xref: /linux/drivers/gpu/drm/xe/xe_migrate.c (revision 4b2b7b1e8730d51542c62ba75dabeb52243dfb49)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include "xe_migrate.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/sizes.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/ttm/ttm_tt.h>
13 #include <drm/xe_drm.h>
14 
15 #include "generated/xe_wa_oob.h"
16 #include "instructions/xe_mi_commands.h"
17 #include "regs/xe_gpu_commands.h"
18 #include "tests/xe_test.h"
19 #include "xe_assert.h"
20 #include "xe_bb.h"
21 #include "xe_bo.h"
22 #include "xe_exec_queue.h"
23 #include "xe_ggtt.h"
24 #include "xe_gt.h"
25 #include "xe_hw_engine.h"
26 #include "xe_lrc.h"
27 #include "xe_map.h"
28 #include "xe_mocs.h"
29 #include "xe_pt.h"
30 #include "xe_res_cursor.h"
31 #include "xe_sched_job.h"
32 #include "xe_sync.h"
33 #include "xe_trace.h"
34 #include "xe_vm.h"
35 #include "xe_wa.h"
36 
37 /**
38  * struct xe_migrate - migrate context.
39  */
40 struct xe_migrate {
41 	/** @q: Default exec queue used for migration */
42 	struct xe_exec_queue *q;
43 	/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
44 	struct xe_tile *tile;
45 	/** @job_mutex: Timeline mutex for @eng. */
46 	struct mutex job_mutex;
47 	/** @pt_bo: Page-table buffer object. */
48 	struct xe_bo *pt_bo;
49 	/** @batch_base_ofs: VM offset of the migration batch buffer */
50 	u64 batch_base_ofs;
51 	/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
52 	u64 usm_batch_base_ofs;
53 	/** @cleared_mem_ofs: VM offset of @cleared_bo. */
54 	u64 cleared_mem_ofs;
55 	/**
56 	 * @fence: dma-fence representing the last migration job batch.
57 	 * Protected by @job_mutex.
58 	 */
59 	struct dma_fence *fence;
60 	/**
61 	 * @vm_update_sa: For integrated, used to suballocate page-tables
62 	 * out of the pt_bo.
63 	 */
64 	struct drm_suballoc_manager vm_update_sa;
65 	/** @min_chunk_size: For dgfx, Minimum chunk size */
66 	u64 min_chunk_size;
67 };
68 
69 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
70 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
71 #define NUM_KERNEL_PDE 17
72 #define NUM_PT_SLOTS 32
73 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
74 
75 /**
76  * xe_tile_migrate_engine() - Get this tile's migrate engine.
77  * @tile: The tile.
78  *
79  * Returns the default migrate engine of this tile.
80  * TODO: Perhaps this function is slightly misplaced, and even unneeded?
81  *
82  * Return: The default migrate engine
83  */
84 struct xe_exec_queue *xe_tile_migrate_engine(struct xe_tile *tile)
85 {
86 	return tile->migrate->q;
87 }
88 
89 static void xe_migrate_fini(struct drm_device *dev, void *arg)
90 {
91 	struct xe_migrate *m = arg;
92 
93 	xe_vm_lock(m->q->vm, false);
94 	xe_bo_unpin(m->pt_bo);
95 	xe_vm_unlock(m->q->vm);
96 
97 	dma_fence_put(m->fence);
98 	xe_bo_put(m->pt_bo);
99 	drm_suballoc_manager_fini(&m->vm_update_sa);
100 	mutex_destroy(&m->job_mutex);
101 	xe_vm_close_and_put(m->q->vm);
102 	xe_exec_queue_put(m->q);
103 }
104 
105 static u64 xe_migrate_vm_addr(u64 slot, u32 level)
106 {
107 	XE_WARN_ON(slot >= NUM_PT_SLOTS);
108 
109 	/* First slot is reserved for mapping of PT bo and bb, start from 1 */
110 	return (slot + 1ULL) << xe_pt_shift(level + 1);
111 }
112 
113 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr)
114 {
115 	/*
116 	 * Remove the DPA to get a correct offset into identity table for the
117 	 * migrate offset
118 	 */
119 	addr -= xe->mem.vram.dpa_base;
120 	return addr + (256ULL << xe_pt_shift(2));
121 }
122 
123 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
124 				 struct xe_vm *vm)
125 {
126 	struct xe_device *xe = tile_to_xe(tile);
127 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
128 	u8 id = tile->id;
129 	u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
130 	u32 map_ofs, level, i;
131 	struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
132 	u64 entry;
133 
134 	/* Can't bump NUM_PT_SLOTS too high */
135 	BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
136 	/* Must be a multiple of 64K to support all platforms */
137 	BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
138 	/* And one slot reserved for the 4KiB page table updates */
139 	BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
140 
141 	/* Need to be sure everything fits in the first PT, or create more */
142 	xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
143 
144 	bo = xe_bo_create_pin_map(vm->xe, tile, vm,
145 				  num_entries * XE_PAGE_SIZE,
146 				  ttm_bo_type_kernel,
147 				  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
148 				  XE_BO_CREATE_PINNED_BIT);
149 	if (IS_ERR(bo))
150 		return PTR_ERR(bo);
151 
152 	entry = vm->pt_ops->pde_encode_bo(bo, bo->size - XE_PAGE_SIZE, pat_index);
153 	xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
154 
155 	map_ofs = (num_entries - num_level) * XE_PAGE_SIZE;
156 
157 	/* Map the entire BO in our level 0 pt */
158 	for (i = 0, level = 0; i < num_entries; level++) {
159 		entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
160 						  pat_index, 0);
161 
162 		xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
163 
164 		if (vm->flags & XE_VM_FLAG_64K)
165 			i += 16;
166 		else
167 			i += 1;
168 	}
169 
170 	if (!IS_DGFX(xe)) {
171 		/* Write out batch too */
172 		m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
173 		if (xe->info.has_usm) {
174 			batch = tile->primary_gt->usm.bb_pool->bo;
175 			m->usm_batch_base_ofs = m->batch_base_ofs;
176 		}
177 
178 		for (i = 0; i < batch->size;
179 		     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
180 		     XE_PAGE_SIZE) {
181 			entry = vm->pt_ops->pte_encode_bo(batch, i,
182 							  pat_index, 0);
183 
184 			xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
185 				  entry);
186 			level++;
187 		}
188 	} else {
189 		u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
190 
191 		m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
192 
193 		if (xe->info.has_usm) {
194 			batch = tile->primary_gt->usm.bb_pool->bo;
195 			batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
196 			m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
197 		}
198 	}
199 
200 	for (level = 1; level < num_level; level++) {
201 		u32 flags = 0;
202 
203 		if (vm->flags & XE_VM_FLAG_64K && level == 1)
204 			flags = XE_PDE_64K;
205 
206 		entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (level - 1) *
207 						  XE_PAGE_SIZE, pat_index);
208 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
209 			  entry | flags);
210 	}
211 
212 	/* Write PDE's that point to our BO. */
213 	for (i = 0; i < num_entries - num_level; i++) {
214 		entry = vm->pt_ops->pde_encode_bo(bo, i * XE_PAGE_SIZE,
215 						  pat_index);
216 
217 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
218 			  (i + 1) * 8, u64, entry);
219 	}
220 
221 	/* Set up a 1GiB NULL mapping at 255GiB offset. */
222 	level = 2;
223 	xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
224 		  vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
225 		  | XE_PTE_NULL);
226 	m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
227 
228 	/* Identity map the entire vram at 256GiB offset */
229 	if (IS_DGFX(xe)) {
230 		u64 pos, ofs, flags;
231 
232 		level = 2;
233 		ofs = map_ofs + XE_PAGE_SIZE * level + 256 * 8;
234 		flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
235 						    true, 0);
236 
237 		/*
238 		 * Use 1GB pages, it shouldn't matter the physical amount of
239 		 * vram is less, when we don't access it.
240 		 */
241 		for (pos = xe->mem.vram.dpa_base;
242 		     pos < xe->mem.vram.actual_physical_size + xe->mem.vram.dpa_base;
243 		     pos += SZ_1G, ofs += 8)
244 			xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
245 	}
246 
247 	/*
248 	 * Example layout created above, with root level = 3:
249 	 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
250 	 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
251 	 * [PT9...PT28]: Userspace PT's for VM_BIND, 4 KiB PTE's
252 	 * [PT29 = PDE 0] [PT30 = PDE 1] [PT31 = PDE 2]
253 	 *
254 	 * This makes the lowest part of the VM point to the pagetables.
255 	 * Hence the lowest 2M in the vm should point to itself, with a few writes
256 	 * and flushes, other parts of the VM can be used either for copying and
257 	 * clearing.
258 	 *
259 	 * For performance, the kernel reserves PDE's, so about 20 are left
260 	 * for async VM updates.
261 	 *
262 	 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
263 	 * everywhere, this allows lockless updates to scratch pages by using
264 	 * the different addresses in VM.
265 	 */
266 #define NUM_VMUSA_UNIT_PER_PAGE	32
267 #define VM_SA_UPDATE_UNIT_SIZE		(XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
268 #define NUM_VMUSA_WRITES_PER_UNIT	(VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
269 	drm_suballoc_manager_init(&m->vm_update_sa,
270 				  (map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
271 				  NUM_VMUSA_UNIT_PER_PAGE, 0);
272 
273 	m->pt_bo = bo;
274 	return 0;
275 }
276 
277 /*
278  * Due to workaround 16017236439, odd instance hardware copy engines are
279  * faster than even instance ones.
280  * This function returns the mask involving all fast copy engines and the
281  * reserved copy engine to be used as logical mask for migrate engine.
282  * Including the reserved copy engine is required to avoid deadlocks due to
283  * migrate jobs servicing the faults gets stuck behind the job that faulted.
284  */
285 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
286 {
287 	u32 logical_mask = 0;
288 	struct xe_hw_engine *hwe;
289 	enum xe_hw_engine_id id;
290 
291 	for_each_hw_engine(hwe, gt, id) {
292 		if (hwe->class != XE_ENGINE_CLASS_COPY)
293 			continue;
294 
295 		if (!XE_WA(gt, 16017236439) ||
296 		    xe_gt_is_usm_hwe(gt, hwe) || hwe->instance & 1)
297 			logical_mask |= BIT(hwe->logical_instance);
298 	}
299 
300 	return logical_mask;
301 }
302 
303 /**
304  * xe_migrate_init() - Initialize a migrate context
305  * @tile: Back-pointer to the tile we're initializing for.
306  *
307  * Return: Pointer to a migrate context on success. Error pointer on error.
308  */
309 struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
310 {
311 	struct xe_device *xe = tile_to_xe(tile);
312 	struct xe_gt *primary_gt = tile->primary_gt;
313 	struct xe_migrate *m;
314 	struct xe_vm *vm;
315 	int err;
316 
317 	m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL);
318 	if (!m)
319 		return ERR_PTR(-ENOMEM);
320 
321 	m->tile = tile;
322 
323 	/* Special layout, prepared below.. */
324 	vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
325 			  XE_VM_FLAG_SET_TILE_ID(tile));
326 	if (IS_ERR(vm))
327 		return ERR_CAST(vm);
328 
329 	xe_vm_lock(vm, false);
330 	err = xe_migrate_prepare_vm(tile, m, vm);
331 	xe_vm_unlock(vm);
332 	if (err) {
333 		xe_vm_close_and_put(vm);
334 		return ERR_PTR(err);
335 	}
336 
337 	if (xe->info.has_usm) {
338 		struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
339 							   XE_ENGINE_CLASS_COPY,
340 							   primary_gt->usm.reserved_bcs_instance,
341 							   false);
342 		u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
343 
344 		if (!hwe || !logical_mask)
345 			return ERR_PTR(-EINVAL);
346 
347 		m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
348 					    EXEC_QUEUE_FLAG_KERNEL |
349 					    EXEC_QUEUE_FLAG_PERMANENT |
350 					    EXEC_QUEUE_FLAG_HIGH_PRIORITY);
351 	} else {
352 		m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
353 						  XE_ENGINE_CLASS_COPY,
354 						  EXEC_QUEUE_FLAG_KERNEL |
355 						  EXEC_QUEUE_FLAG_PERMANENT);
356 	}
357 	if (IS_ERR(m->q)) {
358 		xe_vm_close_and_put(vm);
359 		return ERR_CAST(m->q);
360 	}
361 
362 	mutex_init(&m->job_mutex);
363 
364 	err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m);
365 	if (err)
366 		return ERR_PTR(err);
367 
368 	if (IS_DGFX(xe)) {
369 		if (xe_device_has_flat_ccs(xe))
370 			/* min chunk size corresponds to 4K of CCS Metadata */
371 			m->min_chunk_size = SZ_4K * SZ_64K /
372 				xe_device_ccs_bytes(xe, SZ_64K);
373 		else
374 			/* Somewhat arbitrary to avoid a huge amount of blits */
375 			m->min_chunk_size = SZ_64K;
376 		m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
377 		drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
378 			(unsigned long long)m->min_chunk_size);
379 	}
380 
381 	return m;
382 }
383 
384 static u64 max_mem_transfer_per_pass(struct xe_device *xe)
385 {
386 	if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
387 		return MAX_CCS_LIMITED_TRANSFER;
388 
389 	return MAX_PREEMPTDISABLE_TRANSFER;
390 }
391 
392 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
393 {
394 	struct xe_device *xe = tile_to_xe(m->tile);
395 	u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
396 
397 	if (mem_type_is_vram(cur->mem_type)) {
398 		/*
399 		 * VRAM we want to blit in chunks with sizes aligned to
400 		 * min_chunk_size in order for the offset to CCS metadata to be
401 		 * page-aligned. If it's the last chunk it may be smaller.
402 		 *
403 		 * Another constraint is that we need to limit the blit to
404 		 * the VRAM block size, unless size is smaller than
405 		 * min_chunk_size.
406 		 */
407 		u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
408 
409 		size = min_t(u64, size, chunk);
410 		if (size > m->min_chunk_size)
411 			size = round_down(size, m->min_chunk_size);
412 	}
413 
414 	return size;
415 }
416 
417 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
418 {
419 	/* If the chunk is not fragmented, allow identity map. */
420 	return cur->size >= size;
421 }
422 
423 static u32 pte_update_size(struct xe_migrate *m,
424 			   bool is_vram,
425 			   struct ttm_resource *res,
426 			   struct xe_res_cursor *cur,
427 			   u64 *L0, u64 *L0_ofs, u32 *L0_pt,
428 			   u32 cmd_size, u32 pt_ofs, u32 avail_pts)
429 {
430 	u32 cmds = 0;
431 
432 	*L0_pt = pt_ofs;
433 	if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
434 		/* Offset into identity map. */
435 		*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
436 					      cur->start + vram_region_gpu_offset(res));
437 		cmds += cmd_size;
438 	} else {
439 		/* Clip L0 to available size */
440 		u64 size = min(*L0, (u64)avail_pts * SZ_2M);
441 		u64 num_4k_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
442 
443 		*L0 = size;
444 		*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
445 
446 		/* MI_STORE_DATA_IMM */
447 		cmds += 3 * DIV_ROUND_UP(num_4k_pages, 0x1ff);
448 
449 		/* PDE qwords */
450 		cmds += num_4k_pages * 2;
451 
452 		/* Each chunk has a single blit command */
453 		cmds += cmd_size;
454 	}
455 
456 	return cmds;
457 }
458 
459 static void emit_pte(struct xe_migrate *m,
460 		     struct xe_bb *bb, u32 at_pt,
461 		     bool is_vram, bool is_comp_pte,
462 		     struct xe_res_cursor *cur,
463 		     u32 size, struct ttm_resource *res)
464 {
465 	struct xe_device *xe = tile_to_xe(m->tile);
466 	struct xe_vm *vm = m->q->vm;
467 	u16 pat_index;
468 	u32 ptes;
469 	u64 ofs = at_pt * XE_PAGE_SIZE;
470 	u64 cur_ofs;
471 
472 	/* Indirect access needs compression enabled uncached PAT index */
473 	if (GRAPHICS_VERx100(xe) >= 2000)
474 		pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
475 					  xe->pat.idx[XE_CACHE_NONE];
476 	else
477 		pat_index = xe->pat.idx[XE_CACHE_WB];
478 
479 	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
480 
481 	while (ptes) {
482 		u32 chunk = min(0x1ffU, ptes);
483 
484 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
485 		bb->cs[bb->len++] = ofs;
486 		bb->cs[bb->len++] = 0;
487 
488 		cur_ofs = ofs;
489 		ofs += chunk * 8;
490 		ptes -= chunk;
491 
492 		while (chunk--) {
493 			u64 addr, flags = 0;
494 			bool devmem = false;
495 
496 			addr = xe_res_dma(cur) & PAGE_MASK;
497 			if (is_vram) {
498 				if (vm->flags & XE_VM_FLAG_64K) {
499 					u64 va = cur_ofs * XE_PAGE_SIZE / 8;
500 
501 					xe_assert(xe, (va & (SZ_64K - 1)) ==
502 						  (addr & (SZ_64K - 1)));
503 
504 					flags |= XE_PTE_PS64;
505 				}
506 
507 				addr += vram_region_gpu_offset(res);
508 				devmem = true;
509 			}
510 
511 			addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
512 							   addr, pat_index,
513 							   0, devmem, flags);
514 			bb->cs[bb->len++] = lower_32_bits(addr);
515 			bb->cs[bb->len++] = upper_32_bits(addr);
516 
517 			xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
518 			cur_ofs += 8;
519 		}
520 	}
521 }
522 
523 #define EMIT_COPY_CCS_DW 5
524 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
525 			  u64 dst_ofs, bool dst_is_indirect,
526 			  u64 src_ofs, bool src_is_indirect,
527 			  u32 size)
528 {
529 	struct xe_device *xe = gt_to_xe(gt);
530 	u32 *cs = bb->cs + bb->len;
531 	u32 num_ccs_blks;
532 	u32 num_pages;
533 	u32 ccs_copy_size;
534 	u32 mocs;
535 
536 	if (GRAPHICS_VERx100(xe) >= 2000) {
537 		num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
538 		xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
539 
540 		ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
541 		mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
542 
543 	} else {
544 		num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
545 					    NUM_CCS_BYTES_PER_BLOCK);
546 		xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
547 
548 		ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
549 		mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
550 	}
551 
552 	*cs++ = XY_CTRL_SURF_COPY_BLT |
553 		(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
554 		(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
555 		ccs_copy_size;
556 	*cs++ = lower_32_bits(src_ofs);
557 	*cs++ = upper_32_bits(src_ofs) | mocs;
558 	*cs++ = lower_32_bits(dst_ofs);
559 	*cs++ = upper_32_bits(dst_ofs) | mocs;
560 
561 	bb->len = cs - bb->cs;
562 }
563 
564 #define EMIT_COPY_DW 10
565 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
566 		      u64 src_ofs, u64 dst_ofs, unsigned int size,
567 		      unsigned int pitch)
568 {
569 	struct xe_device *xe = gt_to_xe(gt);
570 	u32 mocs = 0;
571 	u32 tile_y = 0;
572 
573 	xe_gt_assert(gt, size / pitch <= S16_MAX);
574 	xe_gt_assert(gt, pitch / 4 <= S16_MAX);
575 	xe_gt_assert(gt, pitch <= U16_MAX);
576 
577 	if (GRAPHICS_VER(xe) >= 20)
578 		mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
579 
580 	if (GRAPHICS_VERx100(xe) >= 1250)
581 		tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
582 
583 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
584 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
585 	bb->cs[bb->len++] = 0;
586 	bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
587 	bb->cs[bb->len++] = lower_32_bits(dst_ofs);
588 	bb->cs[bb->len++] = upper_32_bits(dst_ofs);
589 	bb->cs[bb->len++] = 0;
590 	bb->cs[bb->len++] = pitch | mocs;
591 	bb->cs[bb->len++] = lower_32_bits(src_ofs);
592 	bb->cs[bb->len++] = upper_32_bits(src_ofs);
593 }
594 
595 static int job_add_deps(struct xe_sched_job *job, struct dma_resv *resv,
596 			enum dma_resv_usage usage)
597 {
598 	return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage);
599 }
600 
601 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
602 {
603 	return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
604 }
605 
606 static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
607 			       struct xe_bb *bb,
608 			       u64 src_ofs, bool src_is_indirect,
609 			       u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
610 			       u64 ccs_ofs, bool copy_ccs)
611 {
612 	struct xe_gt *gt = m->tile->primary_gt;
613 	u32 flush_flags = 0;
614 
615 	if (xe_device_has_flat_ccs(gt_to_xe(gt)) && !copy_ccs && dst_is_indirect) {
616 		/*
617 		 * If the src is already in vram, then it should already
618 		 * have been cleared by us, or has been populated by the
619 		 * user. Make sure we copy the CCS aux state as-is.
620 		 *
621 		 * Otherwise if the bo doesn't have any CCS metadata attached,
622 		 * we still need to clear it for security reasons.
623 		 */
624 		u64 ccs_src_ofs =  src_is_indirect ? src_ofs : m->cleared_mem_ofs;
625 
626 		emit_copy_ccs(gt, bb,
627 			      dst_ofs, true,
628 			      ccs_src_ofs, src_is_indirect, dst_size);
629 
630 		flush_flags = MI_FLUSH_DW_CCS;
631 	} else if (copy_ccs) {
632 		if (!src_is_indirect)
633 			src_ofs = ccs_ofs;
634 		else if (!dst_is_indirect)
635 			dst_ofs = ccs_ofs;
636 
637 		xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
638 
639 		emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
640 			      src_is_indirect, dst_size);
641 		if (dst_is_indirect)
642 			flush_flags = MI_FLUSH_DW_CCS;
643 	}
644 
645 	return flush_flags;
646 }
647 
648 /**
649  * xe_migrate_copy() - Copy content of TTM resources.
650  * @m: The migration context.
651  * @src_bo: The buffer object @src is currently bound to.
652  * @dst_bo: If copying between resources created for the same bo, set this to
653  * the same value as @src_bo. If copying between buffer objects, set it to
654  * the buffer object @dst is currently bound to.
655  * @src: The source TTM resource.
656  * @dst: The dst TTM resource.
657  * @copy_only_ccs: If true copy only CCS metadata
658  *
659  * Copies the contents of @src to @dst: On flat CCS devices,
660  * the CCS metadata is copied as well if needed, or if not present,
661  * the CCS metadata of @dst is cleared for security reasons.
662  *
663  * Return: Pointer to a dma_fence representing the last copy batch, or
664  * an error pointer on failure. If there is a failure, any copy operation
665  * started by the function call has been synced.
666  */
667 struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
668 				  struct xe_bo *src_bo,
669 				  struct xe_bo *dst_bo,
670 				  struct ttm_resource *src,
671 				  struct ttm_resource *dst,
672 				  bool copy_only_ccs)
673 {
674 	struct xe_gt *gt = m->tile->primary_gt;
675 	struct xe_device *xe = gt_to_xe(gt);
676 	struct dma_fence *fence = NULL;
677 	u64 size = src_bo->size;
678 	struct xe_res_cursor src_it, dst_it, ccs_it;
679 	u64 src_L0_ofs, dst_L0_ofs;
680 	u32 src_L0_pt, dst_L0_pt;
681 	u64 src_L0, dst_L0;
682 	int pass = 0;
683 	int err;
684 	bool src_is_pltt = src->mem_type == XE_PL_TT;
685 	bool dst_is_pltt = dst->mem_type == XE_PL_TT;
686 	bool src_is_vram = mem_type_is_vram(src->mem_type);
687 	bool dst_is_vram = mem_type_is_vram(dst->mem_type);
688 	bool copy_ccs = xe_device_has_flat_ccs(xe) &&
689 		xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
690 	bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
691 
692 	/* Copying CCS between two different BOs is not supported yet. */
693 	if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
694 		return ERR_PTR(-EINVAL);
695 
696 	if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
697 		return ERR_PTR(-EINVAL);
698 
699 	if (!src_is_vram)
700 		xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
701 	else
702 		xe_res_first(src, 0, size, &src_it);
703 	if (!dst_is_vram)
704 		xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
705 	else
706 		xe_res_first(dst, 0, size, &dst_it);
707 
708 	if (copy_system_ccs)
709 		xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
710 				PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
711 				&ccs_it);
712 
713 	while (size) {
714 		u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
715 		struct xe_sched_job *job;
716 		struct xe_bb *bb;
717 		u32 flush_flags;
718 		u32 update_idx;
719 		u64 ccs_ofs, ccs_size;
720 		u32 ccs_pt;
721 
722 		bool usm = xe->info.has_usm;
723 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
724 
725 		src_L0 = xe_migrate_res_sizes(m, &src_it);
726 		dst_L0 = xe_migrate_res_sizes(m, &dst_it);
727 
728 		drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
729 			pass++, src_L0, dst_L0);
730 
731 		src_L0 = min(src_L0, dst_L0);
732 
733 		batch_size += pte_update_size(m, src_is_vram, src, &src_it, &src_L0,
734 					      &src_L0_ofs, &src_L0_pt, 0, 0,
735 					      avail_pts);
736 
737 		batch_size += pte_update_size(m, dst_is_vram, dst, &dst_it, &src_L0,
738 					      &dst_L0_ofs, &dst_L0_pt, 0,
739 					      avail_pts, avail_pts);
740 
741 		if (copy_system_ccs) {
742 			ccs_size = xe_device_ccs_bytes(xe, src_L0);
743 			batch_size += pte_update_size(m, false, NULL, &ccs_it, &ccs_size,
744 						      &ccs_ofs, &ccs_pt, 0,
745 						      2 * avail_pts,
746 						      avail_pts);
747 			xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
748 		}
749 
750 		/* Add copy commands size here */
751 		batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
752 			((xe_device_has_flat_ccs(xe) ? EMIT_COPY_CCS_DW : 0));
753 
754 		bb = xe_bb_new(gt, batch_size, usm);
755 		if (IS_ERR(bb)) {
756 			err = PTR_ERR(bb);
757 			goto err_sync;
758 		}
759 
760 		if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
761 			xe_res_next(&src_it, src_L0);
762 		else
763 			emit_pte(m, bb, src_L0_pt, src_is_vram, true, &src_it, src_L0,
764 				 src);
765 
766 		if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
767 			xe_res_next(&dst_it, src_L0);
768 		else
769 			emit_pte(m, bb, dst_L0_pt, dst_is_vram, true, &dst_it, src_L0,
770 				 dst);
771 
772 		if (copy_system_ccs)
773 			emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
774 
775 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
776 		update_idx = bb->len;
777 
778 		if (!copy_only_ccs)
779 			emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
780 
781 		flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
782 						  IS_DGFX(xe) ? src_is_vram : src_is_pltt,
783 						  dst_L0_ofs,
784 						  IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
785 						  src_L0, ccs_ofs, copy_ccs);
786 
787 		mutex_lock(&m->job_mutex);
788 		job = xe_bb_create_migration_job(m->q, bb,
789 						 xe_migrate_batch_base(m, usm),
790 						 update_idx);
791 		if (IS_ERR(job)) {
792 			err = PTR_ERR(job);
793 			goto err;
794 		}
795 
796 		xe_sched_job_add_migrate_flush(job, flush_flags);
797 		if (!fence) {
798 			err = job_add_deps(job, src_bo->ttm.base.resv,
799 					   DMA_RESV_USAGE_BOOKKEEP);
800 			if (!err && src_bo != dst_bo)
801 				err = job_add_deps(job, dst_bo->ttm.base.resv,
802 						   DMA_RESV_USAGE_BOOKKEEP);
803 			if (err)
804 				goto err_job;
805 		}
806 
807 		xe_sched_job_arm(job);
808 		dma_fence_put(fence);
809 		fence = dma_fence_get(&job->drm.s_fence->finished);
810 		xe_sched_job_push(job);
811 
812 		dma_fence_put(m->fence);
813 		m->fence = dma_fence_get(fence);
814 
815 		mutex_unlock(&m->job_mutex);
816 
817 		xe_bb_free(bb, fence);
818 		size -= src_L0;
819 		continue;
820 
821 err_job:
822 		xe_sched_job_put(job);
823 err:
824 		mutex_unlock(&m->job_mutex);
825 		xe_bb_free(bb, NULL);
826 
827 err_sync:
828 		/* Sync partial copy if any. FIXME: under job_mutex? */
829 		if (fence) {
830 			dma_fence_wait(fence, false);
831 			dma_fence_put(fence);
832 		}
833 
834 		return ERR_PTR(err);
835 	}
836 
837 	return fence;
838 }
839 
840 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
841 				 u32 size, u32 pitch)
842 {
843 	struct xe_device *xe = gt_to_xe(gt);
844 	u32 *cs = bb->cs + bb->len;
845 	u32 len = PVC_MEM_SET_CMD_LEN_DW;
846 
847 	*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
848 	*cs++ = pitch - 1;
849 	*cs++ = (size / pitch) - 1;
850 	*cs++ = pitch - 1;
851 	*cs++ = lower_32_bits(src_ofs);
852 	*cs++ = upper_32_bits(src_ofs);
853 	if (GRAPHICS_VERx100(xe) >= 2000)
854 		*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
855 	else
856 		*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
857 
858 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
859 
860 	bb->len += len;
861 }
862 
863 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
864 				 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
865 {
866 	struct xe_device *xe = gt_to_xe(gt);
867 	u32 *cs = bb->cs + bb->len;
868 	u32 len = XY_FAST_COLOR_BLT_DW;
869 
870 	if (GRAPHICS_VERx100(xe) < 1250)
871 		len = 11;
872 
873 	*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
874 		(len - 2);
875 	if (GRAPHICS_VERx100(xe) >= 2000)
876 		*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
877 			(pitch - 1);
878 	else
879 		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
880 			(pitch - 1);
881 	*cs++ = 0;
882 	*cs++ = (size / pitch) << 16 | pitch / 4;
883 	*cs++ = lower_32_bits(src_ofs);
884 	*cs++ = upper_32_bits(src_ofs);
885 	*cs++ = (is_vram ? 0x0 : 0x1) <<  XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
886 	*cs++ = 0;
887 	*cs++ = 0;
888 	*cs++ = 0;
889 	*cs++ = 0;
890 
891 	if (len > 11) {
892 		*cs++ = 0;
893 		*cs++ = 0;
894 		*cs++ = 0;
895 		*cs++ = 0;
896 		*cs++ = 0;
897 	}
898 
899 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
900 
901 	bb->len += len;
902 }
903 
904 static bool has_service_copy_support(struct xe_gt *gt)
905 {
906 	/*
907 	 * What we care about is whether the architecture was designed with
908 	 * service copy functionality (specifically the new MEM_SET / MEM_COPY
909 	 * instructions) so check the architectural engine list rather than the
910 	 * actual list since these instructions are usable on BCS0 even if
911 	 * all of the actual service copy engines (BCS1-BCS8) have been fused
912 	 * off.
913 	 */
914 	return gt->info.__engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
915 						XE_HW_ENGINE_BCS1);
916 }
917 
918 static u32 emit_clear_cmd_len(struct xe_gt *gt)
919 {
920 	if (has_service_copy_support(gt))
921 		return PVC_MEM_SET_CMD_LEN_DW;
922 	else
923 		return XY_FAST_COLOR_BLT_DW;
924 }
925 
926 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
927 		       u32 size, u32 pitch, bool is_vram)
928 {
929 	if (has_service_copy_support(gt))
930 		emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
931 	else
932 		emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
933 				     is_vram);
934 }
935 
936 /**
937  * xe_migrate_clear() - Copy content of TTM resources.
938  * @m: The migration context.
939  * @bo: The buffer object @dst is currently bound to.
940  * @dst: The dst TTM resource to be cleared.
941  *
942  * Clear the contents of @dst to zero. On flat CCS devices,
943  * the CCS metadata is cleared to zero as well on VRAM destinations.
944  * TODO: Eliminate the @bo argument.
945  *
946  * Return: Pointer to a dma_fence representing the last clear batch, or
947  * an error pointer on failure. If there is a failure, any clear operation
948  * started by the function call has been synced.
949  */
950 struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
951 				   struct xe_bo *bo,
952 				   struct ttm_resource *dst)
953 {
954 	bool clear_vram = mem_type_is_vram(dst->mem_type);
955 	struct xe_gt *gt = m->tile->primary_gt;
956 	struct xe_device *xe = gt_to_xe(gt);
957 	bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false;
958 	struct dma_fence *fence = NULL;
959 	u64 size = bo->size;
960 	struct xe_res_cursor src_it;
961 	struct ttm_resource *src = dst;
962 	int err;
963 	int pass = 0;
964 
965 	if (!clear_vram)
966 		xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
967 	else
968 		xe_res_first(src, 0, bo->size, &src_it);
969 
970 	while (size) {
971 		u64 clear_L0_ofs;
972 		u32 clear_L0_pt;
973 		u32 flush_flags = 0;
974 		u64 clear_L0;
975 		struct xe_sched_job *job;
976 		struct xe_bb *bb;
977 		u32 batch_size, update_idx;
978 
979 		bool usm = xe->info.has_usm;
980 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
981 
982 		clear_L0 = xe_migrate_res_sizes(m, &src_it);
983 
984 		drm_dbg(&xe->drm, "Pass %u, size: %llu\n", pass++, clear_L0);
985 
986 		/* Calculate final sizes and batch size.. */
987 		batch_size = 2 +
988 			pte_update_size(m, clear_vram, src, &src_it,
989 					&clear_L0, &clear_L0_ofs, &clear_L0_pt,
990 					clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0,
991 					avail_pts);
992 
993 		if (xe_device_has_flat_ccs(xe))
994 			batch_size += EMIT_COPY_CCS_DW;
995 
996 		/* Clear commands */
997 
998 		if (WARN_ON_ONCE(!clear_L0))
999 			break;
1000 
1001 		bb = xe_bb_new(gt, batch_size, usm);
1002 		if (IS_ERR(bb)) {
1003 			err = PTR_ERR(bb);
1004 			goto err_sync;
1005 		}
1006 
1007 		size -= clear_L0;
1008 		/* Preemption is enabled again by the ring ops. */
1009 		if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
1010 			xe_res_next(&src_it, clear_L0);
1011 		else
1012 			emit_pte(m, bb, clear_L0_pt, clear_vram, true, &src_it, clear_L0,
1013 				 dst);
1014 
1015 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1016 		update_idx = bb->len;
1017 
1018 		if (!clear_system_ccs)
1019 			emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
1020 
1021 		if (xe_device_has_flat_ccs(xe)) {
1022 			emit_copy_ccs(gt, bb, clear_L0_ofs, true,
1023 				      m->cleared_mem_ofs, false, clear_L0);
1024 			flush_flags = MI_FLUSH_DW_CCS;
1025 		}
1026 
1027 		mutex_lock(&m->job_mutex);
1028 		job = xe_bb_create_migration_job(m->q, bb,
1029 						 xe_migrate_batch_base(m, usm),
1030 						 update_idx);
1031 		if (IS_ERR(job)) {
1032 			err = PTR_ERR(job);
1033 			goto err;
1034 		}
1035 
1036 		xe_sched_job_add_migrate_flush(job, flush_flags);
1037 		if (!fence) {
1038 			/*
1039 			 * There can't be anything userspace related at this
1040 			 * point, so we just need to respect any potential move
1041 			 * fences, which are always tracked as
1042 			 * DMA_RESV_USAGE_KERNEL.
1043 			 */
1044 			err = job_add_deps(job, bo->ttm.base.resv,
1045 					   DMA_RESV_USAGE_KERNEL);
1046 			if (err)
1047 				goto err_job;
1048 		}
1049 
1050 		xe_sched_job_arm(job);
1051 		dma_fence_put(fence);
1052 		fence = dma_fence_get(&job->drm.s_fence->finished);
1053 		xe_sched_job_push(job);
1054 
1055 		dma_fence_put(m->fence);
1056 		m->fence = dma_fence_get(fence);
1057 
1058 		mutex_unlock(&m->job_mutex);
1059 
1060 		xe_bb_free(bb, fence);
1061 		continue;
1062 
1063 err_job:
1064 		xe_sched_job_put(job);
1065 err:
1066 		mutex_unlock(&m->job_mutex);
1067 		xe_bb_free(bb, NULL);
1068 err_sync:
1069 		/* Sync partial copies if any. FIXME: job_mutex? */
1070 		if (fence) {
1071 			dma_fence_wait(m->fence, false);
1072 			dma_fence_put(fence);
1073 		}
1074 
1075 		return ERR_PTR(err);
1076 	}
1077 
1078 	if (clear_system_ccs)
1079 		bo->ccs_cleared = true;
1080 
1081 	return fence;
1082 }
1083 
1084 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1085 			  const struct xe_vm_pgtable_update *update,
1086 			  struct xe_migrate_pt_update *pt_update)
1087 {
1088 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1089 	u32 chunk;
1090 	u32 ofs = update->ofs, size = update->qwords;
1091 
1092 	/*
1093 	 * If we have 512 entries (max), we would populate it ourselves,
1094 	 * and update the PDE above it to the new pointer.
1095 	 * The only time this can only happen if we have to update the top
1096 	 * PDE. This requires a BO that is almost vm->size big.
1097 	 *
1098 	 * This shouldn't be possible in practice.. might change when 16K
1099 	 * pages are used. Hence the assert.
1100 	 */
1101 	xe_tile_assert(tile, update->qwords <= 0x1ff);
1102 	if (!ppgtt_ofs)
1103 		ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1104 						xe_bo_addr(update->pt_bo, 0,
1105 							   XE_PAGE_SIZE));
1106 
1107 	do {
1108 		u64 addr = ppgtt_ofs + ofs * 8;
1109 
1110 		chunk = min(update->qwords, 0x1ffU);
1111 
1112 		/* Ensure populatefn can do memset64 by aligning bb->cs */
1113 		if (!(bb->len & 1))
1114 			bb->cs[bb->len++] = MI_NOOP;
1115 
1116 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1117 		bb->cs[bb->len++] = lower_32_bits(addr);
1118 		bb->cs[bb->len++] = upper_32_bits(addr);
1119 		ops->populate(pt_update, tile, NULL, bb->cs + bb->len, ofs, chunk,
1120 			      update);
1121 
1122 		bb->len += chunk * 2;
1123 		ofs += chunk;
1124 		size -= chunk;
1125 	} while (size);
1126 }
1127 
1128 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1129 {
1130 	return xe_vm_get(m->q->vm);
1131 }
1132 
1133 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1134 struct migrate_test_params {
1135 	struct xe_test_priv base;
1136 	bool force_gpu;
1137 };
1138 
1139 #define to_migrate_test_params(_priv) \
1140 	container_of(_priv, struct migrate_test_params, base)
1141 #endif
1142 
1143 static struct dma_fence *
1144 xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1145 			       struct xe_vm *vm, struct xe_bo *bo,
1146 			       const struct  xe_vm_pgtable_update *updates,
1147 			       u32 num_updates, bool wait_vm,
1148 			       struct xe_migrate_pt_update *pt_update)
1149 {
1150 	XE_TEST_DECLARE(struct migrate_test_params *test =
1151 			to_migrate_test_params
1152 			(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1153 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1154 	struct dma_fence *fence;
1155 	int err;
1156 	u32 i;
1157 
1158 	if (XE_TEST_ONLY(test && test->force_gpu))
1159 		return ERR_PTR(-ETIME);
1160 
1161 	if (bo && !dma_resv_test_signaled(bo->ttm.base.resv,
1162 					  DMA_RESV_USAGE_KERNEL))
1163 		return ERR_PTR(-ETIME);
1164 
1165 	if (wait_vm && !dma_resv_test_signaled(xe_vm_resv(vm),
1166 					       DMA_RESV_USAGE_BOOKKEEP))
1167 		return ERR_PTR(-ETIME);
1168 
1169 	if (ops->pre_commit) {
1170 		pt_update->job = NULL;
1171 		err = ops->pre_commit(pt_update);
1172 		if (err)
1173 			return ERR_PTR(err);
1174 	}
1175 	for (i = 0; i < num_updates; i++) {
1176 		const struct xe_vm_pgtable_update *update = &updates[i];
1177 
1178 		ops->populate(pt_update, m->tile, &update->pt_bo->vmap, NULL,
1179 			      update->ofs, update->qwords, update);
1180 	}
1181 
1182 	if (vm) {
1183 		trace_xe_vm_cpu_bind(vm);
1184 		xe_device_wmb(vm->xe);
1185 	}
1186 
1187 	fence = dma_fence_get_stub();
1188 
1189 	return fence;
1190 }
1191 
1192 static bool no_in_syncs(struct xe_vm *vm, struct xe_exec_queue *q,
1193 			struct xe_sync_entry *syncs, u32 num_syncs)
1194 {
1195 	struct dma_fence *fence;
1196 	int i;
1197 
1198 	for (i = 0; i < num_syncs; i++) {
1199 		fence = syncs[i].fence;
1200 
1201 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1202 				       &fence->flags))
1203 			return false;
1204 	}
1205 	if (q) {
1206 		fence = xe_exec_queue_last_fence_get(q, vm);
1207 		if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1208 			return false;
1209 	}
1210 
1211 	return true;
1212 }
1213 
1214 /**
1215  * xe_migrate_update_pgtables() - Pipelined page-table update
1216  * @m: The migrate context.
1217  * @vm: The vm we'll be updating.
1218  * @bo: The bo whose dma-resv we will await before updating, or NULL if userptr.
1219  * @q: The exec queue to be used for the update or NULL if the default
1220  * migration engine is to be used.
1221  * @updates: An array of update descriptors.
1222  * @num_updates: Number of descriptors in @updates.
1223  * @syncs: Array of xe_sync_entry to await before updating. Note that waits
1224  * will block the engine timeline.
1225  * @num_syncs: Number of entries in @syncs.
1226  * @pt_update: Pointer to a struct xe_migrate_pt_update, which contains
1227  * pointers to callback functions and, if subclassed, private arguments to
1228  * those.
1229  *
1230  * Perform a pipelined page-table update. The update descriptors are typically
1231  * built under the same lock critical section as a call to this function. If
1232  * using the default engine for the updates, they will be performed in the
1233  * order they grab the job_mutex. If different engines are used, external
1234  * synchronization is needed for overlapping updates to maintain page-table
1235  * consistency. Note that the meaing of "overlapping" is that the updates
1236  * touch the same page-table, which might be a higher-level page-directory.
1237  * If no pipelining is needed, then updates may be performed by the cpu.
1238  *
1239  * Return: A dma_fence that, when signaled, indicates the update completion.
1240  */
1241 struct dma_fence *
1242 xe_migrate_update_pgtables(struct xe_migrate *m,
1243 			   struct xe_vm *vm,
1244 			   struct xe_bo *bo,
1245 			   struct xe_exec_queue *q,
1246 			   const struct xe_vm_pgtable_update *updates,
1247 			   u32 num_updates,
1248 			   struct xe_sync_entry *syncs, u32 num_syncs,
1249 			   struct xe_migrate_pt_update *pt_update)
1250 {
1251 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1252 	struct xe_tile *tile = m->tile;
1253 	struct xe_gt *gt = tile->primary_gt;
1254 	struct xe_device *xe = tile_to_xe(tile);
1255 	struct xe_sched_job *job;
1256 	struct dma_fence *fence;
1257 	struct drm_suballoc *sa_bo = NULL;
1258 	struct xe_vma *vma = pt_update->vma;
1259 	struct xe_bb *bb;
1260 	u32 i, batch_size, ppgtt_ofs, update_idx, page_ofs = 0;
1261 	u64 addr;
1262 	int err = 0;
1263 	bool usm = !q && xe->info.has_usm;
1264 	bool first_munmap_rebind = vma &&
1265 		vma->gpuva.flags & XE_VMA_FIRST_REBIND;
1266 	struct xe_exec_queue *q_override = !q ? m->q : q;
1267 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
1268 
1269 	/* Use the CPU if no in syncs and engine is idle */
1270 	if (no_in_syncs(vm, q, syncs, num_syncs) && xe_exec_queue_is_idle(q_override)) {
1271 		fence =  xe_migrate_update_pgtables_cpu(m, vm, bo, updates,
1272 							num_updates,
1273 							first_munmap_rebind,
1274 							pt_update);
1275 		if (!IS_ERR(fence) || fence == ERR_PTR(-EAGAIN))
1276 			return fence;
1277 	}
1278 
1279 	/* fixed + PTE entries */
1280 	if (IS_DGFX(xe))
1281 		batch_size = 2;
1282 	else
1283 		batch_size = 6 + num_updates * 2;
1284 
1285 	for (i = 0; i < num_updates; i++) {
1286 		u32 num_cmds = DIV_ROUND_UP(updates[i].qwords, 0x1ff);
1287 
1288 		/* align noop + MI_STORE_DATA_IMM cmd prefix */
1289 		batch_size += 4 * num_cmds + updates[i].qwords * 2;
1290 	}
1291 
1292 	/*
1293 	 * XXX: Create temp bo to copy from, if batch_size becomes too big?
1294 	 *
1295 	 * Worst case: Sum(2 * (each lower level page size) + (top level page size))
1296 	 * Should be reasonably bound..
1297 	 */
1298 	xe_tile_assert(tile, batch_size < SZ_128K);
1299 
1300 	bb = xe_bb_new(gt, batch_size, !q && xe->info.has_usm);
1301 	if (IS_ERR(bb))
1302 		return ERR_CAST(bb);
1303 
1304 	/* For sysmem PTE's, need to map them in our hole.. */
1305 	if (!IS_DGFX(xe)) {
1306 		ppgtt_ofs = NUM_KERNEL_PDE - 1;
1307 		if (q) {
1308 			xe_tile_assert(tile, num_updates <= NUM_VMUSA_WRITES_PER_UNIT);
1309 
1310 			sa_bo = drm_suballoc_new(&m->vm_update_sa, 1,
1311 						 GFP_KERNEL, true, 0);
1312 			if (IS_ERR(sa_bo)) {
1313 				err = PTR_ERR(sa_bo);
1314 				goto err;
1315 			}
1316 
1317 			ppgtt_ofs = NUM_KERNEL_PDE +
1318 				(drm_suballoc_soffset(sa_bo) /
1319 				 NUM_VMUSA_UNIT_PER_PAGE);
1320 			page_ofs = (drm_suballoc_soffset(sa_bo) %
1321 				    NUM_VMUSA_UNIT_PER_PAGE) *
1322 				VM_SA_UPDATE_UNIT_SIZE;
1323 		}
1324 
1325 		/* Map our PT's to gtt */
1326 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(num_updates);
1327 		bb->cs[bb->len++] = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1328 		bb->cs[bb->len++] = 0; /* upper_32_bits */
1329 
1330 		for (i = 0; i < num_updates; i++) {
1331 			struct xe_bo *pt_bo = updates[i].pt_bo;
1332 
1333 			xe_tile_assert(tile, pt_bo->size == SZ_4K);
1334 
1335 			addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, pat_index, 0);
1336 			bb->cs[bb->len++] = lower_32_bits(addr);
1337 			bb->cs[bb->len++] = upper_32_bits(addr);
1338 		}
1339 
1340 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1341 		update_idx = bb->len;
1342 
1343 		addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1344 			(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1345 		for (i = 0; i < num_updates; i++)
1346 			write_pgtable(tile, bb, addr + i * XE_PAGE_SIZE,
1347 				      &updates[i], pt_update);
1348 	} else {
1349 		/* phys pages, no preamble required */
1350 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1351 		update_idx = bb->len;
1352 
1353 		for (i = 0; i < num_updates; i++)
1354 			write_pgtable(tile, bb, 0, &updates[i], pt_update);
1355 	}
1356 
1357 	if (!q)
1358 		mutex_lock(&m->job_mutex);
1359 
1360 	job = xe_bb_create_migration_job(q ?: m->q, bb,
1361 					 xe_migrate_batch_base(m, usm),
1362 					 update_idx);
1363 	if (IS_ERR(job)) {
1364 		err = PTR_ERR(job);
1365 		goto err_bb;
1366 	}
1367 
1368 	/* Wait on BO move */
1369 	if (bo) {
1370 		err = job_add_deps(job, bo->ttm.base.resv,
1371 				   DMA_RESV_USAGE_KERNEL);
1372 		if (err)
1373 			goto err_job;
1374 	}
1375 
1376 	/*
1377 	 * Munmap style VM unbind, need to wait for all jobs to be complete /
1378 	 * trigger preempts before moving forward
1379 	 */
1380 	if (first_munmap_rebind) {
1381 		err = job_add_deps(job, xe_vm_resv(vm),
1382 				   DMA_RESV_USAGE_BOOKKEEP);
1383 		if (err)
1384 			goto err_job;
1385 	}
1386 
1387 	err = xe_sched_job_last_fence_add_dep(job, vm);
1388 	for (i = 0; !err && i < num_syncs; i++)
1389 		err = xe_sync_entry_add_deps(&syncs[i], job);
1390 
1391 	if (err)
1392 		goto err_job;
1393 
1394 	if (ops->pre_commit) {
1395 		pt_update->job = job;
1396 		err = ops->pre_commit(pt_update);
1397 		if (err)
1398 			goto err_job;
1399 	}
1400 	xe_sched_job_arm(job);
1401 	fence = dma_fence_get(&job->drm.s_fence->finished);
1402 	xe_sched_job_push(job);
1403 
1404 	if (!q)
1405 		mutex_unlock(&m->job_mutex);
1406 
1407 	xe_bb_free(bb, fence);
1408 	drm_suballoc_free(sa_bo, fence);
1409 
1410 	return fence;
1411 
1412 err_job:
1413 	xe_sched_job_put(job);
1414 err_bb:
1415 	if (!q)
1416 		mutex_unlock(&m->job_mutex);
1417 	xe_bb_free(bb, NULL);
1418 err:
1419 	drm_suballoc_free(sa_bo, NULL);
1420 	return ERR_PTR(err);
1421 }
1422 
1423 /**
1424  * xe_migrate_wait() - Complete all operations using the xe_migrate context
1425  * @m: Migrate context to wait for.
1426  *
1427  * Waits until the GPU no longer uses the migrate context's default engine
1428  * or its page-table objects. FIXME: What about separate page-table update
1429  * engines?
1430  */
1431 void xe_migrate_wait(struct xe_migrate *m)
1432 {
1433 	if (m->fence)
1434 		dma_fence_wait(m->fence, false);
1435 }
1436 
1437 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1438 #include "tests/xe_migrate.c"
1439 #endif
1440