xref: /linux/drivers/gpu/drm/xe/xe_migrate.c (revision 16280ded45fba1216d1d4c6acfc20c2d5b45ef50)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include "xe_migrate.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/sizes.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/ttm/ttm_tt.h>
13 #include <uapi/drm/xe_drm.h>
14 
15 #include <generated/xe_wa_oob.h>
16 
17 #include "instructions/xe_gpu_commands.h"
18 #include "instructions/xe_mi_commands.h"
19 #include "regs/xe_gtt_defs.h"
20 #include "tests/xe_test.h"
21 #include "xe_assert.h"
22 #include "xe_bb.h"
23 #include "xe_bo.h"
24 #include "xe_exec_queue.h"
25 #include "xe_ggtt.h"
26 #include "xe_gt.h"
27 #include "xe_hw_engine.h"
28 #include "xe_lrc.h"
29 #include "xe_map.h"
30 #include "xe_mocs.h"
31 #include "xe_pt.h"
32 #include "xe_res_cursor.h"
33 #include "xe_sched_job.h"
34 #include "xe_sync.h"
35 #include "xe_trace_bo.h"
36 #include "xe_vm.h"
37 
38 /**
39  * struct xe_migrate - migrate context.
40  */
41 struct xe_migrate {
42 	/** @q: Default exec queue used for migration */
43 	struct xe_exec_queue *q;
44 	/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
45 	struct xe_tile *tile;
46 	/** @job_mutex: Timeline mutex for @eng. */
47 	struct mutex job_mutex;
48 	/** @pt_bo: Page-table buffer object. */
49 	struct xe_bo *pt_bo;
50 	/** @batch_base_ofs: VM offset of the migration batch buffer */
51 	u64 batch_base_ofs;
52 	/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
53 	u64 usm_batch_base_ofs;
54 	/** @cleared_mem_ofs: VM offset of @cleared_bo. */
55 	u64 cleared_mem_ofs;
56 	/**
57 	 * @fence: dma-fence representing the last migration job batch.
58 	 * Protected by @job_mutex.
59 	 */
60 	struct dma_fence *fence;
61 	/**
62 	 * @vm_update_sa: For integrated, used to suballocate page-tables
63 	 * out of the pt_bo.
64 	 */
65 	struct drm_suballoc_manager vm_update_sa;
66 	/** @min_chunk_size: For dgfx, Minimum chunk size */
67 	u64 min_chunk_size;
68 };
69 
70 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
71 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
72 #define NUM_KERNEL_PDE 15
73 #define NUM_PT_SLOTS 32
74 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
75 #define MAX_NUM_PTE 512
76 #define IDENTITY_OFFSET 256ULL
77 
78 /*
79  * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
80  * legal value accepted.  Since that instruction field is always stored in
81  * (val-2) format, this translates to 0x400 dwords for the true maximum length
82  * of the instruction.  Subtracting the instruction header (1 dword) and
83  * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
84  */
85 #define MAX_PTE_PER_SDI 0x1FE
86 
87 /**
88  * xe_tile_migrate_exec_queue() - Get this tile's migrate exec queue.
89  * @tile: The tile.
90  *
91  * Returns the default migrate exec queue of this tile.
92  *
93  * Return: The default migrate exec queue
94  */
95 struct xe_exec_queue *xe_tile_migrate_exec_queue(struct xe_tile *tile)
96 {
97 	return tile->migrate->q;
98 }
99 
100 static void xe_migrate_fini(void *arg)
101 {
102 	struct xe_migrate *m = arg;
103 
104 	xe_vm_lock(m->q->vm, false);
105 	xe_bo_unpin(m->pt_bo);
106 	xe_vm_unlock(m->q->vm);
107 
108 	dma_fence_put(m->fence);
109 	xe_bo_put(m->pt_bo);
110 	drm_suballoc_manager_fini(&m->vm_update_sa);
111 	mutex_destroy(&m->job_mutex);
112 	xe_vm_close_and_put(m->q->vm);
113 	xe_exec_queue_put(m->q);
114 }
115 
116 static u64 xe_migrate_vm_addr(u64 slot, u32 level)
117 {
118 	XE_WARN_ON(slot >= NUM_PT_SLOTS);
119 
120 	/* First slot is reserved for mapping of PT bo and bb, start from 1 */
121 	return (slot + 1ULL) << xe_pt_shift(level + 1);
122 }
123 
124 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte)
125 {
126 	/*
127 	 * Remove the DPA to get a correct offset into identity table for the
128 	 * migrate offset
129 	 */
130 	u64 identity_offset = IDENTITY_OFFSET;
131 
132 	if (GRAPHICS_VER(xe) >= 20 && is_comp_pte)
133 		identity_offset += DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
134 
135 	addr -= xe->mem.vram.dpa_base;
136 	return addr + (identity_offset << xe_pt_shift(2));
137 }
138 
139 static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo,
140 					u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs)
141 {
142 	u64 pos, ofs, flags;
143 	u64 entry;
144 	/* XXX: Unclear if this should be usable_size? */
145 	u64 vram_limit =  xe->mem.vram.actual_physical_size +
146 		xe->mem.vram.dpa_base;
147 	u32 level = 2;
148 
149 	ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8;
150 	flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
151 					    true, 0);
152 
153 	xe_assert(xe, IS_ALIGNED(xe->mem.vram.usable_size, SZ_2M));
154 
155 	/*
156 	 * Use 1GB pages when possible, last chunk always use 2M
157 	 * pages as mixing reserved memory (stolen, WOCPM) with a single
158 	 * mapping is not allowed on certain platforms.
159 	 */
160 	for (pos = xe->mem.vram.dpa_base; pos < vram_limit;
161 	     pos += SZ_1G, ofs += 8) {
162 		if (pos + SZ_1G >= vram_limit) {
163 			entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs,
164 							  pat_index);
165 			xe_map_wr(xe, &bo->vmap, ofs, u64, entry);
166 
167 			flags = vm->pt_ops->pte_encode_addr(xe, 0,
168 							    pat_index,
169 							    level - 1,
170 							    true, 0);
171 
172 			for (ofs = pt_2m_ofs; pos < vram_limit;
173 			     pos += SZ_2M, ofs += 8)
174 				xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
175 			break;	/* Ensure pos == vram_limit assert correct */
176 		}
177 
178 		xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
179 	}
180 
181 	xe_assert(xe, pos == vram_limit);
182 }
183 
184 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
185 				 struct xe_vm *vm)
186 {
187 	struct xe_device *xe = tile_to_xe(tile);
188 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
189 	u8 id = tile->id;
190 	u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
191 #define VRAM_IDENTITY_MAP_COUNT	2
192 	u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT;
193 #undef VRAM_IDENTITY_MAP_COUNT
194 	u32 map_ofs, level, i;
195 	struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
196 	u64 entry, pt29_ofs;
197 
198 	/* Can't bump NUM_PT_SLOTS too high */
199 	BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
200 	/* Must be a multiple of 64K to support all platforms */
201 	BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
202 	/* And one slot reserved for the 4KiB page table updates */
203 	BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
204 
205 	/* Need to be sure everything fits in the first PT, or create more */
206 	xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
207 
208 	bo = xe_bo_create_pin_map(vm->xe, tile, vm,
209 				  num_entries * XE_PAGE_SIZE,
210 				  ttm_bo_type_kernel,
211 				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
212 				  XE_BO_FLAG_PAGETABLE);
213 	if (IS_ERR(bo))
214 		return PTR_ERR(bo);
215 
216 	/* PT30 & PT31 reserved for 2M identity map */
217 	pt29_ofs = bo->size - 3 * XE_PAGE_SIZE;
218 	entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs, pat_index);
219 	xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
220 
221 	map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE;
222 
223 	/* Map the entire BO in our level 0 pt */
224 	for (i = 0, level = 0; i < num_entries; level++) {
225 		entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
226 						  pat_index, 0);
227 
228 		xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
229 
230 		if (vm->flags & XE_VM_FLAG_64K)
231 			i += 16;
232 		else
233 			i += 1;
234 	}
235 
236 	if (!IS_DGFX(xe)) {
237 		/* Write out batch too */
238 		m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
239 		for (i = 0; i < batch->size;
240 		     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
241 		     XE_PAGE_SIZE) {
242 			entry = vm->pt_ops->pte_encode_bo(batch, i,
243 							  pat_index, 0);
244 
245 			xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
246 				  entry);
247 			level++;
248 		}
249 		if (xe->info.has_usm) {
250 			xe_tile_assert(tile, batch->size == SZ_1M);
251 
252 			batch = tile->primary_gt->usm.bb_pool->bo;
253 			m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
254 			xe_tile_assert(tile, batch->size == SZ_512K);
255 
256 			for (i = 0; i < batch->size;
257 			     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
258 			     XE_PAGE_SIZE) {
259 				entry = vm->pt_ops->pte_encode_bo(batch, i,
260 								  pat_index, 0);
261 
262 				xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
263 					  entry);
264 				level++;
265 			}
266 		}
267 	} else {
268 		u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
269 
270 		m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
271 
272 		if (xe->info.has_usm) {
273 			batch = tile->primary_gt->usm.bb_pool->bo;
274 			batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
275 			m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
276 		}
277 	}
278 
279 	for (level = 1; level < num_level; level++) {
280 		u32 flags = 0;
281 
282 		if (vm->flags & XE_VM_FLAG_64K && level == 1)
283 			flags = XE_PDE_64K;
284 
285 		entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) *
286 						  XE_PAGE_SIZE, pat_index);
287 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
288 			  entry | flags);
289 	}
290 
291 	/* Write PDE's that point to our BO. */
292 	for (i = 0; i < map_ofs / PAGE_SIZE; i++) {
293 		entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE,
294 						  pat_index);
295 
296 		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
297 			  (i + 1) * 8, u64, entry);
298 	}
299 
300 	/* Set up a 1GiB NULL mapping at 255GiB offset. */
301 	level = 2;
302 	xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
303 		  vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
304 		  | XE_PTE_NULL);
305 	m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
306 
307 	/* Identity map the entire vram at 256GiB offset */
308 	if (IS_DGFX(xe)) {
309 		u64 pt30_ofs = bo->size - 2 * XE_PAGE_SIZE;
310 
311 		xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET,
312 					    pat_index, pt30_ofs);
313 		xe_assert(xe, xe->mem.vram.actual_physical_size <=
314 					(MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G);
315 
316 		/*
317 		 * Identity map the entire vram for compressed pat_index for xe2+
318 		 * if flat ccs is enabled.
319 		 */
320 		if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) {
321 			u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION];
322 			u64 vram_offset = IDENTITY_OFFSET +
323 				DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
324 			u64 pt31_ofs = bo->size - XE_PAGE_SIZE;
325 
326 			xe_assert(xe, xe->mem.vram.actual_physical_size <= (MAX_NUM_PTE -
327 						IDENTITY_OFFSET - IDENTITY_OFFSET / 2) * SZ_1G);
328 			xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset,
329 						    comp_pat_index, pt31_ofs);
330 		}
331 	}
332 
333 	/*
334 	 * Example layout created above, with root level = 3:
335 	 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
336 	 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
337 	 * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's
338 	 * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map]
339 	 *
340 	 * This makes the lowest part of the VM point to the pagetables.
341 	 * Hence the lowest 2M in the vm should point to itself, with a few writes
342 	 * and flushes, other parts of the VM can be used either for copying and
343 	 * clearing.
344 	 *
345 	 * For performance, the kernel reserves PDE's, so about 20 are left
346 	 * for async VM updates.
347 	 *
348 	 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
349 	 * everywhere, this allows lockless updates to scratch pages by using
350 	 * the different addresses in VM.
351 	 */
352 #define NUM_VMUSA_UNIT_PER_PAGE	32
353 #define VM_SA_UPDATE_UNIT_SIZE		(XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
354 #define NUM_VMUSA_WRITES_PER_UNIT	(VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
355 	drm_suballoc_manager_init(&m->vm_update_sa,
356 				  (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
357 				  NUM_VMUSA_UNIT_PER_PAGE, 0);
358 
359 	m->pt_bo = bo;
360 	return 0;
361 }
362 
363 /*
364  * Including the reserved copy engine is required to avoid deadlocks due to
365  * migrate jobs servicing the faults gets stuck behind the job that faulted.
366  */
367 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
368 {
369 	u32 logical_mask = 0;
370 	struct xe_hw_engine *hwe;
371 	enum xe_hw_engine_id id;
372 
373 	for_each_hw_engine(hwe, gt, id) {
374 		if (hwe->class != XE_ENGINE_CLASS_COPY)
375 			continue;
376 
377 		if (xe_gt_is_usm_hwe(gt, hwe))
378 			logical_mask |= BIT(hwe->logical_instance);
379 	}
380 
381 	return logical_mask;
382 }
383 
384 static bool xe_migrate_needs_ccs_emit(struct xe_device *xe)
385 {
386 	return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe));
387 }
388 
389 /**
390  * xe_migrate_init() - Initialize a migrate context
391  * @tile: Back-pointer to the tile we're initializing for.
392  *
393  * Return: Pointer to a migrate context on success. Error pointer on error.
394  */
395 struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
396 {
397 	struct xe_device *xe = tile_to_xe(tile);
398 	struct xe_gt *primary_gt = tile->primary_gt;
399 	struct xe_migrate *m;
400 	struct xe_vm *vm;
401 	int err;
402 
403 	m = devm_kzalloc(xe->drm.dev, sizeof(*m), GFP_KERNEL);
404 	if (!m)
405 		return ERR_PTR(-ENOMEM);
406 
407 	m->tile = tile;
408 
409 	/* Special layout, prepared below.. */
410 	vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
411 			  XE_VM_FLAG_SET_TILE_ID(tile));
412 	if (IS_ERR(vm))
413 		return ERR_CAST(vm);
414 
415 	xe_vm_lock(vm, false);
416 	err = xe_migrate_prepare_vm(tile, m, vm);
417 	xe_vm_unlock(vm);
418 	if (err) {
419 		xe_vm_close_and_put(vm);
420 		return ERR_PTR(err);
421 	}
422 
423 	if (xe->info.has_usm) {
424 		struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
425 							   XE_ENGINE_CLASS_COPY,
426 							   primary_gt->usm.reserved_bcs_instance,
427 							   false);
428 		u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
429 
430 		if (!hwe || !logical_mask)
431 			return ERR_PTR(-EINVAL);
432 
433 		/*
434 		 * XXX: Currently only reserving 1 (likely slow) BCS instance on
435 		 * PVC, may want to revisit if performance is needed.
436 		 */
437 		m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
438 					    EXEC_QUEUE_FLAG_KERNEL |
439 					    EXEC_QUEUE_FLAG_PERMANENT |
440 					    EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
441 	} else {
442 		m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
443 						  XE_ENGINE_CLASS_COPY,
444 						  EXEC_QUEUE_FLAG_KERNEL |
445 						  EXEC_QUEUE_FLAG_PERMANENT, 0);
446 	}
447 	if (IS_ERR(m->q)) {
448 		xe_vm_close_and_put(vm);
449 		return ERR_CAST(m->q);
450 	}
451 
452 	mutex_init(&m->job_mutex);
453 	fs_reclaim_acquire(GFP_KERNEL);
454 	might_lock(&m->job_mutex);
455 	fs_reclaim_release(GFP_KERNEL);
456 
457 	err = devm_add_action_or_reset(xe->drm.dev, xe_migrate_fini, m);
458 	if (err)
459 		return ERR_PTR(err);
460 
461 	if (IS_DGFX(xe)) {
462 		if (xe_migrate_needs_ccs_emit(xe))
463 			/* min chunk size corresponds to 4K of CCS Metadata */
464 			m->min_chunk_size = SZ_4K * SZ_64K /
465 				xe_device_ccs_bytes(xe, SZ_64K);
466 		else
467 			/* Somewhat arbitrary to avoid a huge amount of blits */
468 			m->min_chunk_size = SZ_64K;
469 		m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
470 		drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
471 			(unsigned long long)m->min_chunk_size);
472 	}
473 
474 	return m;
475 }
476 
477 static u64 max_mem_transfer_per_pass(struct xe_device *xe)
478 {
479 	if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
480 		return MAX_CCS_LIMITED_TRANSFER;
481 
482 	return MAX_PREEMPTDISABLE_TRANSFER;
483 }
484 
485 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
486 {
487 	struct xe_device *xe = tile_to_xe(m->tile);
488 	u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
489 
490 	if (mem_type_is_vram(cur->mem_type)) {
491 		/*
492 		 * VRAM we want to blit in chunks with sizes aligned to
493 		 * min_chunk_size in order for the offset to CCS metadata to be
494 		 * page-aligned. If it's the last chunk it may be smaller.
495 		 *
496 		 * Another constraint is that we need to limit the blit to
497 		 * the VRAM block size, unless size is smaller than
498 		 * min_chunk_size.
499 		 */
500 		u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
501 
502 		size = min_t(u64, size, chunk);
503 		if (size > m->min_chunk_size)
504 			size = round_down(size, m->min_chunk_size);
505 	}
506 
507 	return size;
508 }
509 
510 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
511 {
512 	/* If the chunk is not fragmented, allow identity map. */
513 	return cur->size >= size;
514 }
515 
516 #define PTE_UPDATE_FLAG_IS_VRAM		BIT(0)
517 #define PTE_UPDATE_FLAG_IS_COMP_PTE	BIT(1)
518 
519 static u32 pte_update_size(struct xe_migrate *m,
520 			   u32 flags,
521 			   struct ttm_resource *res,
522 			   struct xe_res_cursor *cur,
523 			   u64 *L0, u64 *L0_ofs, u32 *L0_pt,
524 			   u32 cmd_size, u32 pt_ofs, u32 avail_pts)
525 {
526 	u32 cmds = 0;
527 	bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags;
528 	bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags;
529 
530 	*L0_pt = pt_ofs;
531 	if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
532 		/* Offset into identity map. */
533 		*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
534 					      cur->start + vram_region_gpu_offset(res),
535 					      is_comp_pte);
536 		cmds += cmd_size;
537 	} else {
538 		/* Clip L0 to available size */
539 		u64 size = min(*L0, (u64)avail_pts * SZ_2M);
540 		u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;
541 
542 		*L0 = size;
543 		*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
544 
545 		/* MI_STORE_DATA_IMM */
546 		cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
547 
548 		/* PDE qwords */
549 		cmds += num_4k_pages * 2;
550 
551 		/* Each chunk has a single blit command */
552 		cmds += cmd_size;
553 	}
554 
555 	return cmds;
556 }
557 
558 static void emit_pte(struct xe_migrate *m,
559 		     struct xe_bb *bb, u32 at_pt,
560 		     bool is_vram, bool is_comp_pte,
561 		     struct xe_res_cursor *cur,
562 		     u32 size, struct ttm_resource *res)
563 {
564 	struct xe_device *xe = tile_to_xe(m->tile);
565 	struct xe_vm *vm = m->q->vm;
566 	u16 pat_index;
567 	u32 ptes;
568 	u64 ofs = (u64)at_pt * XE_PAGE_SIZE;
569 	u64 cur_ofs;
570 
571 	/* Indirect access needs compression enabled uncached PAT index */
572 	if (GRAPHICS_VERx100(xe) >= 2000)
573 		pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
574 					  xe->pat.idx[XE_CACHE_WB];
575 	else
576 		pat_index = xe->pat.idx[XE_CACHE_WB];
577 
578 	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
579 
580 	while (ptes) {
581 		u32 chunk = min(MAX_PTE_PER_SDI, ptes);
582 
583 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
584 		bb->cs[bb->len++] = ofs;
585 		bb->cs[bb->len++] = 0;
586 
587 		cur_ofs = ofs;
588 		ofs += chunk * 8;
589 		ptes -= chunk;
590 
591 		while (chunk--) {
592 			u64 addr, flags = 0;
593 			bool devmem = false;
594 
595 			addr = xe_res_dma(cur) & PAGE_MASK;
596 			if (is_vram) {
597 				if (vm->flags & XE_VM_FLAG_64K) {
598 					u64 va = cur_ofs * XE_PAGE_SIZE / 8;
599 
600 					xe_assert(xe, (va & (SZ_64K - 1)) ==
601 						  (addr & (SZ_64K - 1)));
602 
603 					flags |= XE_PTE_PS64;
604 				}
605 
606 				addr += vram_region_gpu_offset(res);
607 				devmem = true;
608 			}
609 
610 			addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
611 							   addr, pat_index,
612 							   0, devmem, flags);
613 			bb->cs[bb->len++] = lower_32_bits(addr);
614 			bb->cs[bb->len++] = upper_32_bits(addr);
615 
616 			xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
617 			cur_ofs += 8;
618 		}
619 	}
620 }
621 
622 #define EMIT_COPY_CCS_DW 5
623 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
624 			  u64 dst_ofs, bool dst_is_indirect,
625 			  u64 src_ofs, bool src_is_indirect,
626 			  u32 size)
627 {
628 	struct xe_device *xe = gt_to_xe(gt);
629 	u32 *cs = bb->cs + bb->len;
630 	u32 num_ccs_blks;
631 	u32 num_pages;
632 	u32 ccs_copy_size;
633 	u32 mocs;
634 
635 	if (GRAPHICS_VERx100(xe) >= 2000) {
636 		num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
637 		xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
638 
639 		ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
640 		mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
641 
642 	} else {
643 		num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
644 					    NUM_CCS_BYTES_PER_BLOCK);
645 		xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
646 
647 		ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
648 		mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
649 	}
650 
651 	*cs++ = XY_CTRL_SURF_COPY_BLT |
652 		(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
653 		(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
654 		ccs_copy_size;
655 	*cs++ = lower_32_bits(src_ofs);
656 	*cs++ = upper_32_bits(src_ofs) | mocs;
657 	*cs++ = lower_32_bits(dst_ofs);
658 	*cs++ = upper_32_bits(dst_ofs) | mocs;
659 
660 	bb->len = cs - bb->cs;
661 }
662 
663 #define EMIT_COPY_DW 10
664 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
665 		      u64 src_ofs, u64 dst_ofs, unsigned int size,
666 		      unsigned int pitch)
667 {
668 	struct xe_device *xe = gt_to_xe(gt);
669 	u32 mocs = 0;
670 	u32 tile_y = 0;
671 
672 	xe_gt_assert(gt, size / pitch <= S16_MAX);
673 	xe_gt_assert(gt, pitch / 4 <= S16_MAX);
674 	xe_gt_assert(gt, pitch <= U16_MAX);
675 
676 	if (GRAPHICS_VER(xe) >= 20)
677 		mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
678 
679 	if (GRAPHICS_VERx100(xe) >= 1250)
680 		tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
681 
682 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
683 	bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
684 	bb->cs[bb->len++] = 0;
685 	bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
686 	bb->cs[bb->len++] = lower_32_bits(dst_ofs);
687 	bb->cs[bb->len++] = upper_32_bits(dst_ofs);
688 	bb->cs[bb->len++] = 0;
689 	bb->cs[bb->len++] = pitch | mocs;
690 	bb->cs[bb->len++] = lower_32_bits(src_ofs);
691 	bb->cs[bb->len++] = upper_32_bits(src_ofs);
692 }
693 
694 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
695 {
696 	return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
697 }
698 
699 static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
700 			       struct xe_bb *bb,
701 			       u64 src_ofs, bool src_is_indirect,
702 			       u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
703 			       u64 ccs_ofs, bool copy_ccs)
704 {
705 	struct xe_gt *gt = m->tile->primary_gt;
706 	u32 flush_flags = 0;
707 
708 	if (!copy_ccs && dst_is_indirect) {
709 		/*
710 		 * If the src is already in vram, then it should already
711 		 * have been cleared by us, or has been populated by the
712 		 * user. Make sure we copy the CCS aux state as-is.
713 		 *
714 		 * Otherwise if the bo doesn't have any CCS metadata attached,
715 		 * we still need to clear it for security reasons.
716 		 */
717 		u64 ccs_src_ofs =  src_is_indirect ? src_ofs : m->cleared_mem_ofs;
718 
719 		emit_copy_ccs(gt, bb,
720 			      dst_ofs, true,
721 			      ccs_src_ofs, src_is_indirect, dst_size);
722 
723 		flush_flags = MI_FLUSH_DW_CCS;
724 	} else if (copy_ccs) {
725 		if (!src_is_indirect)
726 			src_ofs = ccs_ofs;
727 		else if (!dst_is_indirect)
728 			dst_ofs = ccs_ofs;
729 
730 		xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
731 
732 		emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
733 			      src_is_indirect, dst_size);
734 		if (dst_is_indirect)
735 			flush_flags = MI_FLUSH_DW_CCS;
736 	}
737 
738 	return flush_flags;
739 }
740 
741 /**
742  * xe_migrate_copy() - Copy content of TTM resources.
743  * @m: The migration context.
744  * @src_bo: The buffer object @src is currently bound to.
745  * @dst_bo: If copying between resources created for the same bo, set this to
746  * the same value as @src_bo. If copying between buffer objects, set it to
747  * the buffer object @dst is currently bound to.
748  * @src: The source TTM resource.
749  * @dst: The dst TTM resource.
750  * @copy_only_ccs: If true copy only CCS metadata
751  *
752  * Copies the contents of @src to @dst: On flat CCS devices,
753  * the CCS metadata is copied as well if needed, or if not present,
754  * the CCS metadata of @dst is cleared for security reasons.
755  *
756  * Return: Pointer to a dma_fence representing the last copy batch, or
757  * an error pointer on failure. If there is a failure, any copy operation
758  * started by the function call has been synced.
759  */
760 struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
761 				  struct xe_bo *src_bo,
762 				  struct xe_bo *dst_bo,
763 				  struct ttm_resource *src,
764 				  struct ttm_resource *dst,
765 				  bool copy_only_ccs)
766 {
767 	struct xe_gt *gt = m->tile->primary_gt;
768 	struct xe_device *xe = gt_to_xe(gt);
769 	struct dma_fence *fence = NULL;
770 	u64 size = src_bo->size;
771 	struct xe_res_cursor src_it, dst_it, ccs_it;
772 	u64 src_L0_ofs, dst_L0_ofs;
773 	u32 src_L0_pt, dst_L0_pt;
774 	u64 src_L0, dst_L0;
775 	int pass = 0;
776 	int err;
777 	bool src_is_pltt = src->mem_type == XE_PL_TT;
778 	bool dst_is_pltt = dst->mem_type == XE_PL_TT;
779 	bool src_is_vram = mem_type_is_vram(src->mem_type);
780 	bool dst_is_vram = mem_type_is_vram(dst->mem_type);
781 	bool type_device = src_bo->ttm.type == ttm_bo_type_device;
782 	bool needs_ccs_emit = type_device && xe_migrate_needs_ccs_emit(xe);
783 	bool copy_ccs = xe_device_has_flat_ccs(xe) &&
784 		xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
785 	bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
786 	bool use_comp_pat = type_device && xe_device_has_flat_ccs(xe) &&
787 		GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram;
788 
789 	/* Copying CCS between two different BOs is not supported yet. */
790 	if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
791 		return ERR_PTR(-EINVAL);
792 
793 	if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
794 		return ERR_PTR(-EINVAL);
795 
796 	if (!src_is_vram)
797 		xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
798 	else
799 		xe_res_first(src, 0, size, &src_it);
800 	if (!dst_is_vram)
801 		xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
802 	else
803 		xe_res_first(dst, 0, size, &dst_it);
804 
805 	if (copy_system_ccs)
806 		xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
807 				PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
808 				&ccs_it);
809 
810 	while (size) {
811 		u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
812 		struct xe_sched_job *job;
813 		struct xe_bb *bb;
814 		u32 flush_flags = 0;
815 		u32 update_idx;
816 		u64 ccs_ofs, ccs_size;
817 		u32 ccs_pt;
818 		u32 pte_flags;
819 
820 		bool usm = xe->info.has_usm;
821 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
822 
823 		src_L0 = xe_migrate_res_sizes(m, &src_it);
824 		dst_L0 = xe_migrate_res_sizes(m, &dst_it);
825 
826 		drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
827 			pass++, src_L0, dst_L0);
828 
829 		src_L0 = min(src_L0, dst_L0);
830 
831 		pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
832 		pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0;
833 		batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0,
834 					      &src_L0_ofs, &src_L0_pt, 0, 0,
835 					      avail_pts);
836 
837 		pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
838 		batch_size += pte_update_size(m, pte_flags, dst, &dst_it, &src_L0,
839 					      &dst_L0_ofs, &dst_L0_pt, 0,
840 					      avail_pts, avail_pts);
841 
842 		if (copy_system_ccs) {
843 			xe_assert(xe, type_device);
844 			ccs_size = xe_device_ccs_bytes(xe, src_L0);
845 			batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size,
846 						      &ccs_ofs, &ccs_pt, 0,
847 						      2 * avail_pts,
848 						      avail_pts);
849 			xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
850 		}
851 
852 		/* Add copy commands size here */
853 		batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
854 			((needs_ccs_emit ? EMIT_COPY_CCS_DW : 0));
855 
856 		bb = xe_bb_new(gt, batch_size, usm);
857 		if (IS_ERR(bb)) {
858 			err = PTR_ERR(bb);
859 			goto err_sync;
860 		}
861 
862 		if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
863 			xe_res_next(&src_it, src_L0);
864 		else
865 			emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs,
866 				 &src_it, src_L0, src);
867 
868 		if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
869 			xe_res_next(&dst_it, src_L0);
870 		else
871 			emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
872 				 &dst_it, src_L0, dst);
873 
874 		if (copy_system_ccs)
875 			emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
876 
877 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
878 		update_idx = bb->len;
879 
880 		if (!copy_only_ccs)
881 			emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
882 
883 		if (needs_ccs_emit)
884 			flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
885 							  IS_DGFX(xe) ? src_is_vram : src_is_pltt,
886 							  dst_L0_ofs,
887 							  IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
888 							  src_L0, ccs_ofs, copy_ccs);
889 
890 		job = xe_bb_create_migration_job(m->q, bb,
891 						 xe_migrate_batch_base(m, usm),
892 						 update_idx);
893 		if (IS_ERR(job)) {
894 			err = PTR_ERR(job);
895 			goto err;
896 		}
897 
898 		xe_sched_job_add_migrate_flush(job, flush_flags);
899 		if (!fence) {
900 			err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv,
901 						    DMA_RESV_USAGE_BOOKKEEP);
902 			if (!err && src_bo != dst_bo)
903 				err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv,
904 							    DMA_RESV_USAGE_BOOKKEEP);
905 			if (err)
906 				goto err_job;
907 		}
908 
909 		mutex_lock(&m->job_mutex);
910 		xe_sched_job_arm(job);
911 		dma_fence_put(fence);
912 		fence = dma_fence_get(&job->drm.s_fence->finished);
913 		xe_sched_job_push(job);
914 
915 		dma_fence_put(m->fence);
916 		m->fence = dma_fence_get(fence);
917 
918 		mutex_unlock(&m->job_mutex);
919 
920 		xe_bb_free(bb, fence);
921 		size -= src_L0;
922 		continue;
923 
924 err_job:
925 		xe_sched_job_put(job);
926 err:
927 		xe_bb_free(bb, NULL);
928 
929 err_sync:
930 		/* Sync partial copy if any. FIXME: under job_mutex? */
931 		if (fence) {
932 			dma_fence_wait(fence, false);
933 			dma_fence_put(fence);
934 		}
935 
936 		return ERR_PTR(err);
937 	}
938 
939 	return fence;
940 }
941 
942 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
943 				 u32 size, u32 pitch)
944 {
945 	struct xe_device *xe = gt_to_xe(gt);
946 	u32 *cs = bb->cs + bb->len;
947 	u32 len = PVC_MEM_SET_CMD_LEN_DW;
948 
949 	*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
950 	*cs++ = pitch - 1;
951 	*cs++ = (size / pitch) - 1;
952 	*cs++ = pitch - 1;
953 	*cs++ = lower_32_bits(src_ofs);
954 	*cs++ = upper_32_bits(src_ofs);
955 	if (GRAPHICS_VERx100(xe) >= 2000)
956 		*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
957 	else
958 		*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
959 
960 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
961 
962 	bb->len += len;
963 }
964 
965 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
966 				 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
967 {
968 	struct xe_device *xe = gt_to_xe(gt);
969 	u32 *cs = bb->cs + bb->len;
970 	u32 len = XY_FAST_COLOR_BLT_DW;
971 
972 	if (GRAPHICS_VERx100(xe) < 1250)
973 		len = 11;
974 
975 	*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
976 		(len - 2);
977 	if (GRAPHICS_VERx100(xe) >= 2000)
978 		*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
979 			(pitch - 1);
980 	else
981 		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
982 			(pitch - 1);
983 	*cs++ = 0;
984 	*cs++ = (size / pitch) << 16 | pitch / 4;
985 	*cs++ = lower_32_bits(src_ofs);
986 	*cs++ = upper_32_bits(src_ofs);
987 	*cs++ = (is_vram ? 0x0 : 0x1) <<  XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
988 	*cs++ = 0;
989 	*cs++ = 0;
990 	*cs++ = 0;
991 	*cs++ = 0;
992 
993 	if (len > 11) {
994 		*cs++ = 0;
995 		*cs++ = 0;
996 		*cs++ = 0;
997 		*cs++ = 0;
998 		*cs++ = 0;
999 	}
1000 
1001 	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
1002 
1003 	bb->len += len;
1004 }
1005 
1006 static bool has_service_copy_support(struct xe_gt *gt)
1007 {
1008 	/*
1009 	 * What we care about is whether the architecture was designed with
1010 	 * service copy functionality (specifically the new MEM_SET / MEM_COPY
1011 	 * instructions) so check the architectural engine list rather than the
1012 	 * actual list since these instructions are usable on BCS0 even if
1013 	 * all of the actual service copy engines (BCS1-BCS8) have been fused
1014 	 * off.
1015 	 */
1016 	return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
1017 					      XE_HW_ENGINE_BCS1);
1018 }
1019 
1020 static u32 emit_clear_cmd_len(struct xe_gt *gt)
1021 {
1022 	if (has_service_copy_support(gt))
1023 		return PVC_MEM_SET_CMD_LEN_DW;
1024 	else
1025 		return XY_FAST_COLOR_BLT_DW;
1026 }
1027 
1028 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
1029 		       u32 size, u32 pitch, bool is_vram)
1030 {
1031 	if (has_service_copy_support(gt))
1032 		emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
1033 	else
1034 		emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
1035 				     is_vram);
1036 }
1037 
1038 /**
1039  * xe_migrate_clear() - Copy content of TTM resources.
1040  * @m: The migration context.
1041  * @bo: The buffer object @dst is currently bound to.
1042  * @dst: The dst TTM resource to be cleared.
1043  * @clear_flags: flags to specify which data to clear: CCS, BO, or both.
1044  *
1045  * Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set.
1046  * On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA.
1047  * Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata.
1048  * TODO: Eliminate the @bo argument.
1049  *
1050  * Return: Pointer to a dma_fence representing the last clear batch, or
1051  * an error pointer on failure. If there is a failure, any clear operation
1052  * started by the function call has been synced.
1053  */
1054 struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
1055 				   struct xe_bo *bo,
1056 				   struct ttm_resource *dst,
1057 				   u32 clear_flags)
1058 {
1059 	bool clear_vram = mem_type_is_vram(dst->mem_type);
1060 	bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags;
1061 	bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags;
1062 	struct xe_gt *gt = m->tile->primary_gt;
1063 	struct xe_device *xe = gt_to_xe(gt);
1064 	bool clear_only_system_ccs = false;
1065 	struct dma_fence *fence = NULL;
1066 	u64 size = bo->size;
1067 	struct xe_res_cursor src_it;
1068 	struct ttm_resource *src = dst;
1069 	int err;
1070 
1071 	if (WARN_ON(!clear_bo_data && !clear_ccs))
1072 		return NULL;
1073 
1074 	if (!clear_bo_data && clear_ccs && !IS_DGFX(xe))
1075 		clear_only_system_ccs = true;
1076 
1077 	if (!clear_vram)
1078 		xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
1079 	else
1080 		xe_res_first(src, 0, bo->size, &src_it);
1081 
1082 	while (size) {
1083 		u64 clear_L0_ofs;
1084 		u32 clear_L0_pt;
1085 		u32 flush_flags = 0;
1086 		u64 clear_L0;
1087 		struct xe_sched_job *job;
1088 		struct xe_bb *bb;
1089 		u32 batch_size, update_idx;
1090 		u32 pte_flags;
1091 
1092 		bool usm = xe->info.has_usm;
1093 		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1094 
1095 		clear_L0 = xe_migrate_res_sizes(m, &src_it);
1096 
1097 		/* Calculate final sizes and batch size.. */
1098 		pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
1099 		batch_size = 2 +
1100 			pte_update_size(m, pte_flags, src, &src_it,
1101 					&clear_L0, &clear_L0_ofs, &clear_L0_pt,
1102 					clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0,
1103 					avail_pts);
1104 
1105 		if (xe_migrate_needs_ccs_emit(xe))
1106 			batch_size += EMIT_COPY_CCS_DW;
1107 
1108 		/* Clear commands */
1109 
1110 		if (WARN_ON_ONCE(!clear_L0))
1111 			break;
1112 
1113 		bb = xe_bb_new(gt, batch_size, usm);
1114 		if (IS_ERR(bb)) {
1115 			err = PTR_ERR(bb);
1116 			goto err_sync;
1117 		}
1118 
1119 		size -= clear_L0;
1120 		/* Preemption is enabled again by the ring ops. */
1121 		if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
1122 			xe_res_next(&src_it, clear_L0);
1123 		else
1124 			emit_pte(m, bb, clear_L0_pt, clear_vram, clear_only_system_ccs,
1125 				 &src_it, clear_L0, dst);
1126 
1127 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1128 		update_idx = bb->len;
1129 
1130 		if (clear_bo_data)
1131 			emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
1132 
1133 		if (xe_migrate_needs_ccs_emit(xe)) {
1134 			emit_copy_ccs(gt, bb, clear_L0_ofs, true,
1135 				      m->cleared_mem_ofs, false, clear_L0);
1136 			flush_flags = MI_FLUSH_DW_CCS;
1137 		}
1138 
1139 		job = xe_bb_create_migration_job(m->q, bb,
1140 						 xe_migrate_batch_base(m, usm),
1141 						 update_idx);
1142 		if (IS_ERR(job)) {
1143 			err = PTR_ERR(job);
1144 			goto err;
1145 		}
1146 
1147 		xe_sched_job_add_migrate_flush(job, flush_flags);
1148 		if (!fence) {
1149 			/*
1150 			 * There can't be anything userspace related at this
1151 			 * point, so we just need to respect any potential move
1152 			 * fences, which are always tracked as
1153 			 * DMA_RESV_USAGE_KERNEL.
1154 			 */
1155 			err = xe_sched_job_add_deps(job, bo->ttm.base.resv,
1156 						    DMA_RESV_USAGE_KERNEL);
1157 			if (err)
1158 				goto err_job;
1159 		}
1160 
1161 		mutex_lock(&m->job_mutex);
1162 		xe_sched_job_arm(job);
1163 		dma_fence_put(fence);
1164 		fence = dma_fence_get(&job->drm.s_fence->finished);
1165 		xe_sched_job_push(job);
1166 
1167 		dma_fence_put(m->fence);
1168 		m->fence = dma_fence_get(fence);
1169 
1170 		mutex_unlock(&m->job_mutex);
1171 
1172 		xe_bb_free(bb, fence);
1173 		continue;
1174 
1175 err_job:
1176 		xe_sched_job_put(job);
1177 err:
1178 		xe_bb_free(bb, NULL);
1179 err_sync:
1180 		/* Sync partial copies if any. FIXME: job_mutex? */
1181 		if (fence) {
1182 			dma_fence_wait(fence, false);
1183 			dma_fence_put(fence);
1184 		}
1185 
1186 		return ERR_PTR(err);
1187 	}
1188 
1189 	if (clear_ccs)
1190 		bo->ccs_cleared = true;
1191 
1192 	return fence;
1193 }
1194 
1195 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1196 			  const struct xe_vm_pgtable_update_op *pt_op,
1197 			  const struct xe_vm_pgtable_update *update,
1198 			  struct xe_migrate_pt_update *pt_update)
1199 {
1200 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1201 	u32 chunk;
1202 	u32 ofs = update->ofs, size = update->qwords;
1203 
1204 	/*
1205 	 * If we have 512 entries (max), we would populate it ourselves,
1206 	 * and update the PDE above it to the new pointer.
1207 	 * The only time this can only happen if we have to update the top
1208 	 * PDE. This requires a BO that is almost vm->size big.
1209 	 *
1210 	 * This shouldn't be possible in practice.. might change when 16K
1211 	 * pages are used. Hence the assert.
1212 	 */
1213 	xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
1214 	if (!ppgtt_ofs)
1215 		ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1216 						xe_bo_addr(update->pt_bo, 0,
1217 							   XE_PAGE_SIZE), false);
1218 
1219 	do {
1220 		u64 addr = ppgtt_ofs + ofs * 8;
1221 
1222 		chunk = min(size, MAX_PTE_PER_SDI);
1223 
1224 		/* Ensure populatefn can do memset64 by aligning bb->cs */
1225 		if (!(bb->len & 1))
1226 			bb->cs[bb->len++] = MI_NOOP;
1227 
1228 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1229 		bb->cs[bb->len++] = lower_32_bits(addr);
1230 		bb->cs[bb->len++] = upper_32_bits(addr);
1231 		if (pt_op->bind)
1232 			ops->populate(pt_update, tile, NULL, bb->cs + bb->len,
1233 				      ofs, chunk, update);
1234 		else
1235 			ops->clear(pt_update, tile, NULL, bb->cs + bb->len,
1236 				   ofs, chunk, update);
1237 
1238 		bb->len += chunk * 2;
1239 		ofs += chunk;
1240 		size -= chunk;
1241 	} while (size);
1242 }
1243 
1244 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1245 {
1246 	return xe_vm_get(m->q->vm);
1247 }
1248 
1249 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1250 struct migrate_test_params {
1251 	struct xe_test_priv base;
1252 	bool force_gpu;
1253 };
1254 
1255 #define to_migrate_test_params(_priv) \
1256 	container_of(_priv, struct migrate_test_params, base)
1257 #endif
1258 
1259 static struct dma_fence *
1260 xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1261 			       struct xe_migrate_pt_update *pt_update)
1262 {
1263 	XE_TEST_DECLARE(struct migrate_test_params *test =
1264 			to_migrate_test_params
1265 			(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1266 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1267 	struct xe_vm *vm = pt_update->vops->vm;
1268 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1269 		&pt_update->vops->pt_update_ops[pt_update->tile_id];
1270 	int err;
1271 	u32 i, j;
1272 
1273 	if (XE_TEST_ONLY(test && test->force_gpu))
1274 		return ERR_PTR(-ETIME);
1275 
1276 	if (ops->pre_commit) {
1277 		pt_update->job = NULL;
1278 		err = ops->pre_commit(pt_update);
1279 		if (err)
1280 			return ERR_PTR(err);
1281 	}
1282 
1283 	for (i = 0; i < pt_update_ops->num_ops; ++i) {
1284 		const struct xe_vm_pgtable_update_op *pt_op =
1285 			&pt_update_ops->ops[i];
1286 
1287 		for (j = 0; j < pt_op->num_entries; j++) {
1288 			const struct xe_vm_pgtable_update *update =
1289 				&pt_op->entries[j];
1290 
1291 			if (pt_op->bind)
1292 				ops->populate(pt_update, m->tile,
1293 					      &update->pt_bo->vmap, NULL,
1294 					      update->ofs, update->qwords,
1295 					      update);
1296 			else
1297 				ops->clear(pt_update, m->tile,
1298 					   &update->pt_bo->vmap, NULL,
1299 					   update->ofs, update->qwords, update);
1300 		}
1301 	}
1302 
1303 	trace_xe_vm_cpu_bind(vm);
1304 	xe_device_wmb(vm->xe);
1305 
1306 	return dma_fence_get_stub();
1307 }
1308 
1309 static struct dma_fence *
1310 __xe_migrate_update_pgtables(struct xe_migrate *m,
1311 			     struct xe_migrate_pt_update *pt_update,
1312 			     struct xe_vm_pgtable_update_ops *pt_update_ops)
1313 {
1314 	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1315 	struct xe_tile *tile = m->tile;
1316 	struct xe_gt *gt = tile->primary_gt;
1317 	struct xe_device *xe = tile_to_xe(tile);
1318 	struct xe_sched_job *job;
1319 	struct dma_fence *fence;
1320 	struct drm_suballoc *sa_bo = NULL;
1321 	struct xe_bb *bb;
1322 	u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0;
1323 	u32 num_updates = 0, current_update = 0;
1324 	u64 addr;
1325 	int err = 0;
1326 	bool is_migrate = pt_update_ops->q == m->q;
1327 	bool usm = is_migrate && xe->info.has_usm;
1328 
1329 	for (i = 0; i < pt_update_ops->num_ops; ++i) {
1330 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
1331 		struct xe_vm_pgtable_update *updates = pt_op->entries;
1332 
1333 		num_updates += pt_op->num_entries;
1334 		for (j = 0; j < pt_op->num_entries; ++j) {
1335 			u32 num_cmds = DIV_ROUND_UP(updates[j].qwords,
1336 						    MAX_PTE_PER_SDI);
1337 
1338 			/* align noop + MI_STORE_DATA_IMM cmd prefix */
1339 			batch_size += 4 * num_cmds + updates[j].qwords * 2;
1340 		}
1341 	}
1342 
1343 	/* fixed + PTE entries */
1344 	if (IS_DGFX(xe))
1345 		batch_size += 2;
1346 	else
1347 		batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) +
1348 			num_updates * 2;
1349 
1350 	bb = xe_bb_new(gt, batch_size, usm);
1351 	if (IS_ERR(bb))
1352 		return ERR_CAST(bb);
1353 
1354 	/* For sysmem PTE's, need to map them in our hole.. */
1355 	if (!IS_DGFX(xe)) {
1356 		u16 pat_index = xe->pat.idx[XE_CACHE_WB];
1357 		u32 ptes, ofs;
1358 
1359 		ppgtt_ofs = NUM_KERNEL_PDE - 1;
1360 		if (!is_migrate) {
1361 			u32 num_units = DIV_ROUND_UP(num_updates,
1362 						     NUM_VMUSA_WRITES_PER_UNIT);
1363 
1364 			if (num_units > m->vm_update_sa.size) {
1365 				err = -ENOBUFS;
1366 				goto err_bb;
1367 			}
1368 			sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units,
1369 						 GFP_KERNEL, true, 0);
1370 			if (IS_ERR(sa_bo)) {
1371 				err = PTR_ERR(sa_bo);
1372 				goto err_bb;
1373 			}
1374 
1375 			ppgtt_ofs = NUM_KERNEL_PDE +
1376 				(drm_suballoc_soffset(sa_bo) /
1377 				 NUM_VMUSA_UNIT_PER_PAGE);
1378 			page_ofs = (drm_suballoc_soffset(sa_bo) %
1379 				    NUM_VMUSA_UNIT_PER_PAGE) *
1380 				VM_SA_UPDATE_UNIT_SIZE;
1381 		}
1382 
1383 		/* Map our PT's to gtt */
1384 		i = 0;
1385 		j = 0;
1386 		ptes = num_updates;
1387 		ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1388 		while (ptes) {
1389 			u32 chunk = min(MAX_PTE_PER_SDI, ptes);
1390 			u32 idx = 0;
1391 
1392 			bb->cs[bb->len++] = MI_STORE_DATA_IMM |
1393 				MI_SDI_NUM_QW(chunk);
1394 			bb->cs[bb->len++] = ofs;
1395 			bb->cs[bb->len++] = 0; /* upper_32_bits */
1396 
1397 			for (; i < pt_update_ops->num_ops; ++i) {
1398 				struct xe_vm_pgtable_update_op *pt_op =
1399 					&pt_update_ops->ops[i];
1400 				struct xe_vm_pgtable_update *updates = pt_op->entries;
1401 
1402 				for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) {
1403 					struct xe_vm *vm = pt_update->vops->vm;
1404 					struct xe_bo *pt_bo = updates[j].pt_bo;
1405 
1406 					if (idx == chunk)
1407 						goto next_cmd;
1408 
1409 					xe_tile_assert(tile, pt_bo->size == SZ_4K);
1410 
1411 					/* Map a PT at most once */
1412 					if (pt_bo->update_index < 0)
1413 						pt_bo->update_index = current_update;
1414 
1415 					addr = vm->pt_ops->pte_encode_bo(pt_bo, 0,
1416 									 pat_index, 0);
1417 					bb->cs[bb->len++] = lower_32_bits(addr);
1418 					bb->cs[bb->len++] = upper_32_bits(addr);
1419 				}
1420 
1421 				j = 0;
1422 			}
1423 
1424 next_cmd:
1425 			ptes -= chunk;
1426 			ofs += chunk * sizeof(u64);
1427 		}
1428 
1429 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1430 		update_idx = bb->len;
1431 
1432 		addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1433 			(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1434 		for (i = 0; i < pt_update_ops->num_ops; ++i) {
1435 			struct xe_vm_pgtable_update_op *pt_op =
1436 				&pt_update_ops->ops[i];
1437 			struct xe_vm_pgtable_update *updates = pt_op->entries;
1438 
1439 			for (j = 0; j < pt_op->num_entries; ++j) {
1440 				struct xe_bo *pt_bo = updates[j].pt_bo;
1441 
1442 				write_pgtable(tile, bb, addr +
1443 					      pt_bo->update_index * XE_PAGE_SIZE,
1444 					      pt_op, &updates[j], pt_update);
1445 			}
1446 		}
1447 	} else {
1448 		/* phys pages, no preamble required */
1449 		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1450 		update_idx = bb->len;
1451 
1452 		for (i = 0; i < pt_update_ops->num_ops; ++i) {
1453 			struct xe_vm_pgtable_update_op *pt_op =
1454 				&pt_update_ops->ops[i];
1455 			struct xe_vm_pgtable_update *updates = pt_op->entries;
1456 
1457 			for (j = 0; j < pt_op->num_entries; ++j)
1458 				write_pgtable(tile, bb, 0, pt_op, &updates[j],
1459 					      pt_update);
1460 		}
1461 	}
1462 
1463 	job = xe_bb_create_migration_job(pt_update_ops->q, bb,
1464 					 xe_migrate_batch_base(m, usm),
1465 					 update_idx);
1466 	if (IS_ERR(job)) {
1467 		err = PTR_ERR(job);
1468 		goto err_sa;
1469 	}
1470 
1471 	if (ops->pre_commit) {
1472 		pt_update->job = job;
1473 		err = ops->pre_commit(pt_update);
1474 		if (err)
1475 			goto err_job;
1476 	}
1477 	if (is_migrate)
1478 		mutex_lock(&m->job_mutex);
1479 
1480 	xe_sched_job_arm(job);
1481 	fence = dma_fence_get(&job->drm.s_fence->finished);
1482 	xe_sched_job_push(job);
1483 
1484 	if (is_migrate)
1485 		mutex_unlock(&m->job_mutex);
1486 
1487 	xe_bb_free(bb, fence);
1488 	drm_suballoc_free(sa_bo, fence);
1489 
1490 	return fence;
1491 
1492 err_job:
1493 	xe_sched_job_put(job);
1494 err_sa:
1495 	drm_suballoc_free(sa_bo, NULL);
1496 err_bb:
1497 	xe_bb_free(bb, NULL);
1498 	return ERR_PTR(err);
1499 }
1500 
1501 /**
1502  * xe_migrate_update_pgtables() - Pipelined page-table update
1503  * @m: The migrate context.
1504  * @pt_update: PT update arguments
1505  *
1506  * Perform a pipelined page-table update. The update descriptors are typically
1507  * built under the same lock critical section as a call to this function. If
1508  * using the default engine for the updates, they will be performed in the
1509  * order they grab the job_mutex. If different engines are used, external
1510  * synchronization is needed for overlapping updates to maintain page-table
1511  * consistency. Note that the meaning of "overlapping" is that the updates
1512  * touch the same page-table, which might be a higher-level page-directory.
1513  * If no pipelining is needed, then updates may be performed by the cpu.
1514  *
1515  * Return: A dma_fence that, when signaled, indicates the update completion.
1516  */
1517 struct dma_fence *
1518 xe_migrate_update_pgtables(struct xe_migrate *m,
1519 			   struct xe_migrate_pt_update *pt_update)
1520 
1521 {
1522 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1523 		&pt_update->vops->pt_update_ops[pt_update->tile_id];
1524 	struct dma_fence *fence;
1525 
1526 	fence =  xe_migrate_update_pgtables_cpu(m, pt_update);
1527 
1528 	/* -ETIME indicates a job is needed, anything else is legit error */
1529 	if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME)
1530 		return fence;
1531 
1532 	return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops);
1533 }
1534 
1535 /**
1536  * xe_migrate_wait() - Complete all operations using the xe_migrate context
1537  * @m: Migrate context to wait for.
1538  *
1539  * Waits until the GPU no longer uses the migrate context's default engine
1540  * or its page-table objects. FIXME: What about separate page-table update
1541  * engines?
1542  */
1543 void xe_migrate_wait(struct xe_migrate *m)
1544 {
1545 	if (m->fence)
1546 		dma_fence_wait(m->fence, false);
1547 }
1548 
1549 #if IS_ENABLED(CONFIG_DRM_XE_DEVMEM_MIRROR)
1550 static u32 pte_update_cmd_size(u64 size)
1551 {
1552 	u32 num_dword;
1553 	u64 entries = DIV_U64_ROUND_UP(size, XE_PAGE_SIZE);
1554 
1555 	XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER);
1556 	/*
1557 	 * MI_STORE_DATA_IMM command is used to update page table. Each
1558 	 * instruction can update maximumly 0x1ff pte entries. To update
1559 	 * n (n <= 0x1ff) pte entries, we need:
1560 	 * 1 dword for the MI_STORE_DATA_IMM command header (opcode etc)
1561 	 * 2 dword for the page table's physical location
1562 	 * 2*n dword for value of pte to fill (each pte entry is 2 dwords)
1563 	 */
1564 	num_dword = (1 + 2) * DIV_U64_ROUND_UP(entries, 0x1ff);
1565 	num_dword += entries * 2;
1566 
1567 	return num_dword;
1568 }
1569 
1570 static void build_pt_update_batch_sram(struct xe_migrate *m,
1571 				       struct xe_bb *bb, u32 pt_offset,
1572 				       dma_addr_t *sram_addr, u32 size)
1573 {
1574 	u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB];
1575 	u32 ptes;
1576 	int i = 0;
1577 
1578 	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
1579 	while (ptes) {
1580 		u32 chunk = min(0x1ffU, ptes);
1581 
1582 		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1583 		bb->cs[bb->len++] = pt_offset;
1584 		bb->cs[bb->len++] = 0;
1585 
1586 		pt_offset += chunk * 8;
1587 		ptes -= chunk;
1588 
1589 		while (chunk--) {
1590 			u64 addr = sram_addr[i++] & PAGE_MASK;
1591 
1592 			xe_tile_assert(m->tile, addr);
1593 			addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe,
1594 								 addr, pat_index,
1595 								 0, false, 0);
1596 			bb->cs[bb->len++] = lower_32_bits(addr);
1597 			bb->cs[bb->len++] = upper_32_bits(addr);
1598 		}
1599 	}
1600 }
1601 
1602 enum xe_migrate_copy_dir {
1603 	XE_MIGRATE_COPY_TO_VRAM,
1604 	XE_MIGRATE_COPY_TO_SRAM,
1605 };
1606 
1607 static struct dma_fence *xe_migrate_vram(struct xe_migrate *m,
1608 					 unsigned long npages,
1609 					 dma_addr_t *sram_addr, u64 vram_addr,
1610 					 const enum xe_migrate_copy_dir dir)
1611 {
1612 	struct xe_gt *gt = m->tile->primary_gt;
1613 	struct xe_device *xe = gt_to_xe(gt);
1614 	bool use_usm_batch = xe->info.has_usm;
1615 	struct dma_fence *fence = NULL;
1616 	u32 batch_size = 2;
1617 	u64 src_L0_ofs, dst_L0_ofs;
1618 	u64 round_update_size;
1619 	struct xe_sched_job *job;
1620 	struct xe_bb *bb;
1621 	u32 update_idx, pt_slot = 0;
1622 	int err;
1623 
1624 	if (npages * PAGE_SIZE > MAX_PREEMPTDISABLE_TRANSFER)
1625 		return ERR_PTR(-EINVAL);
1626 
1627 	round_update_size = npages * PAGE_SIZE;
1628 	batch_size += pte_update_cmd_size(round_update_size);
1629 	batch_size += EMIT_COPY_DW;
1630 
1631 	bb = xe_bb_new(gt, batch_size, use_usm_batch);
1632 	if (IS_ERR(bb)) {
1633 		err = PTR_ERR(bb);
1634 		return ERR_PTR(err);
1635 	}
1636 
1637 	build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE,
1638 				   sram_addr, round_update_size);
1639 
1640 	if (dir == XE_MIGRATE_COPY_TO_VRAM) {
1641 		src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0);
1642 		dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
1643 
1644 	} else {
1645 		src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
1646 		dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0);
1647 	}
1648 
1649 	bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1650 	update_idx = bb->len;
1651 
1652 	emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, round_update_size,
1653 		  XE_PAGE_SIZE);
1654 
1655 	job = xe_bb_create_migration_job(m->q, bb,
1656 					 xe_migrate_batch_base(m, use_usm_batch),
1657 					 update_idx);
1658 	if (IS_ERR(job)) {
1659 		err = PTR_ERR(job);
1660 		goto err;
1661 	}
1662 
1663 	xe_sched_job_add_migrate_flush(job, 0);
1664 
1665 	mutex_lock(&m->job_mutex);
1666 	xe_sched_job_arm(job);
1667 	fence = dma_fence_get(&job->drm.s_fence->finished);
1668 	xe_sched_job_push(job);
1669 
1670 	dma_fence_put(m->fence);
1671 	m->fence = dma_fence_get(fence);
1672 	mutex_unlock(&m->job_mutex);
1673 
1674 	xe_bb_free(bb, fence);
1675 
1676 	return fence;
1677 
1678 err:
1679 	xe_bb_free(bb, NULL);
1680 
1681 	return ERR_PTR(err);
1682 }
1683 
1684 /**
1685  * xe_migrate_to_vram() - Migrate to VRAM
1686  * @m: The migration context.
1687  * @npages: Number of pages to migrate.
1688  * @src_addr: Array of dma addresses (source of migrate)
1689  * @dst_addr: Device physical address of VRAM (destination of migrate)
1690  *
1691  * Copy from an array dma addresses to a VRAM device physical address
1692  *
1693  * Return: dma fence for migrate to signal completion on succees, ERR_PTR on
1694  * failure
1695  */
1696 struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
1697 				     unsigned long npages,
1698 				     dma_addr_t *src_addr,
1699 				     u64 dst_addr)
1700 {
1701 	return xe_migrate_vram(m, npages, src_addr, dst_addr,
1702 			       XE_MIGRATE_COPY_TO_VRAM);
1703 }
1704 
1705 /**
1706  * xe_migrate_from_vram() - Migrate from VRAM
1707  * @m: The migration context.
1708  * @npages: Number of pages to migrate.
1709  * @src_addr: Device physical address of VRAM (source of migrate)
1710  * @dst_addr: Array of dma addresses (destination of migrate)
1711  *
1712  * Copy from a VRAM device physical address to an array dma addresses
1713  *
1714  * Return: dma fence for migrate to signal completion on succees, ERR_PTR on
1715  * failure
1716  */
1717 struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
1718 				       unsigned long npages,
1719 				       u64 src_addr,
1720 				       dma_addr_t *dst_addr)
1721 {
1722 	return xe_migrate_vram(m, npages, dst_addr, src_addr,
1723 			       XE_MIGRATE_COPY_TO_SRAM);
1724 }
1725 
1726 #endif
1727 
1728 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1729 #include "tests/xe_migrate.c"
1730 #endif
1731