_migrate_job_lock() - Lock migrate job lock 2155 * @m: The migration context. 2156 * @q: Queue associated with the operation which requires a lock 2157 * 2158 * Lock the migrate job lock if the queue is a migration queue, otherwise 2159 * assert the VM's dma-resv is held (user queue's have own locking). 2160 */ 2161 void xe_migrate_job_lock(struct xe_migrate *m, struct xe_exec_queue *q) 2162 { 2163 bool is_migrate = q == m->q; 2164 2165 if (is_migrate) 2166 mutex_lock(&m->job_mutex); 2167 else 2168 xe_vm_assert_held(q->vm); /* User queues VM's should be locked */ 2169 } 2170 2171 /** 2172 * xe_migrate_job_unlock() - Unlock migrate job lock 2173 * @m: The migration context. 2174 * @q: Queue associated with the operation which requires a lock 2175 * 2176 * Unlock the migrate job lock if the queue is a migration queue, otherwise 2177 * assert the VM's dma-resv is held (user queue's have own locking). 2178 */ 2179 void xe_migrate_job_unlock(struct xe_migrate *m, struct xe_exec_queue *q) 2180 { 2181 bool is_migrate = q == m->q; 2182 2183 if (is_migrate) 2184 mutex_unlock(&m->job_mutex); 2185 else 2186 xe_vm_assert_held(q->vm); /* User queues VM's should be locked */ 2187 } 2188 2189 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2190 #include "tests/xe_migrate.c" 2191 #endif 2192