1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include "xe_migrate.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/sizes.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/ttm/ttm_tt.h> 13 #include <uapi/drm/xe_drm.h> 14 15 #include <generated/xe_wa_oob.h> 16 17 #include "instructions/xe_gpu_commands.h" 18 #include "instructions/xe_mi_commands.h" 19 #include "regs/xe_gtt_defs.h" 20 #include "tests/xe_test.h" 21 #include "xe_assert.h" 22 #include "xe_bb.h" 23 #include "xe_bo.h" 24 #include "xe_exec_queue.h" 25 #include "xe_ggtt.h" 26 #include "xe_gt.h" 27 #include "xe_hw_engine.h" 28 #include "xe_lrc.h" 29 #include "xe_map.h" 30 #include "xe_mocs.h" 31 #include "xe_pt.h" 32 #include "xe_res_cursor.h" 33 #include "xe_sched_job.h" 34 #include "xe_sync.h" 35 #include "xe_trace_bo.h" 36 #include "xe_vm.h" 37 38 /** 39 * struct xe_migrate - migrate context. 40 */ 41 struct xe_migrate { 42 /** @q: Default exec queue used for migration */ 43 struct xe_exec_queue *q; 44 /** @tile: Backpointer to the tile this struct xe_migrate belongs to. */ 45 struct xe_tile *tile; 46 /** @job_mutex: Timeline mutex for @eng. */ 47 struct mutex job_mutex; 48 /** @pt_bo: Page-table buffer object. */ 49 struct xe_bo *pt_bo; 50 /** @batch_base_ofs: VM offset of the migration batch buffer */ 51 u64 batch_base_ofs; 52 /** @usm_batch_base_ofs: VM offset of the usm batch buffer */ 53 u64 usm_batch_base_ofs; 54 /** @cleared_mem_ofs: VM offset of @cleared_bo. */ 55 u64 cleared_mem_ofs; 56 /** 57 * @fence: dma-fence representing the last migration job batch. 58 * Protected by @job_mutex. 59 */ 60 struct dma_fence *fence; 61 /** 62 * @vm_update_sa: For integrated, used to suballocate page-tables 63 * out of the pt_bo. 64 */ 65 struct drm_suballoc_manager vm_update_sa; 66 /** @min_chunk_size: For dgfx, Minimum chunk size */ 67 u64 min_chunk_size; 68 }; 69 70 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */ 71 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */ 72 #define NUM_KERNEL_PDE 15 73 #define NUM_PT_SLOTS 32 74 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M 75 #define MAX_NUM_PTE 512 76 #define IDENTITY_OFFSET 256ULL 77 78 /* 79 * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest 80 * legal value accepted. Since that instruction field is always stored in 81 * (val-2) format, this translates to 0x400 dwords for the true maximum length 82 * of the instruction. Subtracting the instruction header (1 dword) and 83 * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values. 84 */ 85 #define MAX_PTE_PER_SDI 0x1FEU 86 87 /** 88 * xe_tile_migrate_exec_queue() - Get this tile's migrate exec queue. 89 * @tile: The tile. 90 * 91 * Returns the default migrate exec queue of this tile. 92 * 93 * Return: The default migrate exec queue 94 */ 95 struct xe_exec_queue *xe_tile_migrate_exec_queue(struct xe_tile *tile) 96 { 97 return tile->migrate->q; 98 } 99 100 static void xe_migrate_fini(void *arg) 101 { 102 struct xe_migrate *m = arg; 103 104 xe_vm_lock(m->q->vm, false); 105 xe_bo_unpin(m->pt_bo); 106 xe_vm_unlock(m->q->vm); 107 108 dma_fence_put(m->fence); 109 xe_bo_put(m->pt_bo); 110 drm_suballoc_manager_fini(&m->vm_update_sa); 111 mutex_destroy(&m->job_mutex); 112 xe_vm_close_and_put(m->q->vm); 113 xe_exec_queue_put(m->q); 114 } 115 116 static u64 xe_migrate_vm_addr(u64 slot, u32 level) 117 { 118 XE_WARN_ON(slot >= NUM_PT_SLOTS); 119 120 /* First slot is reserved for mapping of PT bo and bb, start from 1 */ 121 return (slot + 1ULL) << xe_pt_shift(level + 1); 122 } 123 124 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte) 125 { 126 /* 127 * Remove the DPA to get a correct offset into identity table for the 128 * migrate offset 129 */ 130 u64 identity_offset = IDENTITY_OFFSET; 131 132 if (GRAPHICS_VER(xe) >= 20 && is_comp_pte) 133 identity_offset += DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G); 134 135 addr -= xe->mem.vram.dpa_base; 136 return addr + (identity_offset << xe_pt_shift(2)); 137 } 138 139 static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo, 140 u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs) 141 { 142 u64 pos, ofs, flags; 143 u64 entry; 144 /* XXX: Unclear if this should be usable_size? */ 145 u64 vram_limit = xe->mem.vram.actual_physical_size + 146 xe->mem.vram.dpa_base; 147 u32 level = 2; 148 149 ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8; 150 flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, 151 true, 0); 152 153 xe_assert(xe, IS_ALIGNED(xe->mem.vram.usable_size, SZ_2M)); 154 155 /* 156 * Use 1GB pages when possible, last chunk always use 2M 157 * pages as mixing reserved memory (stolen, WOCPM) with a single 158 * mapping is not allowed on certain platforms. 159 */ 160 for (pos = xe->mem.vram.dpa_base; pos < vram_limit; 161 pos += SZ_1G, ofs += 8) { 162 if (pos + SZ_1G >= vram_limit) { 163 entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs, 164 pat_index); 165 xe_map_wr(xe, &bo->vmap, ofs, u64, entry); 166 167 flags = vm->pt_ops->pte_encode_addr(xe, 0, 168 pat_index, 169 level - 1, 170 true, 0); 171 172 for (ofs = pt_2m_ofs; pos < vram_limit; 173 pos += SZ_2M, ofs += 8) 174 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); 175 break; /* Ensure pos == vram_limit assert correct */ 176 } 177 178 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); 179 } 180 181 xe_assert(xe, pos == vram_limit); 182 } 183 184 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, 185 struct xe_vm *vm) 186 { 187 struct xe_device *xe = tile_to_xe(tile); 188 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 189 u8 id = tile->id; 190 u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level; 191 #define VRAM_IDENTITY_MAP_COUNT 2 192 u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT; 193 #undef VRAM_IDENTITY_MAP_COUNT 194 u32 map_ofs, level, i; 195 struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo; 196 u64 entry, pt29_ofs; 197 198 /* Can't bump NUM_PT_SLOTS too high */ 199 BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE); 200 /* Must be a multiple of 64K to support all platforms */ 201 BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K); 202 /* And one slot reserved for the 4KiB page table updates */ 203 BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1)); 204 205 /* Need to be sure everything fits in the first PT, or create more */ 206 xe_tile_assert(tile, m->batch_base_ofs + xe_bo_size(batch) < SZ_2M); 207 208 bo = xe_bo_create_pin_map(vm->xe, tile, vm, 209 num_entries * XE_PAGE_SIZE, 210 ttm_bo_type_kernel, 211 XE_BO_FLAG_VRAM_IF_DGFX(tile) | 212 XE_BO_FLAG_PAGETABLE); 213 if (IS_ERR(bo)) 214 return PTR_ERR(bo); 215 216 /* PT30 & PT31 reserved for 2M identity map */ 217 pt29_ofs = xe_bo_size(bo) - 3 * XE_PAGE_SIZE; 218 entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs, pat_index); 219 xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry); 220 221 map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE; 222 223 /* Map the entire BO in our level 0 pt */ 224 for (i = 0, level = 0; i < num_entries; level++) { 225 entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE, 226 pat_index, 0); 227 228 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry); 229 230 if (vm->flags & XE_VM_FLAG_64K) 231 i += 16; 232 else 233 i += 1; 234 } 235 236 if (!IS_DGFX(xe)) { 237 /* Write out batch too */ 238 m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE; 239 for (i = 0; i < xe_bo_size(batch); 240 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : 241 XE_PAGE_SIZE) { 242 entry = vm->pt_ops->pte_encode_bo(batch, i, 243 pat_index, 0); 244 245 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, 246 entry); 247 level++; 248 } 249 if (xe->info.has_usm) { 250 xe_tile_assert(tile, xe_bo_size(batch) == SZ_1M); 251 252 batch = tile->primary_gt->usm.bb_pool->bo; 253 m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M; 254 xe_tile_assert(tile, xe_bo_size(batch) == SZ_512K); 255 256 for (i = 0; i < xe_bo_size(batch); 257 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : 258 XE_PAGE_SIZE) { 259 entry = vm->pt_ops->pte_encode_bo(batch, i, 260 pat_index, 0); 261 262 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, 263 entry); 264 level++; 265 } 266 } 267 } else { 268 u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); 269 270 m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false); 271 272 if (xe->info.has_usm) { 273 batch = tile->primary_gt->usm.bb_pool->bo; 274 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); 275 m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false); 276 } 277 } 278 279 for (level = 1; level < num_level; level++) { 280 u32 flags = 0; 281 282 if (vm->flags & XE_VM_FLAG_64K && level == 1) 283 flags = XE_PDE_64K; 284 285 entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) * 286 XE_PAGE_SIZE, pat_index); 287 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64, 288 entry | flags); 289 } 290 291 /* Write PDE's that point to our BO. */ 292 for (i = 0; i < map_ofs / PAGE_SIZE; i++) { 293 entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE, 294 pat_index); 295 296 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE + 297 (i + 1) * 8, u64, entry); 298 } 299 300 /* Set up a 1GiB NULL mapping at 255GiB offset. */ 301 level = 2; 302 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64, 303 vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) 304 | XE_PTE_NULL); 305 m->cleared_mem_ofs = (255ULL << xe_pt_shift(level)); 306 307 /* Identity map the entire vram at 256GiB offset */ 308 if (IS_DGFX(xe)) { 309 u64 pt30_ofs = xe_bo_size(bo) - 2 * XE_PAGE_SIZE; 310 311 xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET, 312 pat_index, pt30_ofs); 313 xe_assert(xe, xe->mem.vram.actual_physical_size <= 314 (MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G); 315 316 /* 317 * Identity map the entire vram for compressed pat_index for xe2+ 318 * if flat ccs is enabled. 319 */ 320 if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) { 321 u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION]; 322 u64 vram_offset = IDENTITY_OFFSET + 323 DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G); 324 u64 pt31_ofs = xe_bo_size(bo) - XE_PAGE_SIZE; 325 326 xe_assert(xe, xe->mem.vram.actual_physical_size <= (MAX_NUM_PTE - 327 IDENTITY_OFFSET - IDENTITY_OFFSET / 2) * SZ_1G); 328 xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset, 329 comp_pat_index, pt31_ofs); 330 } 331 } 332 333 /* 334 * Example layout created above, with root level = 3: 335 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's 336 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's 337 * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's 338 * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map] 339 * 340 * This makes the lowest part of the VM point to the pagetables. 341 * Hence the lowest 2M in the vm should point to itself, with a few writes 342 * and flushes, other parts of the VM can be used either for copying and 343 * clearing. 344 * 345 * For performance, the kernel reserves PDE's, so about 20 are left 346 * for async VM updates. 347 * 348 * To make it easier to work, each scratch PT is put in slot (1 + PT #) 349 * everywhere, this allows lockless updates to scratch pages by using 350 * the different addresses in VM. 351 */ 352 #define NUM_VMUSA_UNIT_PER_PAGE 32 353 #define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE) 354 #define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64)) 355 drm_suballoc_manager_init(&m->vm_update_sa, 356 (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) * 357 NUM_VMUSA_UNIT_PER_PAGE, 0); 358 359 m->pt_bo = bo; 360 return 0; 361 } 362 363 /* 364 * Including the reserved copy engine is required to avoid deadlocks due to 365 * migrate jobs servicing the faults gets stuck behind the job that faulted. 366 */ 367 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt) 368 { 369 u32 logical_mask = 0; 370 struct xe_hw_engine *hwe; 371 enum xe_hw_engine_id id; 372 373 for_each_hw_engine(hwe, gt, id) { 374 if (hwe->class != XE_ENGINE_CLASS_COPY) 375 continue; 376 377 if (xe_gt_is_usm_hwe(gt, hwe)) 378 logical_mask |= BIT(hwe->logical_instance); 379 } 380 381 return logical_mask; 382 } 383 384 static bool xe_migrate_needs_ccs_emit(struct xe_device *xe) 385 { 386 return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)); 387 } 388 389 /** 390 * xe_migrate_init() - Initialize a migrate context 391 * @tile: Back-pointer to the tile we're initializing for. 392 * 393 * Return: Pointer to a migrate context on success. Error pointer on error. 394 */ 395 struct xe_migrate *xe_migrate_init(struct xe_tile *tile) 396 { 397 struct xe_device *xe = tile_to_xe(tile); 398 struct xe_gt *primary_gt = tile->primary_gt; 399 struct xe_migrate *m; 400 struct xe_vm *vm; 401 int err; 402 403 m = devm_kzalloc(xe->drm.dev, sizeof(*m), GFP_KERNEL); 404 if (!m) 405 return ERR_PTR(-ENOMEM); 406 407 m->tile = tile; 408 409 /* Special layout, prepared below.. */ 410 vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION | 411 XE_VM_FLAG_SET_TILE_ID(tile)); 412 if (IS_ERR(vm)) 413 return ERR_CAST(vm); 414 415 xe_vm_lock(vm, false); 416 err = xe_migrate_prepare_vm(tile, m, vm); 417 xe_vm_unlock(vm); 418 if (err) { 419 xe_vm_close_and_put(vm); 420 return ERR_PTR(err); 421 } 422 423 if (xe->info.has_usm) { 424 struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt, 425 XE_ENGINE_CLASS_COPY, 426 primary_gt->usm.reserved_bcs_instance, 427 false); 428 u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt); 429 430 if (!hwe || !logical_mask) 431 return ERR_PTR(-EINVAL); 432 433 /* 434 * XXX: Currently only reserving 1 (likely slow) BCS instance on 435 * PVC, may want to revisit if performance is needed. 436 */ 437 m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe, 438 EXEC_QUEUE_FLAG_KERNEL | 439 EXEC_QUEUE_FLAG_PERMANENT | 440 EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0); 441 } else { 442 m->q = xe_exec_queue_create_class(xe, primary_gt, vm, 443 XE_ENGINE_CLASS_COPY, 444 EXEC_QUEUE_FLAG_KERNEL | 445 EXEC_QUEUE_FLAG_PERMANENT, 0); 446 } 447 if (IS_ERR(m->q)) { 448 xe_vm_close_and_put(vm); 449 return ERR_CAST(m->q); 450 } 451 452 mutex_init(&m->job_mutex); 453 fs_reclaim_acquire(GFP_KERNEL); 454 might_lock(&m->job_mutex); 455 fs_reclaim_release(GFP_KERNEL); 456 457 err = devm_add_action_or_reset(xe->drm.dev, xe_migrate_fini, m); 458 if (err) 459 return ERR_PTR(err); 460 461 if (IS_DGFX(xe)) { 462 if (xe_migrate_needs_ccs_emit(xe)) 463 /* min chunk size corresponds to 4K of CCS Metadata */ 464 m->min_chunk_size = SZ_4K * SZ_64K / 465 xe_device_ccs_bytes(xe, SZ_64K); 466 else 467 /* Somewhat arbitrary to avoid a huge amount of blits */ 468 m->min_chunk_size = SZ_64K; 469 m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size); 470 drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n", 471 (unsigned long long)m->min_chunk_size); 472 } 473 474 return m; 475 } 476 477 static u64 max_mem_transfer_per_pass(struct xe_device *xe) 478 { 479 if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe)) 480 return MAX_CCS_LIMITED_TRANSFER; 481 482 return MAX_PREEMPTDISABLE_TRANSFER; 483 } 484 485 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur) 486 { 487 struct xe_device *xe = tile_to_xe(m->tile); 488 u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining); 489 490 if (mem_type_is_vram(cur->mem_type)) { 491 /* 492 * VRAM we want to blit in chunks with sizes aligned to 493 * min_chunk_size in order for the offset to CCS metadata to be 494 * page-aligned. If it's the last chunk it may be smaller. 495 * 496 * Another constraint is that we need to limit the blit to 497 * the VRAM block size, unless size is smaller than 498 * min_chunk_size. 499 */ 500 u64 chunk = max_t(u64, cur->size, m->min_chunk_size); 501 502 size = min_t(u64, size, chunk); 503 if (size > m->min_chunk_size) 504 size = round_down(size, m->min_chunk_size); 505 } 506 507 return size; 508 } 509 510 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur) 511 { 512 /* If the chunk is not fragmented, allow identity map. */ 513 return cur->size >= size; 514 } 515 516 #define PTE_UPDATE_FLAG_IS_VRAM BIT(0) 517 #define PTE_UPDATE_FLAG_IS_COMP_PTE BIT(1) 518 519 static u32 pte_update_size(struct xe_migrate *m, 520 u32 flags, 521 struct ttm_resource *res, 522 struct xe_res_cursor *cur, 523 u64 *L0, u64 *L0_ofs, u32 *L0_pt, 524 u32 cmd_size, u32 pt_ofs, u32 avail_pts) 525 { 526 u32 cmds = 0; 527 bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags; 528 bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags; 529 530 *L0_pt = pt_ofs; 531 if (is_vram && xe_migrate_allow_identity(*L0, cur)) { 532 /* Offset into identity map. */ 533 *L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile), 534 cur->start + vram_region_gpu_offset(res), 535 is_comp_pte); 536 cmds += cmd_size; 537 } else { 538 /* Clip L0 to available size */ 539 u64 size = min(*L0, (u64)avail_pts * SZ_2M); 540 u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT; 541 542 *L0 = size; 543 *L0_ofs = xe_migrate_vm_addr(pt_ofs, 0); 544 545 /* MI_STORE_DATA_IMM */ 546 cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI); 547 548 /* PDE qwords */ 549 cmds += num_4k_pages * 2; 550 551 /* Each chunk has a single blit command */ 552 cmds += cmd_size; 553 } 554 555 return cmds; 556 } 557 558 static void emit_pte(struct xe_migrate *m, 559 struct xe_bb *bb, u32 at_pt, 560 bool is_vram, bool is_comp_pte, 561 struct xe_res_cursor *cur, 562 u32 size, struct ttm_resource *res) 563 { 564 struct xe_device *xe = tile_to_xe(m->tile); 565 struct xe_vm *vm = m->q->vm; 566 u16 pat_index; 567 u32 ptes; 568 u64 ofs = (u64)at_pt * XE_PAGE_SIZE; 569 u64 cur_ofs; 570 571 /* Indirect access needs compression enabled uncached PAT index */ 572 if (GRAPHICS_VERx100(xe) >= 2000) 573 pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] : 574 xe->pat.idx[XE_CACHE_WB]; 575 else 576 pat_index = xe->pat.idx[XE_CACHE_WB]; 577 578 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE); 579 580 while (ptes) { 581 u32 chunk = min(MAX_PTE_PER_SDI, ptes); 582 583 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 584 bb->cs[bb->len++] = ofs; 585 bb->cs[bb->len++] = 0; 586 587 cur_ofs = ofs; 588 ofs += chunk * 8; 589 ptes -= chunk; 590 591 while (chunk--) { 592 u64 addr, flags = 0; 593 bool devmem = false; 594 595 addr = xe_res_dma(cur) & PAGE_MASK; 596 if (is_vram) { 597 if (vm->flags & XE_VM_FLAG_64K) { 598 u64 va = cur_ofs * XE_PAGE_SIZE / 8; 599 600 xe_assert(xe, (va & (SZ_64K - 1)) == 601 (addr & (SZ_64K - 1))); 602 603 flags |= XE_PTE_PS64; 604 } 605 606 addr += vram_region_gpu_offset(res); 607 devmem = true; 608 } 609 610 addr = vm->pt_ops->pte_encode_addr(m->tile->xe, 611 addr, pat_index, 612 0, devmem, flags); 613 bb->cs[bb->len++] = lower_32_bits(addr); 614 bb->cs[bb->len++] = upper_32_bits(addr); 615 616 xe_res_next(cur, min_t(u32, size, PAGE_SIZE)); 617 cur_ofs += 8; 618 } 619 } 620 } 621 622 #define EMIT_COPY_CCS_DW 5 623 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb, 624 u64 dst_ofs, bool dst_is_indirect, 625 u64 src_ofs, bool src_is_indirect, 626 u32 size) 627 { 628 struct xe_device *xe = gt_to_xe(gt); 629 u32 *cs = bb->cs + bb->len; 630 u32 num_ccs_blks; 631 u32 num_pages; 632 u32 ccs_copy_size; 633 u32 mocs; 634 635 if (GRAPHICS_VERx100(xe) >= 2000) { 636 num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE); 637 xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1)); 638 639 ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1); 640 mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index); 641 642 } else { 643 num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size), 644 NUM_CCS_BYTES_PER_BLOCK); 645 xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1)); 646 647 ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1); 648 mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index); 649 } 650 651 *cs++ = XY_CTRL_SURF_COPY_BLT | 652 (src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT | 653 (dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT | 654 ccs_copy_size; 655 *cs++ = lower_32_bits(src_ofs); 656 *cs++ = upper_32_bits(src_ofs) | mocs; 657 *cs++ = lower_32_bits(dst_ofs); 658 *cs++ = upper_32_bits(dst_ofs) | mocs; 659 660 bb->len = cs - bb->cs; 661 } 662 663 #define EMIT_COPY_DW 10 664 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb, 665 u64 src_ofs, u64 dst_ofs, unsigned int size, 666 unsigned int pitch) 667 { 668 struct xe_device *xe = gt_to_xe(gt); 669 u32 mocs = 0; 670 u32 tile_y = 0; 671 672 xe_gt_assert(gt, !(pitch & 3)); 673 xe_gt_assert(gt, size / pitch <= S16_MAX); 674 xe_gt_assert(gt, pitch / 4 <= S16_MAX); 675 xe_gt_assert(gt, pitch <= U16_MAX); 676 677 if (GRAPHICS_VER(xe) >= 20) 678 mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index); 679 680 if (GRAPHICS_VERx100(xe) >= 1250) 681 tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4; 682 683 bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2); 684 bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs; 685 bb->cs[bb->len++] = 0; 686 bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4; 687 bb->cs[bb->len++] = lower_32_bits(dst_ofs); 688 bb->cs[bb->len++] = upper_32_bits(dst_ofs); 689 bb->cs[bb->len++] = 0; 690 bb->cs[bb->len++] = pitch | mocs; 691 bb->cs[bb->len++] = lower_32_bits(src_ofs); 692 bb->cs[bb->len++] = upper_32_bits(src_ofs); 693 } 694 695 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm) 696 { 697 return usm ? m->usm_batch_base_ofs : m->batch_base_ofs; 698 } 699 700 static u32 xe_migrate_ccs_copy(struct xe_migrate *m, 701 struct xe_bb *bb, 702 u64 src_ofs, bool src_is_indirect, 703 u64 dst_ofs, bool dst_is_indirect, u32 dst_size, 704 u64 ccs_ofs, bool copy_ccs) 705 { 706 struct xe_gt *gt = m->tile->primary_gt; 707 u32 flush_flags = 0; 708 709 if (!copy_ccs && dst_is_indirect) { 710 /* 711 * If the src is already in vram, then it should already 712 * have been cleared by us, or has been populated by the 713 * user. Make sure we copy the CCS aux state as-is. 714 * 715 * Otherwise if the bo doesn't have any CCS metadata attached, 716 * we still need to clear it for security reasons. 717 */ 718 u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs; 719 720 emit_copy_ccs(gt, bb, 721 dst_ofs, true, 722 ccs_src_ofs, src_is_indirect, dst_size); 723 724 flush_flags = MI_FLUSH_DW_CCS; 725 } else if (copy_ccs) { 726 if (!src_is_indirect) 727 src_ofs = ccs_ofs; 728 else if (!dst_is_indirect) 729 dst_ofs = ccs_ofs; 730 731 xe_gt_assert(gt, src_is_indirect || dst_is_indirect); 732 733 emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs, 734 src_is_indirect, dst_size); 735 if (dst_is_indirect) 736 flush_flags = MI_FLUSH_DW_CCS; 737 } 738 739 return flush_flags; 740 } 741 742 /** 743 * xe_migrate_copy() - Copy content of TTM resources. 744 * @m: The migration context. 745 * @src_bo: The buffer object @src is currently bound to. 746 * @dst_bo: If copying between resources created for the same bo, set this to 747 * the same value as @src_bo. If copying between buffer objects, set it to 748 * the buffer object @dst is currently bound to. 749 * @src: The source TTM resource. 750 * @dst: The dst TTM resource. 751 * @copy_only_ccs: If true copy only CCS metadata 752 * 753 * Copies the contents of @src to @dst: On flat CCS devices, 754 * the CCS metadata is copied as well if needed, or if not present, 755 * the CCS metadata of @dst is cleared for security reasons. 756 * 757 * Return: Pointer to a dma_fence representing the last copy batch, or 758 * an error pointer on failure. If there is a failure, any copy operation 759 * started by the function call has been synced. 760 */ 761 struct dma_fence *xe_migrate_copy(struct xe_migrate *m, 762 struct xe_bo *src_bo, 763 struct xe_bo *dst_bo, 764 struct ttm_resource *src, 765 struct ttm_resource *dst, 766 bool copy_only_ccs) 767 { 768 struct xe_gt *gt = m->tile->primary_gt; 769 struct xe_device *xe = gt_to_xe(gt); 770 struct dma_fence *fence = NULL; 771 u64 size = xe_bo_size(src_bo); 772 struct xe_res_cursor src_it, dst_it, ccs_it; 773 u64 src_L0_ofs, dst_L0_ofs; 774 u32 src_L0_pt, dst_L0_pt; 775 u64 src_L0, dst_L0; 776 int pass = 0; 777 int err; 778 bool src_is_pltt = src->mem_type == XE_PL_TT; 779 bool dst_is_pltt = dst->mem_type == XE_PL_TT; 780 bool src_is_vram = mem_type_is_vram(src->mem_type); 781 bool dst_is_vram = mem_type_is_vram(dst->mem_type); 782 bool type_device = src_bo->ttm.type == ttm_bo_type_device; 783 bool needs_ccs_emit = type_device && xe_migrate_needs_ccs_emit(xe); 784 bool copy_ccs = xe_device_has_flat_ccs(xe) && 785 xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo); 786 bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram); 787 bool use_comp_pat = type_device && xe_device_has_flat_ccs(xe) && 788 GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram; 789 790 /* Copying CCS between two different BOs is not supported yet. */ 791 if (XE_WARN_ON(copy_ccs && src_bo != dst_bo)) 792 return ERR_PTR(-EINVAL); 793 794 if (src_bo != dst_bo && XE_WARN_ON(xe_bo_size(src_bo) != xe_bo_size(dst_bo))) 795 return ERR_PTR(-EINVAL); 796 797 if (!src_is_vram) 798 xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it); 799 else 800 xe_res_first(src, 0, size, &src_it); 801 if (!dst_is_vram) 802 xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it); 803 else 804 xe_res_first(dst, 0, size, &dst_it); 805 806 if (copy_system_ccs) 807 xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo), 808 PAGE_ALIGN(xe_device_ccs_bytes(xe, size)), 809 &ccs_it); 810 811 while (size) { 812 u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */ 813 struct xe_sched_job *job; 814 struct xe_bb *bb; 815 u32 flush_flags = 0; 816 u32 update_idx; 817 u64 ccs_ofs, ccs_size; 818 u32 ccs_pt; 819 u32 pte_flags; 820 821 bool usm = xe->info.has_usm; 822 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 823 824 src_L0 = xe_migrate_res_sizes(m, &src_it); 825 dst_L0 = xe_migrate_res_sizes(m, &dst_it); 826 827 drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n", 828 pass++, src_L0, dst_L0); 829 830 src_L0 = min(src_L0, dst_L0); 831 832 pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; 833 pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0; 834 batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0, 835 &src_L0_ofs, &src_L0_pt, 0, 0, 836 avail_pts); 837 838 pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; 839 batch_size += pte_update_size(m, pte_flags, dst, &dst_it, &src_L0, 840 &dst_L0_ofs, &dst_L0_pt, 0, 841 avail_pts, avail_pts); 842 843 if (copy_system_ccs) { 844 xe_assert(xe, type_device); 845 ccs_size = xe_device_ccs_bytes(xe, src_L0); 846 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size, 847 &ccs_ofs, &ccs_pt, 0, 848 2 * avail_pts, 849 avail_pts); 850 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); 851 } 852 853 /* Add copy commands size here */ 854 batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) + 855 ((needs_ccs_emit ? EMIT_COPY_CCS_DW : 0)); 856 857 bb = xe_bb_new(gt, batch_size, usm); 858 if (IS_ERR(bb)) { 859 err = PTR_ERR(bb); 860 goto err_sync; 861 } 862 863 if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it)) 864 xe_res_next(&src_it, src_L0); 865 else 866 emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs || use_comp_pat, 867 &src_it, src_L0, src); 868 869 if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it)) 870 xe_res_next(&dst_it, src_L0); 871 else 872 emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs, 873 &dst_it, src_L0, dst); 874 875 if (copy_system_ccs) 876 emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src); 877 878 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 879 update_idx = bb->len; 880 881 if (!copy_only_ccs) 882 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE); 883 884 if (needs_ccs_emit) 885 flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, 886 IS_DGFX(xe) ? src_is_vram : src_is_pltt, 887 dst_L0_ofs, 888 IS_DGFX(xe) ? dst_is_vram : dst_is_pltt, 889 src_L0, ccs_ofs, copy_ccs); 890 891 job = xe_bb_create_migration_job(m->q, bb, 892 xe_migrate_batch_base(m, usm), 893 update_idx); 894 if (IS_ERR(job)) { 895 err = PTR_ERR(job); 896 goto err; 897 } 898 899 xe_sched_job_add_migrate_flush(job, flush_flags); 900 if (!fence) { 901 err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv, 902 DMA_RESV_USAGE_BOOKKEEP); 903 if (!err && src_bo != dst_bo) 904 err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv, 905 DMA_RESV_USAGE_BOOKKEEP); 906 if (err) 907 goto err_job; 908 } 909 910 mutex_lock(&m->job_mutex); 911 xe_sched_job_arm(job); 912 dma_fence_put(fence); 913 fence = dma_fence_get(&job->drm.s_fence->finished); 914 xe_sched_job_push(job); 915 916 dma_fence_put(m->fence); 917 m->fence = dma_fence_get(fence); 918 919 mutex_unlock(&m->job_mutex); 920 921 xe_bb_free(bb, fence); 922 size -= src_L0; 923 continue; 924 925 err_job: 926 xe_sched_job_put(job); 927 err: 928 xe_bb_free(bb, NULL); 929 930 err_sync: 931 /* Sync partial copy if any. FIXME: under job_mutex? */ 932 if (fence) { 933 dma_fence_wait(fence, false); 934 dma_fence_put(fence); 935 } 936 937 return ERR_PTR(err); 938 } 939 940 return fence; 941 } 942 943 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, 944 u32 size, u32 pitch) 945 { 946 struct xe_device *xe = gt_to_xe(gt); 947 u32 *cs = bb->cs + bb->len; 948 u32 len = PVC_MEM_SET_CMD_LEN_DW; 949 950 *cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2); 951 *cs++ = pitch - 1; 952 *cs++ = (size / pitch) - 1; 953 *cs++ = pitch - 1; 954 *cs++ = lower_32_bits(src_ofs); 955 *cs++ = upper_32_bits(src_ofs); 956 if (GRAPHICS_VERx100(xe) >= 2000) 957 *cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); 958 else 959 *cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); 960 961 xe_gt_assert(gt, cs - bb->cs == len + bb->len); 962 963 bb->len += len; 964 } 965 966 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb, 967 u64 src_ofs, u32 size, u32 pitch, bool is_vram) 968 { 969 struct xe_device *xe = gt_to_xe(gt); 970 u32 *cs = bb->cs + bb->len; 971 u32 len = XY_FAST_COLOR_BLT_DW; 972 973 if (GRAPHICS_VERx100(xe) < 1250) 974 len = 11; 975 976 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | 977 (len - 2); 978 if (GRAPHICS_VERx100(xe) >= 2000) 979 *cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) | 980 (pitch - 1); 981 else 982 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) | 983 (pitch - 1); 984 *cs++ = 0; 985 *cs++ = (size / pitch) << 16 | pitch / 4; 986 *cs++ = lower_32_bits(src_ofs); 987 *cs++ = upper_32_bits(src_ofs); 988 *cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; 989 *cs++ = 0; 990 *cs++ = 0; 991 *cs++ = 0; 992 *cs++ = 0; 993 994 if (len > 11) { 995 *cs++ = 0; 996 *cs++ = 0; 997 *cs++ = 0; 998 *cs++ = 0; 999 *cs++ = 0; 1000 } 1001 1002 xe_gt_assert(gt, cs - bb->cs == len + bb->len); 1003 1004 bb->len += len; 1005 } 1006 1007 static bool has_service_copy_support(struct xe_gt *gt) 1008 { 1009 /* 1010 * What we care about is whether the architecture was designed with 1011 * service copy functionality (specifically the new MEM_SET / MEM_COPY 1012 * instructions) so check the architectural engine list rather than the 1013 * actual list since these instructions are usable on BCS0 even if 1014 * all of the actual service copy engines (BCS1-BCS8) have been fused 1015 * off. 1016 */ 1017 return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8, 1018 XE_HW_ENGINE_BCS1); 1019 } 1020 1021 static u32 emit_clear_cmd_len(struct xe_gt *gt) 1022 { 1023 if (has_service_copy_support(gt)) 1024 return PVC_MEM_SET_CMD_LEN_DW; 1025 else 1026 return XY_FAST_COLOR_BLT_DW; 1027 } 1028 1029 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, 1030 u32 size, u32 pitch, bool is_vram) 1031 { 1032 if (has_service_copy_support(gt)) 1033 emit_clear_link_copy(gt, bb, src_ofs, size, pitch); 1034 else 1035 emit_clear_main_copy(gt, bb, src_ofs, size, pitch, 1036 is_vram); 1037 } 1038 1039 /** 1040 * xe_migrate_clear() - Copy content of TTM resources. 1041 * @m: The migration context. 1042 * @bo: The buffer object @dst is currently bound to. 1043 * @dst: The dst TTM resource to be cleared. 1044 * @clear_flags: flags to specify which data to clear: CCS, BO, or both. 1045 * 1046 * Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set. 1047 * On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA. 1048 * Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata. 1049 * TODO: Eliminate the @bo argument. 1050 * 1051 * Return: Pointer to a dma_fence representing the last clear batch, or 1052 * an error pointer on failure. If there is a failure, any clear operation 1053 * started by the function call has been synced. 1054 */ 1055 struct dma_fence *xe_migrate_clear(struct xe_migrate *m, 1056 struct xe_bo *bo, 1057 struct ttm_resource *dst, 1058 u32 clear_flags) 1059 { 1060 bool clear_vram = mem_type_is_vram(dst->mem_type); 1061 bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags; 1062 bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags; 1063 struct xe_gt *gt = m->tile->primary_gt; 1064 struct xe_device *xe = gt_to_xe(gt); 1065 bool clear_only_system_ccs = false; 1066 struct dma_fence *fence = NULL; 1067 u64 size = xe_bo_size(bo); 1068 struct xe_res_cursor src_it; 1069 struct ttm_resource *src = dst; 1070 int err; 1071 1072 if (WARN_ON(!clear_bo_data && !clear_ccs)) 1073 return NULL; 1074 1075 if (!clear_bo_data && clear_ccs && !IS_DGFX(xe)) 1076 clear_only_system_ccs = true; 1077 1078 if (!clear_vram) 1079 xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &src_it); 1080 else 1081 xe_res_first(src, 0, xe_bo_size(bo), &src_it); 1082 1083 while (size) { 1084 u64 clear_L0_ofs; 1085 u32 clear_L0_pt; 1086 u32 flush_flags = 0; 1087 u64 clear_L0; 1088 struct xe_sched_job *job; 1089 struct xe_bb *bb; 1090 u32 batch_size, update_idx; 1091 u32 pte_flags; 1092 1093 bool usm = xe->info.has_usm; 1094 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; 1095 1096 clear_L0 = xe_migrate_res_sizes(m, &src_it); 1097 1098 /* Calculate final sizes and batch size.. */ 1099 pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0; 1100 batch_size = 2 + 1101 pte_update_size(m, pte_flags, src, &src_it, 1102 &clear_L0, &clear_L0_ofs, &clear_L0_pt, 1103 clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0, 1104 avail_pts); 1105 1106 if (xe_migrate_needs_ccs_emit(xe)) 1107 batch_size += EMIT_COPY_CCS_DW; 1108 1109 /* Clear commands */ 1110 1111 if (WARN_ON_ONCE(!clear_L0)) 1112 break; 1113 1114 bb = xe_bb_new(gt, batch_size, usm); 1115 if (IS_ERR(bb)) { 1116 err = PTR_ERR(bb); 1117 goto err_sync; 1118 } 1119 1120 size -= clear_L0; 1121 /* Preemption is enabled again by the ring ops. */ 1122 if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it)) 1123 xe_res_next(&src_it, clear_L0); 1124 else 1125 emit_pte(m, bb, clear_L0_pt, clear_vram, clear_only_system_ccs, 1126 &src_it, clear_L0, dst); 1127 1128 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1129 update_idx = bb->len; 1130 1131 if (clear_bo_data) 1132 emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram); 1133 1134 if (xe_migrate_needs_ccs_emit(xe)) { 1135 emit_copy_ccs(gt, bb, clear_L0_ofs, true, 1136 m->cleared_mem_ofs, false, clear_L0); 1137 flush_flags = MI_FLUSH_DW_CCS; 1138 } 1139 1140 job = xe_bb_create_migration_job(m->q, bb, 1141 xe_migrate_batch_base(m, usm), 1142 update_idx); 1143 if (IS_ERR(job)) { 1144 err = PTR_ERR(job); 1145 goto err; 1146 } 1147 1148 xe_sched_job_add_migrate_flush(job, flush_flags); 1149 if (!fence) { 1150 /* 1151 * There can't be anything userspace related at this 1152 * point, so we just need to respect any potential move 1153 * fences, which are always tracked as 1154 * DMA_RESV_USAGE_KERNEL. 1155 */ 1156 err = xe_sched_job_add_deps(job, bo->ttm.base.resv, 1157 DMA_RESV_USAGE_KERNEL); 1158 if (err) 1159 goto err_job; 1160 } 1161 1162 mutex_lock(&m->job_mutex); 1163 xe_sched_job_arm(job); 1164 dma_fence_put(fence); 1165 fence = dma_fence_get(&job->drm.s_fence->finished); 1166 xe_sched_job_push(job); 1167 1168 dma_fence_put(m->fence); 1169 m->fence = dma_fence_get(fence); 1170 1171 mutex_unlock(&m->job_mutex); 1172 1173 xe_bb_free(bb, fence); 1174 continue; 1175 1176 err_job: 1177 xe_sched_job_put(job); 1178 err: 1179 xe_bb_free(bb, NULL); 1180 err_sync: 1181 /* Sync partial copies if any. FIXME: job_mutex? */ 1182 if (fence) { 1183 dma_fence_wait(fence, false); 1184 dma_fence_put(fence); 1185 } 1186 1187 return ERR_PTR(err); 1188 } 1189 1190 if (clear_ccs) 1191 bo->ccs_cleared = true; 1192 1193 return fence; 1194 } 1195 1196 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs, 1197 const struct xe_vm_pgtable_update_op *pt_op, 1198 const struct xe_vm_pgtable_update *update, 1199 struct xe_migrate_pt_update *pt_update) 1200 { 1201 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1202 u32 chunk; 1203 u32 ofs = update->ofs, size = update->qwords; 1204 1205 /* 1206 * If we have 512 entries (max), we would populate it ourselves, 1207 * and update the PDE above it to the new pointer. 1208 * The only time this can only happen if we have to update the top 1209 * PDE. This requires a BO that is almost vm->size big. 1210 * 1211 * This shouldn't be possible in practice.. might change when 16K 1212 * pages are used. Hence the assert. 1213 */ 1214 xe_tile_assert(tile, update->qwords < MAX_NUM_PTE); 1215 if (!ppgtt_ofs) 1216 ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile), 1217 xe_bo_addr(update->pt_bo, 0, 1218 XE_PAGE_SIZE), false); 1219 1220 do { 1221 u64 addr = ppgtt_ofs + ofs * 8; 1222 1223 chunk = min(size, MAX_PTE_PER_SDI); 1224 1225 /* Ensure populatefn can do memset64 by aligning bb->cs */ 1226 if (!(bb->len & 1)) 1227 bb->cs[bb->len++] = MI_NOOP; 1228 1229 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 1230 bb->cs[bb->len++] = lower_32_bits(addr); 1231 bb->cs[bb->len++] = upper_32_bits(addr); 1232 if (pt_op->bind) 1233 ops->populate(pt_update, tile, NULL, bb->cs + bb->len, 1234 ofs, chunk, update); 1235 else 1236 ops->clear(pt_update, tile, NULL, bb->cs + bb->len, 1237 ofs, chunk, update); 1238 1239 bb->len += chunk * 2; 1240 ofs += chunk; 1241 size -= chunk; 1242 } while (size); 1243 } 1244 1245 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m) 1246 { 1247 return xe_vm_get(m->q->vm); 1248 } 1249 1250 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 1251 struct migrate_test_params { 1252 struct xe_test_priv base; 1253 bool force_gpu; 1254 }; 1255 1256 #define to_migrate_test_params(_priv) \ 1257 container_of(_priv, struct migrate_test_params, base) 1258 #endif 1259 1260 static struct dma_fence * 1261 xe_migrate_update_pgtables_cpu(struct xe_migrate *m, 1262 struct xe_migrate_pt_update *pt_update) 1263 { 1264 XE_TEST_DECLARE(struct migrate_test_params *test = 1265 to_migrate_test_params 1266 (xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));) 1267 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1268 struct xe_vm *vm = pt_update->vops->vm; 1269 struct xe_vm_pgtable_update_ops *pt_update_ops = 1270 &pt_update->vops->pt_update_ops[pt_update->tile_id]; 1271 int err; 1272 u32 i, j; 1273 1274 if (XE_TEST_ONLY(test && test->force_gpu)) 1275 return ERR_PTR(-ETIME); 1276 1277 if (ops->pre_commit) { 1278 pt_update->job = NULL; 1279 err = ops->pre_commit(pt_update); 1280 if (err) 1281 return ERR_PTR(err); 1282 } 1283 1284 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1285 const struct xe_vm_pgtable_update_op *pt_op = 1286 &pt_update_ops->ops[i]; 1287 1288 for (j = 0; j < pt_op->num_entries; j++) { 1289 const struct xe_vm_pgtable_update *update = 1290 &pt_op->entries[j]; 1291 1292 if (pt_op->bind) 1293 ops->populate(pt_update, m->tile, 1294 &update->pt_bo->vmap, NULL, 1295 update->ofs, update->qwords, 1296 update); 1297 else 1298 ops->clear(pt_update, m->tile, 1299 &update->pt_bo->vmap, NULL, 1300 update->ofs, update->qwords, update); 1301 } 1302 } 1303 1304 trace_xe_vm_cpu_bind(vm); 1305 xe_device_wmb(vm->xe); 1306 1307 return dma_fence_get_stub(); 1308 } 1309 1310 static struct dma_fence * 1311 __xe_migrate_update_pgtables(struct xe_migrate *m, 1312 struct xe_migrate_pt_update *pt_update, 1313 struct xe_vm_pgtable_update_ops *pt_update_ops) 1314 { 1315 const struct xe_migrate_pt_update_ops *ops = pt_update->ops; 1316 struct xe_tile *tile = m->tile; 1317 struct xe_gt *gt = tile->primary_gt; 1318 struct xe_device *xe = tile_to_xe(tile); 1319 struct xe_sched_job *job; 1320 struct dma_fence *fence; 1321 struct drm_suballoc *sa_bo = NULL; 1322 struct xe_bb *bb; 1323 u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0; 1324 u32 num_updates = 0, current_update = 0; 1325 u64 addr; 1326 int err = 0; 1327 bool is_migrate = pt_update_ops->q == m->q; 1328 bool usm = is_migrate && xe->info.has_usm; 1329 1330 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1331 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 1332 struct xe_vm_pgtable_update *updates = pt_op->entries; 1333 1334 num_updates += pt_op->num_entries; 1335 for (j = 0; j < pt_op->num_entries; ++j) { 1336 u32 num_cmds = DIV_ROUND_UP(updates[j].qwords, 1337 MAX_PTE_PER_SDI); 1338 1339 /* align noop + MI_STORE_DATA_IMM cmd prefix */ 1340 batch_size += 4 * num_cmds + updates[j].qwords * 2; 1341 } 1342 } 1343 1344 /* fixed + PTE entries */ 1345 if (IS_DGFX(xe)) 1346 batch_size += 2; 1347 else 1348 batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) + 1349 num_updates * 2; 1350 1351 bb = xe_bb_new(gt, batch_size, usm); 1352 if (IS_ERR(bb)) 1353 return ERR_CAST(bb); 1354 1355 /* For sysmem PTE's, need to map them in our hole.. */ 1356 if (!IS_DGFX(xe)) { 1357 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 1358 u32 ptes, ofs; 1359 1360 ppgtt_ofs = NUM_KERNEL_PDE - 1; 1361 if (!is_migrate) { 1362 u32 num_units = DIV_ROUND_UP(num_updates, 1363 NUM_VMUSA_WRITES_PER_UNIT); 1364 1365 if (num_units > m->vm_update_sa.size) { 1366 err = -ENOBUFS; 1367 goto err_bb; 1368 } 1369 sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units, 1370 GFP_KERNEL, true, 0); 1371 if (IS_ERR(sa_bo)) { 1372 err = PTR_ERR(sa_bo); 1373 goto err_bb; 1374 } 1375 1376 ppgtt_ofs = NUM_KERNEL_PDE + 1377 (drm_suballoc_soffset(sa_bo) / 1378 NUM_VMUSA_UNIT_PER_PAGE); 1379 page_ofs = (drm_suballoc_soffset(sa_bo) % 1380 NUM_VMUSA_UNIT_PER_PAGE) * 1381 VM_SA_UPDATE_UNIT_SIZE; 1382 } 1383 1384 /* Map our PT's to gtt */ 1385 i = 0; 1386 j = 0; 1387 ptes = num_updates; 1388 ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs; 1389 while (ptes) { 1390 u32 chunk = min(MAX_PTE_PER_SDI, ptes); 1391 u32 idx = 0; 1392 1393 bb->cs[bb->len++] = MI_STORE_DATA_IMM | 1394 MI_SDI_NUM_QW(chunk); 1395 bb->cs[bb->len++] = ofs; 1396 bb->cs[bb->len++] = 0; /* upper_32_bits */ 1397 1398 for (; i < pt_update_ops->num_ops; ++i) { 1399 struct xe_vm_pgtable_update_op *pt_op = 1400 &pt_update_ops->ops[i]; 1401 struct xe_vm_pgtable_update *updates = pt_op->entries; 1402 1403 for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) { 1404 struct xe_vm *vm = pt_update->vops->vm; 1405 struct xe_bo *pt_bo = updates[j].pt_bo; 1406 1407 if (idx == chunk) 1408 goto next_cmd; 1409 1410 xe_tile_assert(tile, xe_bo_size(pt_bo) == SZ_4K); 1411 1412 /* Map a PT at most once */ 1413 if (pt_bo->update_index < 0) 1414 pt_bo->update_index = current_update; 1415 1416 addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, 1417 pat_index, 0); 1418 bb->cs[bb->len++] = lower_32_bits(addr); 1419 bb->cs[bb->len++] = upper_32_bits(addr); 1420 } 1421 1422 j = 0; 1423 } 1424 1425 next_cmd: 1426 ptes -= chunk; 1427 ofs += chunk * sizeof(u64); 1428 } 1429 1430 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1431 update_idx = bb->len; 1432 1433 addr = xe_migrate_vm_addr(ppgtt_ofs, 0) + 1434 (page_ofs / sizeof(u64)) * XE_PAGE_SIZE; 1435 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1436 struct xe_vm_pgtable_update_op *pt_op = 1437 &pt_update_ops->ops[i]; 1438 struct xe_vm_pgtable_update *updates = pt_op->entries; 1439 1440 for (j = 0; j < pt_op->num_entries; ++j) { 1441 struct xe_bo *pt_bo = updates[j].pt_bo; 1442 1443 write_pgtable(tile, bb, addr + 1444 pt_bo->update_index * XE_PAGE_SIZE, 1445 pt_op, &updates[j], pt_update); 1446 } 1447 } 1448 } else { 1449 /* phys pages, no preamble required */ 1450 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1451 update_idx = bb->len; 1452 1453 for (i = 0; i < pt_update_ops->num_ops; ++i) { 1454 struct xe_vm_pgtable_update_op *pt_op = 1455 &pt_update_ops->ops[i]; 1456 struct xe_vm_pgtable_update *updates = pt_op->entries; 1457 1458 for (j = 0; j < pt_op->num_entries; ++j) 1459 write_pgtable(tile, bb, 0, pt_op, &updates[j], 1460 pt_update); 1461 } 1462 } 1463 1464 job = xe_bb_create_migration_job(pt_update_ops->q, bb, 1465 xe_migrate_batch_base(m, usm), 1466 update_idx); 1467 if (IS_ERR(job)) { 1468 err = PTR_ERR(job); 1469 goto err_sa; 1470 } 1471 1472 if (ops->pre_commit) { 1473 pt_update->job = job; 1474 err = ops->pre_commit(pt_update); 1475 if (err) 1476 goto err_job; 1477 } 1478 if (is_migrate) 1479 mutex_lock(&m->job_mutex); 1480 1481 xe_sched_job_arm(job); 1482 fence = dma_fence_get(&job->drm.s_fence->finished); 1483 xe_sched_job_push(job); 1484 1485 if (is_migrate) 1486 mutex_unlock(&m->job_mutex); 1487 1488 xe_bb_free(bb, fence); 1489 drm_suballoc_free(sa_bo, fence); 1490 1491 return fence; 1492 1493 err_job: 1494 xe_sched_job_put(job); 1495 err_sa: 1496 drm_suballoc_free(sa_bo, NULL); 1497 err_bb: 1498 xe_bb_free(bb, NULL); 1499 return ERR_PTR(err); 1500 } 1501 1502 /** 1503 * xe_migrate_update_pgtables() - Pipelined page-table update 1504 * @m: The migrate context. 1505 * @pt_update: PT update arguments 1506 * 1507 * Perform a pipelined page-table update. The update descriptors are typically 1508 * built under the same lock critical section as a call to this function. If 1509 * using the default engine for the updates, they will be performed in the 1510 * order they grab the job_mutex. If different engines are used, external 1511 * synchronization is needed for overlapping updates to maintain page-table 1512 * consistency. Note that the meaning of "overlapping" is that the updates 1513 * touch the same page-table, which might be a higher-level page-directory. 1514 * If no pipelining is needed, then updates may be performed by the cpu. 1515 * 1516 * Return: A dma_fence that, when signaled, indicates the update completion. 1517 */ 1518 struct dma_fence * 1519 xe_migrate_update_pgtables(struct xe_migrate *m, 1520 struct xe_migrate_pt_update *pt_update) 1521 1522 { 1523 struct xe_vm_pgtable_update_ops *pt_update_ops = 1524 &pt_update->vops->pt_update_ops[pt_update->tile_id]; 1525 struct dma_fence *fence; 1526 1527 fence = xe_migrate_update_pgtables_cpu(m, pt_update); 1528 1529 /* -ETIME indicates a job is needed, anything else is legit error */ 1530 if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME) 1531 return fence; 1532 1533 return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops); 1534 } 1535 1536 /** 1537 * xe_migrate_wait() - Complete all operations using the xe_migrate context 1538 * @m: Migrate context to wait for. 1539 * 1540 * Waits until the GPU no longer uses the migrate context's default engine 1541 * or its page-table objects. FIXME: What about separate page-table update 1542 * engines? 1543 */ 1544 void xe_migrate_wait(struct xe_migrate *m) 1545 { 1546 if (m->fence) 1547 dma_fence_wait(m->fence, false); 1548 } 1549 1550 static u32 pte_update_cmd_size(u64 size) 1551 { 1552 u32 num_dword; 1553 u64 entries = DIV_U64_ROUND_UP(size, XE_PAGE_SIZE); 1554 1555 XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER); 1556 1557 /* 1558 * MI_STORE_DATA_IMM command is used to update page table. Each 1559 * instruction can update maximumly MAX_PTE_PER_SDI pte entries. To 1560 * update n (n <= MAX_PTE_PER_SDI) pte entries, we need: 1561 * 1562 * - 1 dword for the MI_STORE_DATA_IMM command header (opcode etc) 1563 * - 2 dword for the page table's physical location 1564 * - 2*n dword for value of pte to fill (each pte entry is 2 dwords) 1565 */ 1566 num_dword = (1 + 2) * DIV_U64_ROUND_UP(entries, MAX_PTE_PER_SDI); 1567 num_dword += entries * 2; 1568 1569 return num_dword; 1570 } 1571 1572 static void build_pt_update_batch_sram(struct xe_migrate *m, 1573 struct xe_bb *bb, u32 pt_offset, 1574 dma_addr_t *sram_addr, u32 size) 1575 { 1576 u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB]; 1577 u32 ptes; 1578 int i = 0; 1579 1580 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE); 1581 while (ptes) { 1582 u32 chunk = min(MAX_PTE_PER_SDI, ptes); 1583 1584 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); 1585 bb->cs[bb->len++] = pt_offset; 1586 bb->cs[bb->len++] = 0; 1587 1588 pt_offset += chunk * 8; 1589 ptes -= chunk; 1590 1591 while (chunk--) { 1592 u64 addr = sram_addr[i++] & PAGE_MASK; 1593 1594 xe_tile_assert(m->tile, addr); 1595 addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe, 1596 addr, pat_index, 1597 0, false, 0); 1598 bb->cs[bb->len++] = lower_32_bits(addr); 1599 bb->cs[bb->len++] = upper_32_bits(addr); 1600 } 1601 } 1602 } 1603 1604 enum xe_migrate_copy_dir { 1605 XE_MIGRATE_COPY_TO_VRAM, 1606 XE_MIGRATE_COPY_TO_SRAM, 1607 }; 1608 1609 #define XE_CACHELINE_BYTES 64ull 1610 #define XE_CACHELINE_MASK (XE_CACHELINE_BYTES - 1) 1611 1612 static struct dma_fence *xe_migrate_vram(struct xe_migrate *m, 1613 unsigned long len, 1614 unsigned long sram_offset, 1615 dma_addr_t *sram_addr, u64 vram_addr, 1616 const enum xe_migrate_copy_dir dir) 1617 { 1618 struct xe_gt *gt = m->tile->primary_gt; 1619 struct xe_device *xe = gt_to_xe(gt); 1620 bool use_usm_batch = xe->info.has_usm; 1621 struct dma_fence *fence = NULL; 1622 u32 batch_size = 2; 1623 u64 src_L0_ofs, dst_L0_ofs; 1624 struct xe_sched_job *job; 1625 struct xe_bb *bb; 1626 u32 update_idx, pt_slot = 0; 1627 unsigned long npages = DIV_ROUND_UP(len + sram_offset, PAGE_SIZE); 1628 unsigned int pitch = len >= PAGE_SIZE && !(len & ~PAGE_MASK) ? 1629 PAGE_SIZE : 4; 1630 int err; 1631 1632 if (drm_WARN_ON(&xe->drm, (len & XE_CACHELINE_MASK) || 1633 (sram_offset | vram_addr) & XE_CACHELINE_MASK)) 1634 return ERR_PTR(-EOPNOTSUPP); 1635 1636 xe_assert(xe, npages * PAGE_SIZE <= MAX_PREEMPTDISABLE_TRANSFER); 1637 1638 batch_size += pte_update_cmd_size(len); 1639 batch_size += EMIT_COPY_DW; 1640 1641 bb = xe_bb_new(gt, batch_size, use_usm_batch); 1642 if (IS_ERR(bb)) { 1643 err = PTR_ERR(bb); 1644 return ERR_PTR(err); 1645 } 1646 1647 build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE, 1648 sram_addr, len + sram_offset); 1649 1650 if (dir == XE_MIGRATE_COPY_TO_VRAM) { 1651 src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset; 1652 dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false); 1653 1654 } else { 1655 src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false); 1656 dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset; 1657 } 1658 1659 bb->cs[bb->len++] = MI_BATCH_BUFFER_END; 1660 update_idx = bb->len; 1661 1662 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, len, pitch); 1663 1664 job = xe_bb_create_migration_job(m->q, bb, 1665 xe_migrate_batch_base(m, use_usm_batch), 1666 update_idx); 1667 if (IS_ERR(job)) { 1668 err = PTR_ERR(job); 1669 goto err; 1670 } 1671 1672 xe_sched_job_add_migrate_flush(job, 0); 1673 1674 mutex_lock(&m->job_mutex); 1675 xe_sched_job_arm(job); 1676 fence = dma_fence_get(&job->drm.s_fence->finished); 1677 xe_sched_job_push(job); 1678 1679 dma_fence_put(m->fence); 1680 m->fence = dma_fence_get(fence); 1681 mutex_unlock(&m->job_mutex); 1682 1683 xe_bb_free(bb, fence); 1684 1685 return fence; 1686 1687 err: 1688 xe_bb_free(bb, NULL); 1689 1690 return ERR_PTR(err); 1691 } 1692 1693 /** 1694 * xe_migrate_to_vram() - Migrate to VRAM 1695 * @m: The migration context. 1696 * @npages: Number of pages to migrate. 1697 * @src_addr: Array of dma addresses (source of migrate) 1698 * @dst_addr: Device physical address of VRAM (destination of migrate) 1699 * 1700 * Copy from an array dma addresses to a VRAM device physical address 1701 * 1702 * Return: dma fence for migrate to signal completion on succees, ERR_PTR on 1703 * failure 1704 */ 1705 struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m, 1706 unsigned long npages, 1707 dma_addr_t *src_addr, 1708 u64 dst_addr) 1709 { 1710 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, src_addr, dst_addr, 1711 XE_MIGRATE_COPY_TO_VRAM); 1712 } 1713 1714 /** 1715 * xe_migrate_from_vram() - Migrate from VRAM 1716 * @m: The migration context. 1717 * @npages: Number of pages to migrate. 1718 * @src_addr: Device physical address of VRAM (source of migrate) 1719 * @dst_addr: Array of dma addresses (destination of migrate) 1720 * 1721 * Copy from a VRAM device physical address to an array dma addresses 1722 * 1723 * Return: dma fence for migrate to signal completion on succees, ERR_PTR on 1724 * failure 1725 */ 1726 struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m, 1727 unsigned long npages, 1728 u64 src_addr, 1729 dma_addr_t *dst_addr) 1730 { 1731 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, dst_addr, src_addr, 1732 XE_MIGRATE_COPY_TO_SRAM); 1733 } 1734 1735 static void xe_migrate_dma_unmap(struct xe_device *xe, dma_addr_t *dma_addr, 1736 int len, int write) 1737 { 1738 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE); 1739 1740 for (i = 0; i < npages; ++i) { 1741 if (!dma_addr[i]) 1742 break; 1743 1744 dma_unmap_page(xe->drm.dev, dma_addr[i], PAGE_SIZE, 1745 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1746 } 1747 kfree(dma_addr); 1748 } 1749 1750 static dma_addr_t *xe_migrate_dma_map(struct xe_device *xe, 1751 void *buf, int len, int write) 1752 { 1753 dma_addr_t *dma_addr; 1754 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE); 1755 1756 dma_addr = kcalloc(npages, sizeof(*dma_addr), GFP_KERNEL); 1757 if (!dma_addr) 1758 return ERR_PTR(-ENOMEM); 1759 1760 for (i = 0; i < npages; ++i) { 1761 dma_addr_t addr; 1762 struct page *page; 1763 1764 if (is_vmalloc_addr(buf)) 1765 page = vmalloc_to_page(buf); 1766 else 1767 page = virt_to_page(buf); 1768 1769 addr = dma_map_page(xe->drm.dev, 1770 page, 0, PAGE_SIZE, 1771 write ? DMA_TO_DEVICE : 1772 DMA_FROM_DEVICE); 1773 if (dma_mapping_error(xe->drm.dev, addr)) 1774 goto err_fault; 1775 1776 dma_addr[i] = addr; 1777 buf += PAGE_SIZE; 1778 } 1779 1780 return dma_addr; 1781 1782 err_fault: 1783 xe_migrate_dma_unmap(xe, dma_addr, len, write); 1784 return ERR_PTR(-EFAULT); 1785 } 1786 1787 /** 1788 * xe_migrate_access_memory - Access memory of a BO via GPU 1789 * 1790 * @m: The migration context. 1791 * @bo: buffer object 1792 * @offset: access offset into buffer object 1793 * @buf: pointer to caller memory to read into or write from 1794 * @len: length of access 1795 * @write: write access 1796 * 1797 * Access memory of a BO via GPU either reading in or writing from a passed in 1798 * pointer. Pointer is dma mapped for GPU access and GPU commands are issued to 1799 * read to or write from pointer. 1800 * 1801 * Returns: 1802 * 0 if successful, negative error code on failure. 1803 */ 1804 int xe_migrate_access_memory(struct xe_migrate *m, struct xe_bo *bo, 1805 unsigned long offset, void *buf, int len, 1806 int write) 1807 { 1808 struct xe_tile *tile = m->tile; 1809 struct xe_device *xe = tile_to_xe(tile); 1810 struct xe_res_cursor cursor; 1811 struct dma_fence *fence = NULL; 1812 dma_addr_t *dma_addr; 1813 unsigned long page_offset = (unsigned long)buf & ~PAGE_MASK; 1814 int bytes_left = len, current_page = 0; 1815 void *orig_buf = buf; 1816 1817 xe_bo_assert_held(bo); 1818 1819 /* Use bounce buffer for small access and unaligned access */ 1820 if (!IS_ALIGNED(len, XE_CACHELINE_BYTES) || 1821 !IS_ALIGNED((unsigned long)buf + offset, XE_CACHELINE_BYTES)) { 1822 int buf_offset = 0; 1823 void *bounce; 1824 int err; 1825 1826 BUILD_BUG_ON(!is_power_of_2(XE_CACHELINE_BYTES)); 1827 bounce = kmalloc(XE_CACHELINE_BYTES, GFP_KERNEL); 1828 if (!bounce) 1829 return -ENOMEM; 1830 1831 /* 1832 * Less than ideal for large unaligned access but this should be 1833 * fairly rare, can fixup if this becomes common. 1834 */ 1835 do { 1836 int copy_bytes = min_t(int, bytes_left, 1837 XE_CACHELINE_BYTES - 1838 (offset & XE_CACHELINE_MASK)); 1839 int ptr_offset = offset & XE_CACHELINE_MASK; 1840 1841 err = xe_migrate_access_memory(m, bo, 1842 offset & 1843 ~XE_CACHELINE_MASK, 1844 bounce, 1845 XE_CACHELINE_BYTES, 0); 1846 if (err) 1847 break; 1848 1849 if (write) { 1850 memcpy(bounce + ptr_offset, buf + buf_offset, copy_bytes); 1851 1852 err = xe_migrate_access_memory(m, bo, 1853 offset & ~XE_CACHELINE_MASK, 1854 bounce, 1855 XE_CACHELINE_BYTES, write); 1856 if (err) 1857 break; 1858 } else { 1859 memcpy(buf + buf_offset, bounce + ptr_offset, 1860 copy_bytes); 1861 } 1862 1863 bytes_left -= copy_bytes; 1864 buf_offset += copy_bytes; 1865 offset += copy_bytes; 1866 } while (bytes_left); 1867 1868 kfree(bounce); 1869 return err; 1870 } 1871 1872 dma_addr = xe_migrate_dma_map(xe, buf, len + page_offset, write); 1873 if (IS_ERR(dma_addr)) 1874 return PTR_ERR(dma_addr); 1875 1876 xe_res_first(bo->ttm.resource, offset, xe_bo_size(bo) - offset, &cursor); 1877 1878 do { 1879 struct dma_fence *__fence; 1880 u64 vram_addr = vram_region_gpu_offset(bo->ttm.resource) + 1881 cursor.start; 1882 int current_bytes; 1883 1884 if (cursor.size > MAX_PREEMPTDISABLE_TRANSFER) 1885 current_bytes = min_t(int, bytes_left, 1886 MAX_PREEMPTDISABLE_TRANSFER); 1887 else 1888 current_bytes = min_t(int, bytes_left, cursor.size); 1889 1890 if (current_bytes & ~PAGE_MASK) { 1891 int pitch = 4; 1892 1893 current_bytes = min_t(int, current_bytes, S16_MAX * pitch); 1894 } 1895 1896 __fence = xe_migrate_vram(m, current_bytes, 1897 (unsigned long)buf & ~PAGE_MASK, 1898 dma_addr + current_page, 1899 vram_addr, write ? 1900 XE_MIGRATE_COPY_TO_VRAM : 1901 XE_MIGRATE_COPY_TO_SRAM); 1902 if (IS_ERR(__fence)) { 1903 if (fence) { 1904 dma_fence_wait(fence, false); 1905 dma_fence_put(fence); 1906 } 1907 fence = __fence; 1908 goto out_err; 1909 } 1910 1911 dma_fence_put(fence); 1912 fence = __fence; 1913 1914 buf += current_bytes; 1915 offset += current_bytes; 1916 current_page = (int)(buf - orig_buf) / PAGE_SIZE; 1917 bytes_left -= current_bytes; 1918 if (bytes_left) 1919 xe_res_next(&cursor, current_bytes); 1920 } while (bytes_left); 1921 1922 dma_fence_wait(fence, false); 1923 dma_fence_put(fence); 1924 1925 out_err: 1926 xe_migrate_dma_unmap(xe, dma_addr, len + page_offset, write); 1927 return IS_ERR(fence) ? PTR_ERR(fence) : 0; 1928 } 1929 1930 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 1931 #include "tests/xe_migrate.c" 1932 #endif 1933