xref: /linux/drivers/gpu/drm/xe/xe_lrc.c (revision f86ad0ed620cb3c91ec7d5468e93ac68d727539d)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_lrc.h"
7 
8 #include <generated/xe_wa_oob.h>
9 
10 #include <linux/ascii85.h>
11 
12 #include "instructions/xe_mi_commands.h"
13 #include "instructions/xe_gfxpipe_commands.h"
14 #include "instructions/xe_gfx_state_commands.h"
15 #include "regs/xe_engine_regs.h"
16 #include "regs/xe_lrc_layout.h"
17 #include "xe_bb.h"
18 #include "xe_bo.h"
19 #include "xe_device.h"
20 #include "xe_drm_client.h"
21 #include "xe_exec_queue_types.h"
22 #include "xe_gt.h"
23 #include "xe_gt_printk.h"
24 #include "xe_hw_fence.h"
25 #include "xe_map.h"
26 #include "xe_memirq.h"
27 #include "xe_mmio.h"
28 #include "xe_sriov.h"
29 #include "xe_trace_lrc.h"
30 #include "xe_vm.h"
31 #include "xe_wa.h"
32 
33 #define LRC_VALID				BIT_ULL(0)
34 #define LRC_PRIVILEGE				BIT_ULL(8)
35 #define LRC_ADDRESSING_MODE			GENMASK_ULL(4, 3)
36 #define LRC_LEGACY_64B_CONTEXT			3
37 
38 #define LRC_ENGINE_CLASS			GENMASK_ULL(63, 61)
39 #define LRC_ENGINE_INSTANCE			GENMASK_ULL(53, 48)
40 
41 #define LRC_PPHWSP_SIZE				SZ_4K
42 #define LRC_INDIRECT_RING_STATE_SIZE		SZ_4K
43 #define LRC_WA_BB_SIZE				SZ_4K
44 
45 static struct xe_device *
46 lrc_to_xe(struct xe_lrc *lrc)
47 {
48 	return gt_to_xe(lrc->fence_ctx.gt);
49 }
50 
51 size_t xe_gt_lrc_size(struct xe_gt *gt, enum xe_engine_class class)
52 {
53 	struct xe_device *xe = gt_to_xe(gt);
54 	size_t size;
55 
56 	/* Per-process HW status page (PPHWSP) */
57 	size = LRC_PPHWSP_SIZE;
58 
59 	/* Engine context image */
60 	switch (class) {
61 	case XE_ENGINE_CLASS_RENDER:
62 		if (GRAPHICS_VER(xe) >= 20)
63 			size += 3 * SZ_4K;
64 		else
65 			size += 13 * SZ_4K;
66 		break;
67 	case XE_ENGINE_CLASS_COMPUTE:
68 		if (GRAPHICS_VER(xe) >= 20)
69 			size += 2 * SZ_4K;
70 		else
71 			size += 13 * SZ_4K;
72 		break;
73 	default:
74 		WARN(1, "Unknown engine class: %d", class);
75 		fallthrough;
76 	case XE_ENGINE_CLASS_COPY:
77 	case XE_ENGINE_CLASS_VIDEO_DECODE:
78 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
79 	case XE_ENGINE_CLASS_OTHER:
80 		size += 1 * SZ_4K;
81 	}
82 
83 	/* Add indirect ring state page */
84 	if (xe_gt_has_indirect_ring_state(gt))
85 		size += LRC_INDIRECT_RING_STATE_SIZE;
86 
87 	return size;
88 }
89 
90 /*
91  * The per-platform tables are u8-encoded in @data. Decode @data and set the
92  * addresses' offset and commands in @regs. The following encoding is used
93  * for each byte. There are 2 steps: decoding commands and decoding addresses.
94  *
95  * Commands:
96  * [7]: create NOPs - number of NOPs are set in lower bits
97  * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
98  *      MI_LRI_FORCE_POSTED
99  * [5:0]: Number of NOPs or registers to set values to in case of
100  *        MI_LOAD_REGISTER_IMM
101  *
102  * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
103  * number of registers. They are set by using the REG/REG16 macros: the former
104  * is used for offsets smaller than 0x200 while the latter is for values bigger
105  * than that. Those macros already set all the bits documented below correctly:
106  *
107  * [7]: When a register offset needs more than 6 bits, use additional bytes, to
108  *      follow, for the lower bits
109  * [6:0]: Register offset, without considering the engine base.
110  *
111  * This function only tweaks the commands and register offsets. Values are not
112  * filled out.
113  */
114 static void set_offsets(u32 *regs,
115 			const u8 *data,
116 			const struct xe_hw_engine *hwe)
117 #define NOP(x) (BIT(7) | (x))
118 #define LRI(count, flags) ((flags) << 6 | (count) | \
119 			   BUILD_BUG_ON_ZERO(count >= BIT(6)))
120 #define POSTED BIT(0)
121 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
122 #define REG16(x) \
123 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
124 	(((x) >> 2) & 0x7f)
125 {
126 	const u32 base = hwe->mmio_base;
127 
128 	while (*data) {
129 		u8 count, flags;
130 
131 		if (*data & BIT(7)) { /* skip */
132 			count = *data++ & ~BIT(7);
133 			regs += count;
134 			continue;
135 		}
136 
137 		count = *data & 0x3f;
138 		flags = *data >> 6;
139 		data++;
140 
141 		*regs = MI_LOAD_REGISTER_IMM | MI_LRI_NUM_REGS(count);
142 		if (flags & POSTED)
143 			*regs |= MI_LRI_FORCE_POSTED;
144 		*regs |= MI_LRI_LRM_CS_MMIO;
145 		regs++;
146 
147 		xe_gt_assert(hwe->gt, count);
148 		do {
149 			u32 offset = 0;
150 			u8 v;
151 
152 			do {
153 				v = *data++;
154 				offset <<= 7;
155 				offset |= v & ~BIT(7);
156 			} while (v & BIT(7));
157 
158 			regs[0] = base + (offset << 2);
159 			regs += 2;
160 		} while (--count);
161 	}
162 
163 	*regs = MI_BATCH_BUFFER_END | BIT(0);
164 }
165 
166 static const u8 gen12_xcs_offsets[] = {
167 	NOP(1),
168 	LRI(13, POSTED),
169 	REG16(0x244),
170 	REG(0x034),
171 	REG(0x030),
172 	REG(0x038),
173 	REG(0x03c),
174 	REG(0x168),
175 	REG(0x140),
176 	REG(0x110),
177 	REG(0x1c0),
178 	REG(0x1c4),
179 	REG(0x1c8),
180 	REG(0x180),
181 	REG16(0x2b4),
182 
183 	NOP(5),
184 	LRI(9, POSTED),
185 	REG16(0x3a8),
186 	REG16(0x28c),
187 	REG16(0x288),
188 	REG16(0x284),
189 	REG16(0x280),
190 	REG16(0x27c),
191 	REG16(0x278),
192 	REG16(0x274),
193 	REG16(0x270),
194 
195 	0
196 };
197 
198 static const u8 dg2_xcs_offsets[] = {
199 	NOP(1),
200 	LRI(15, POSTED),
201 	REG16(0x244),
202 	REG(0x034),
203 	REG(0x030),
204 	REG(0x038),
205 	REG(0x03c),
206 	REG(0x168),
207 	REG(0x140),
208 	REG(0x110),
209 	REG(0x1c0),
210 	REG(0x1c4),
211 	REG(0x1c8),
212 	REG(0x180),
213 	REG16(0x2b4),
214 	REG(0x120),
215 	REG(0x124),
216 
217 	NOP(1),
218 	LRI(9, POSTED),
219 	REG16(0x3a8),
220 	REG16(0x28c),
221 	REG16(0x288),
222 	REG16(0x284),
223 	REG16(0x280),
224 	REG16(0x27c),
225 	REG16(0x278),
226 	REG16(0x274),
227 	REG16(0x270),
228 
229 	0
230 };
231 
232 static const u8 gen12_rcs_offsets[] = {
233 	NOP(1),
234 	LRI(13, POSTED),
235 	REG16(0x244),
236 	REG(0x034),
237 	REG(0x030),
238 	REG(0x038),
239 	REG(0x03c),
240 	REG(0x168),
241 	REG(0x140),
242 	REG(0x110),
243 	REG(0x1c0),
244 	REG(0x1c4),
245 	REG(0x1c8),
246 	REG(0x180),
247 	REG16(0x2b4),
248 
249 	NOP(5),
250 	LRI(9, POSTED),
251 	REG16(0x3a8),
252 	REG16(0x28c),
253 	REG16(0x288),
254 	REG16(0x284),
255 	REG16(0x280),
256 	REG16(0x27c),
257 	REG16(0x278),
258 	REG16(0x274),
259 	REG16(0x270),
260 
261 	LRI(3, POSTED),
262 	REG(0x1b0),
263 	REG16(0x5a8),
264 	REG16(0x5ac),
265 
266 	NOP(6),
267 	LRI(1, 0),
268 	REG(0x0c8),
269 	NOP(3 + 9 + 1),
270 
271 	LRI(51, POSTED),
272 	REG16(0x588),
273 	REG16(0x588),
274 	REG16(0x588),
275 	REG16(0x588),
276 	REG16(0x588),
277 	REG16(0x588),
278 	REG(0x028),
279 	REG(0x09c),
280 	REG(0x0c0),
281 	REG(0x178),
282 	REG(0x17c),
283 	REG16(0x358),
284 	REG(0x170),
285 	REG(0x150),
286 	REG(0x154),
287 	REG(0x158),
288 	REG16(0x41c),
289 	REG16(0x600),
290 	REG16(0x604),
291 	REG16(0x608),
292 	REG16(0x60c),
293 	REG16(0x610),
294 	REG16(0x614),
295 	REG16(0x618),
296 	REG16(0x61c),
297 	REG16(0x620),
298 	REG16(0x624),
299 	REG16(0x628),
300 	REG16(0x62c),
301 	REG16(0x630),
302 	REG16(0x634),
303 	REG16(0x638),
304 	REG16(0x63c),
305 	REG16(0x640),
306 	REG16(0x644),
307 	REG16(0x648),
308 	REG16(0x64c),
309 	REG16(0x650),
310 	REG16(0x654),
311 	REG16(0x658),
312 	REG16(0x65c),
313 	REG16(0x660),
314 	REG16(0x664),
315 	REG16(0x668),
316 	REG16(0x66c),
317 	REG16(0x670),
318 	REG16(0x674),
319 	REG16(0x678),
320 	REG16(0x67c),
321 	REG(0x068),
322 	REG(0x084),
323 	NOP(1),
324 
325 	0
326 };
327 
328 static const u8 xehp_rcs_offsets[] = {
329 	NOP(1),
330 	LRI(13, POSTED),
331 	REG16(0x244),
332 	REG(0x034),
333 	REG(0x030),
334 	REG(0x038),
335 	REG(0x03c),
336 	REG(0x168),
337 	REG(0x140),
338 	REG(0x110),
339 	REG(0x1c0),
340 	REG(0x1c4),
341 	REG(0x1c8),
342 	REG(0x180),
343 	REG16(0x2b4),
344 
345 	NOP(5),
346 	LRI(9, POSTED),
347 	REG16(0x3a8),
348 	REG16(0x28c),
349 	REG16(0x288),
350 	REG16(0x284),
351 	REG16(0x280),
352 	REG16(0x27c),
353 	REG16(0x278),
354 	REG16(0x274),
355 	REG16(0x270),
356 
357 	LRI(3, POSTED),
358 	REG(0x1b0),
359 	REG16(0x5a8),
360 	REG16(0x5ac),
361 
362 	NOP(6),
363 	LRI(1, 0),
364 	REG(0x0c8),
365 
366 	0
367 };
368 
369 static const u8 dg2_rcs_offsets[] = {
370 	NOP(1),
371 	LRI(15, POSTED),
372 	REG16(0x244),
373 	REG(0x034),
374 	REG(0x030),
375 	REG(0x038),
376 	REG(0x03c),
377 	REG(0x168),
378 	REG(0x140),
379 	REG(0x110),
380 	REG(0x1c0),
381 	REG(0x1c4),
382 	REG(0x1c8),
383 	REG(0x180),
384 	REG16(0x2b4),
385 	REG(0x120),
386 	REG(0x124),
387 
388 	NOP(1),
389 	LRI(9, POSTED),
390 	REG16(0x3a8),
391 	REG16(0x28c),
392 	REG16(0x288),
393 	REG16(0x284),
394 	REG16(0x280),
395 	REG16(0x27c),
396 	REG16(0x278),
397 	REG16(0x274),
398 	REG16(0x270),
399 
400 	LRI(3, POSTED),
401 	REG(0x1b0),
402 	REG16(0x5a8),
403 	REG16(0x5ac),
404 
405 	NOP(6),
406 	LRI(1, 0),
407 	REG(0x0c8),
408 
409 	0
410 };
411 
412 static const u8 mtl_rcs_offsets[] = {
413 	NOP(1),
414 	LRI(15, POSTED),
415 	REG16(0x244),
416 	REG(0x034),
417 	REG(0x030),
418 	REG(0x038),
419 	REG(0x03c),
420 	REG(0x168),
421 	REG(0x140),
422 	REG(0x110),
423 	REG(0x1c0),
424 	REG(0x1c4),
425 	REG(0x1c8),
426 	REG(0x180),
427 	REG16(0x2b4),
428 	REG(0x120),
429 	REG(0x124),
430 
431 	NOP(1),
432 	LRI(9, POSTED),
433 	REG16(0x3a8),
434 	REG16(0x28c),
435 	REG16(0x288),
436 	REG16(0x284),
437 	REG16(0x280),
438 	REG16(0x27c),
439 	REG16(0x278),
440 	REG16(0x274),
441 	REG16(0x270),
442 
443 	NOP(2),
444 	LRI(2, POSTED),
445 	REG16(0x5a8),
446 	REG16(0x5ac),
447 
448 	NOP(6),
449 	LRI(1, 0),
450 	REG(0x0c8),
451 
452 	0
453 };
454 
455 #define XE2_CTX_COMMON \
456 	NOP(1),                 /* [0x00] */ \
457 	LRI(15, POSTED),        /* [0x01] */ \
458 	REG16(0x244),           /* [0x02] CTXT_SR_CTL */ \
459 	REG(0x034),             /* [0x04] RING_BUFFER_HEAD */ \
460 	REG(0x030),             /* [0x06] RING_BUFFER_TAIL */ \
461 	REG(0x038),             /* [0x08] RING_BUFFER_START */ \
462 	REG(0x03c),             /* [0x0a] RING_BUFFER_CONTROL */ \
463 	REG(0x168),             /* [0x0c] BB_ADDR_UDW */ \
464 	REG(0x140),             /* [0x0e] BB_ADDR */ \
465 	REG(0x110),             /* [0x10] BB_STATE */ \
466 	REG(0x1c0),             /* [0x12] BB_PER_CTX_PTR */ \
467 	REG(0x1c4),             /* [0x14] RCS_INDIRECT_CTX */ \
468 	REG(0x1c8),             /* [0x16] RCS_INDIRECT_CTX_OFFSET */ \
469 	REG(0x180),             /* [0x18] CCID */ \
470 	REG16(0x2b4),           /* [0x1a] SEMAPHORE_TOKEN */ \
471 	REG(0x120),             /* [0x1c] PRT_BB_STATE */ \
472 	REG(0x124),             /* [0x1e] PRT_BB_STATE_UDW */ \
473 	\
474 	NOP(1),                 /* [0x20] */ \
475 	LRI(9, POSTED),         /* [0x21] */ \
476 	REG16(0x3a8),           /* [0x22] CTX_TIMESTAMP */ \
477 	REG16(0x3ac),           /* [0x24] CTX_TIMESTAMP_UDW */ \
478 	REG(0x108),             /* [0x26] INDIRECT_RING_STATE */ \
479 	REG16(0x284),           /* [0x28] dummy reg */ \
480 	REG16(0x280),           /* [0x2a] CS_ACC_CTR_THOLD */ \
481 	REG16(0x27c),           /* [0x2c] CS_CTX_SYS_PASID */ \
482 	REG16(0x278),           /* [0x2e] CS_CTX_ASID */ \
483 	REG16(0x274),           /* [0x30] PTBP_UDW */ \
484 	REG16(0x270)            /* [0x32] PTBP_LDW */
485 
486 static const u8 xe2_rcs_offsets[] = {
487 	XE2_CTX_COMMON,
488 
489 	NOP(2),                 /* [0x34] */
490 	LRI(2, POSTED),         /* [0x36] */
491 	REG16(0x5a8),           /* [0x37] CONTEXT_SCHEDULING_ATTRIBUTES */
492 	REG16(0x5ac),           /* [0x39] PREEMPTION_STATUS */
493 
494 	NOP(6),                 /* [0x41] */
495 	LRI(1, 0),              /* [0x47] */
496 	REG(0x0c8),             /* [0x48] R_PWR_CLK_STATE */
497 
498 	0
499 };
500 
501 static const u8 xe2_bcs_offsets[] = {
502 	XE2_CTX_COMMON,
503 
504 	NOP(4 + 8 + 1),         /* [0x34] */
505 	LRI(2, POSTED),         /* [0x41] */
506 	REG16(0x200),           /* [0x42] BCS_SWCTRL */
507 	REG16(0x204),           /* [0x44] BLIT_CCTL */
508 
509 	0
510 };
511 
512 static const u8 xe2_xcs_offsets[] = {
513 	XE2_CTX_COMMON,
514 
515 	0
516 };
517 
518 static const u8 xe2_indirect_ring_state_offsets[] = {
519 	NOP(1),                 /* [0x00] */
520 	LRI(5, POSTED),         /* [0x01] */
521 	REG(0x034),             /* [0x02] RING_BUFFER_HEAD */
522 	REG(0x030),             /* [0x04] RING_BUFFER_TAIL */
523 	REG(0x038),             /* [0x06] RING_BUFFER_START */
524 	REG(0x048),             /* [0x08] RING_BUFFER_START_UDW */
525 	REG(0x03c),             /* [0x0a] RING_BUFFER_CONTROL */
526 
527 	NOP(5),                 /* [0x0c] */
528 	LRI(9, POSTED),         /* [0x11] */
529 	REG(0x168),             /* [0x12] BB_ADDR_UDW */
530 	REG(0x140),             /* [0x14] BB_ADDR */
531 	REG(0x110),             /* [0x16] BB_STATE */
532 	REG16(0x588),           /* [0x18] BB_STACK_WRITE_PORT */
533 	REG16(0x588),           /* [0x20] BB_STACK_WRITE_PORT */
534 	REG16(0x588),           /* [0x22] BB_STACK_WRITE_PORT */
535 	REG16(0x588),           /* [0x24] BB_STACK_WRITE_PORT */
536 	REG16(0x588),           /* [0x26] BB_STACK_WRITE_PORT */
537 	REG16(0x588),           /* [0x28] BB_STACK_WRITE_PORT */
538 
539 	NOP(12),                 /* [0x00] */
540 
541 	0
542 };
543 
544 #undef REG16
545 #undef REG
546 #undef LRI
547 #undef NOP
548 
549 static const u8 *reg_offsets(struct xe_device *xe, enum xe_engine_class class)
550 {
551 	if (class == XE_ENGINE_CLASS_RENDER) {
552 		if (GRAPHICS_VER(xe) >= 20)
553 			return xe2_rcs_offsets;
554 		else if (GRAPHICS_VERx100(xe) >= 1270)
555 			return mtl_rcs_offsets;
556 		else if (GRAPHICS_VERx100(xe) >= 1255)
557 			return dg2_rcs_offsets;
558 		else if (GRAPHICS_VERx100(xe) >= 1250)
559 			return xehp_rcs_offsets;
560 		else
561 			return gen12_rcs_offsets;
562 	} else if (class == XE_ENGINE_CLASS_COPY) {
563 		if (GRAPHICS_VER(xe) >= 20)
564 			return xe2_bcs_offsets;
565 		else
566 			return gen12_xcs_offsets;
567 	} else {
568 		if (GRAPHICS_VER(xe) >= 20)
569 			return xe2_xcs_offsets;
570 		else if (GRAPHICS_VERx100(xe) >= 1255)
571 			return dg2_xcs_offsets;
572 		else
573 			return gen12_xcs_offsets;
574 	}
575 }
576 
577 static void set_context_control(u32 *regs, struct xe_hw_engine *hwe)
578 {
579 	regs[CTX_CONTEXT_CONTROL] = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
580 						       CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
581 
582 	if (xe_gt_has_indirect_ring_state(hwe->gt))
583 		regs[CTX_CONTEXT_CONTROL] |=
584 			_MASKED_BIT_ENABLE(CTX_CTRL_INDIRECT_RING_STATE_ENABLE);
585 
586 	/* TODO: Timestamp */
587 }
588 
589 static void set_memory_based_intr(u32 *regs, struct xe_hw_engine *hwe)
590 {
591 	struct xe_memirq *memirq = &gt_to_tile(hwe->gt)->memirq;
592 	struct xe_device *xe = gt_to_xe(hwe->gt);
593 	u8 num_regs;
594 
595 	if (!xe_device_uses_memirq(xe))
596 		return;
597 
598 	regs[CTX_LRM_INT_MASK_ENABLE] = MI_LOAD_REGISTER_MEM |
599 					MI_LRI_LRM_CS_MMIO | MI_LRM_USE_GGTT;
600 	regs[CTX_INT_MASK_ENABLE_REG] = RING_IMR(0).addr;
601 	regs[CTX_INT_MASK_ENABLE_PTR] = xe_memirq_enable_ptr(memirq);
602 
603 	num_regs = xe_device_has_msix(xe) ? 3 : 2;
604 	regs[CTX_LRI_INT_REPORT_PTR] = MI_LOAD_REGISTER_IMM | MI_LRI_NUM_REGS(num_regs) |
605 				       MI_LRI_LRM_CS_MMIO | MI_LRI_FORCE_POSTED;
606 	regs[CTX_INT_STATUS_REPORT_REG] = RING_INT_STATUS_RPT_PTR(0).addr;
607 	regs[CTX_INT_STATUS_REPORT_PTR] = xe_memirq_status_ptr(memirq, hwe);
608 	regs[CTX_INT_SRC_REPORT_REG] = RING_INT_SRC_RPT_PTR(0).addr;
609 	regs[CTX_INT_SRC_REPORT_PTR] = xe_memirq_source_ptr(memirq, hwe);
610 
611 	if (xe_device_has_msix(xe)) {
612 		regs[CTX_CS_INT_VEC_REG] = CS_INT_VEC(0).addr;
613 		/* CTX_CS_INT_VEC_DATA will be set in xe_lrc_init */
614 	}
615 }
616 
617 static int lrc_ring_mi_mode(struct xe_hw_engine *hwe)
618 {
619 	struct xe_device *xe = gt_to_xe(hwe->gt);
620 
621 	if (GRAPHICS_VERx100(xe) >= 1250)
622 		return 0x70;
623 	else
624 		return 0x60;
625 }
626 
627 static void reset_stop_ring(u32 *regs, struct xe_hw_engine *hwe)
628 {
629 	int x;
630 
631 	x = lrc_ring_mi_mode(hwe);
632 	regs[x + 1] &= ~STOP_RING;
633 	regs[x + 1] |= STOP_RING << 16;
634 }
635 
636 static inline bool xe_lrc_has_indirect_ring_state(struct xe_lrc *lrc)
637 {
638 	return lrc->flags & XE_LRC_FLAG_INDIRECT_RING_STATE;
639 }
640 
641 static inline u32 __xe_lrc_ring_offset(struct xe_lrc *lrc)
642 {
643 	return 0;
644 }
645 
646 u32 xe_lrc_pphwsp_offset(struct xe_lrc *lrc)
647 {
648 	return lrc->ring.size;
649 }
650 
651 /* Make the magic macros work */
652 #define __xe_lrc_pphwsp_offset xe_lrc_pphwsp_offset
653 #define __xe_lrc_regs_offset xe_lrc_regs_offset
654 
655 #define LRC_SEQNO_PPHWSP_OFFSET 512
656 #define LRC_START_SEQNO_PPHWSP_OFFSET (LRC_SEQNO_PPHWSP_OFFSET + 8)
657 #define LRC_CTX_JOB_TIMESTAMP_OFFSET (LRC_START_SEQNO_PPHWSP_OFFSET + 8)
658 #define LRC_ENGINE_ID_PPHWSP_OFFSET 1024
659 #define LRC_PARALLEL_PPHWSP_OFFSET 2048
660 
661 u32 xe_lrc_regs_offset(struct xe_lrc *lrc)
662 {
663 	return xe_lrc_pphwsp_offset(lrc) + LRC_PPHWSP_SIZE;
664 }
665 
666 static size_t lrc_reg_size(struct xe_device *xe)
667 {
668 	if (GRAPHICS_VERx100(xe) >= 1250)
669 		return 96 * sizeof(u32);
670 	else
671 		return 80 * sizeof(u32);
672 }
673 
674 size_t xe_lrc_skip_size(struct xe_device *xe)
675 {
676 	return LRC_PPHWSP_SIZE + lrc_reg_size(xe);
677 }
678 
679 static inline u32 __xe_lrc_seqno_offset(struct xe_lrc *lrc)
680 {
681 	/* The seqno is stored in the driver-defined portion of PPHWSP */
682 	return xe_lrc_pphwsp_offset(lrc) + LRC_SEQNO_PPHWSP_OFFSET;
683 }
684 
685 static inline u32 __xe_lrc_start_seqno_offset(struct xe_lrc *lrc)
686 {
687 	/* The start seqno is stored in the driver-defined portion of PPHWSP */
688 	return xe_lrc_pphwsp_offset(lrc) + LRC_START_SEQNO_PPHWSP_OFFSET;
689 }
690 
691 static u32 __xe_lrc_ctx_job_timestamp_offset(struct xe_lrc *lrc)
692 {
693 	/* This is stored in the driver-defined portion of PPHWSP */
694 	return xe_lrc_pphwsp_offset(lrc) + LRC_CTX_JOB_TIMESTAMP_OFFSET;
695 }
696 
697 static inline u32 __xe_lrc_parallel_offset(struct xe_lrc *lrc)
698 {
699 	/* The parallel is stored in the driver-defined portion of PPHWSP */
700 	return xe_lrc_pphwsp_offset(lrc) + LRC_PARALLEL_PPHWSP_OFFSET;
701 }
702 
703 static inline u32 __xe_lrc_engine_id_offset(struct xe_lrc *lrc)
704 {
705 	return xe_lrc_pphwsp_offset(lrc) + LRC_ENGINE_ID_PPHWSP_OFFSET;
706 }
707 
708 static u32 __xe_lrc_ctx_timestamp_offset(struct xe_lrc *lrc)
709 {
710 	return __xe_lrc_regs_offset(lrc) + CTX_TIMESTAMP * sizeof(u32);
711 }
712 
713 static u32 __xe_lrc_ctx_timestamp_udw_offset(struct xe_lrc *lrc)
714 {
715 	return __xe_lrc_regs_offset(lrc) + CTX_TIMESTAMP_UDW * sizeof(u32);
716 }
717 
718 static inline u32 __xe_lrc_indirect_ring_offset(struct xe_lrc *lrc)
719 {
720 	/* Indirect ring state page is at the very end of LRC */
721 	return lrc->size - LRC_INDIRECT_RING_STATE_SIZE;
722 }
723 
724 #define DECL_MAP_ADDR_HELPERS(elem) \
725 static inline struct iosys_map __xe_lrc_##elem##_map(struct xe_lrc *lrc) \
726 { \
727 	struct iosys_map map = lrc->bo->vmap; \
728 \
729 	xe_assert(lrc_to_xe(lrc), !iosys_map_is_null(&map));  \
730 	iosys_map_incr(&map, __xe_lrc_##elem##_offset(lrc)); \
731 	return map; \
732 } \
733 static inline u32 __maybe_unused __xe_lrc_##elem##_ggtt_addr(struct xe_lrc *lrc) \
734 { \
735 	return xe_bo_ggtt_addr(lrc->bo) + __xe_lrc_##elem##_offset(lrc); \
736 } \
737 
738 DECL_MAP_ADDR_HELPERS(ring)
739 DECL_MAP_ADDR_HELPERS(pphwsp)
740 DECL_MAP_ADDR_HELPERS(seqno)
741 DECL_MAP_ADDR_HELPERS(regs)
742 DECL_MAP_ADDR_HELPERS(start_seqno)
743 DECL_MAP_ADDR_HELPERS(ctx_job_timestamp)
744 DECL_MAP_ADDR_HELPERS(ctx_timestamp)
745 DECL_MAP_ADDR_HELPERS(ctx_timestamp_udw)
746 DECL_MAP_ADDR_HELPERS(parallel)
747 DECL_MAP_ADDR_HELPERS(indirect_ring)
748 DECL_MAP_ADDR_HELPERS(engine_id)
749 
750 #undef DECL_MAP_ADDR_HELPERS
751 
752 /**
753  * xe_lrc_ctx_timestamp_ggtt_addr() - Get ctx timestamp GGTT address
754  * @lrc: Pointer to the lrc.
755  *
756  * Returns: ctx timestamp GGTT address
757  */
758 u32 xe_lrc_ctx_timestamp_ggtt_addr(struct xe_lrc *lrc)
759 {
760 	return __xe_lrc_ctx_timestamp_ggtt_addr(lrc);
761 }
762 
763 /**
764  * xe_lrc_ctx_timestamp_udw_ggtt_addr() - Get ctx timestamp udw GGTT address
765  * @lrc: Pointer to the lrc.
766  *
767  * Returns: ctx timestamp udw GGTT address
768  */
769 u32 xe_lrc_ctx_timestamp_udw_ggtt_addr(struct xe_lrc *lrc)
770 {
771 	return __xe_lrc_ctx_timestamp_udw_ggtt_addr(lrc);
772 }
773 
774 /**
775  * xe_lrc_ctx_timestamp() - Read ctx timestamp value
776  * @lrc: Pointer to the lrc.
777  *
778  * Returns: ctx timestamp value
779  */
780 u64 xe_lrc_ctx_timestamp(struct xe_lrc *lrc)
781 {
782 	struct xe_device *xe = lrc_to_xe(lrc);
783 	struct iosys_map map;
784 	u32 ldw, udw = 0;
785 
786 	map = __xe_lrc_ctx_timestamp_map(lrc);
787 	ldw = xe_map_read32(xe, &map);
788 
789 	if (xe->info.has_64bit_timestamp) {
790 		map = __xe_lrc_ctx_timestamp_udw_map(lrc);
791 		udw = xe_map_read32(xe, &map);
792 	}
793 
794 	return (u64)udw << 32 | ldw;
795 }
796 
797 /**
798  * xe_lrc_ctx_job_timestamp_ggtt_addr() - Get ctx job timestamp GGTT address
799  * @lrc: Pointer to the lrc.
800  *
801  * Returns: ctx timestamp job GGTT address
802  */
803 u32 xe_lrc_ctx_job_timestamp_ggtt_addr(struct xe_lrc *lrc)
804 {
805 	return __xe_lrc_ctx_job_timestamp_ggtt_addr(lrc);
806 }
807 
808 /**
809  * xe_lrc_ctx_job_timestamp() - Read ctx job timestamp value
810  * @lrc: Pointer to the lrc.
811  *
812  * Returns: ctx timestamp job value
813  */
814 u32 xe_lrc_ctx_job_timestamp(struct xe_lrc *lrc)
815 {
816 	struct xe_device *xe = lrc_to_xe(lrc);
817 	struct iosys_map map;
818 
819 	map = __xe_lrc_ctx_job_timestamp_map(lrc);
820 	return xe_map_read32(xe, &map);
821 }
822 
823 u32 xe_lrc_ggtt_addr(struct xe_lrc *lrc)
824 {
825 	return __xe_lrc_pphwsp_ggtt_addr(lrc);
826 }
827 
828 u32 xe_lrc_indirect_ring_ggtt_addr(struct xe_lrc *lrc)
829 {
830 	if (!xe_lrc_has_indirect_ring_state(lrc))
831 		return 0;
832 
833 	return __xe_lrc_indirect_ring_ggtt_addr(lrc);
834 }
835 
836 static u32 xe_lrc_read_indirect_ctx_reg(struct xe_lrc *lrc, int reg_nr)
837 {
838 	struct xe_device *xe = lrc_to_xe(lrc);
839 	struct iosys_map map;
840 
841 	map = __xe_lrc_indirect_ring_map(lrc);
842 	iosys_map_incr(&map, reg_nr * sizeof(u32));
843 	return xe_map_read32(xe, &map);
844 }
845 
846 static void xe_lrc_write_indirect_ctx_reg(struct xe_lrc *lrc,
847 					  int reg_nr, u32 val)
848 {
849 	struct xe_device *xe = lrc_to_xe(lrc);
850 	struct iosys_map map;
851 
852 	map = __xe_lrc_indirect_ring_map(lrc);
853 	iosys_map_incr(&map, reg_nr * sizeof(u32));
854 	xe_map_write32(xe, &map, val);
855 }
856 
857 u32 xe_lrc_read_ctx_reg(struct xe_lrc *lrc, int reg_nr)
858 {
859 	struct xe_device *xe = lrc_to_xe(lrc);
860 	struct iosys_map map;
861 
862 	map = __xe_lrc_regs_map(lrc);
863 	iosys_map_incr(&map, reg_nr * sizeof(u32));
864 	return xe_map_read32(xe, &map);
865 }
866 
867 void xe_lrc_write_ctx_reg(struct xe_lrc *lrc, int reg_nr, u32 val)
868 {
869 	struct xe_device *xe = lrc_to_xe(lrc);
870 	struct iosys_map map;
871 
872 	map = __xe_lrc_regs_map(lrc);
873 	iosys_map_incr(&map, reg_nr * sizeof(u32));
874 	xe_map_write32(xe, &map, val);
875 }
876 
877 static void *empty_lrc_data(struct xe_hw_engine *hwe)
878 {
879 	struct xe_gt *gt = hwe->gt;
880 	void *data;
881 	u32 *regs;
882 
883 	data = kzalloc(xe_gt_lrc_size(gt, hwe->class), GFP_KERNEL);
884 	if (!data)
885 		return NULL;
886 
887 	/* 1st page: Per-Process of HW status Page */
888 	regs = data + LRC_PPHWSP_SIZE;
889 	set_offsets(regs, reg_offsets(gt_to_xe(gt), hwe->class), hwe);
890 	set_context_control(regs, hwe);
891 	set_memory_based_intr(regs, hwe);
892 	reset_stop_ring(regs, hwe);
893 	if (xe_gt_has_indirect_ring_state(gt)) {
894 		regs = data + xe_gt_lrc_size(gt, hwe->class) -
895 		       LRC_INDIRECT_RING_STATE_SIZE;
896 		set_offsets(regs, xe2_indirect_ring_state_offsets, hwe);
897 	}
898 
899 	return data;
900 }
901 
902 static void xe_lrc_set_ppgtt(struct xe_lrc *lrc, struct xe_vm *vm)
903 {
904 	u64 desc = xe_vm_pdp4_descriptor(vm, gt_to_tile(lrc->gt));
905 
906 	xe_lrc_write_ctx_reg(lrc, CTX_PDP0_UDW, upper_32_bits(desc));
907 	xe_lrc_write_ctx_reg(lrc, CTX_PDP0_LDW, lower_32_bits(desc));
908 }
909 
910 static void xe_lrc_finish(struct xe_lrc *lrc)
911 {
912 	xe_hw_fence_ctx_finish(&lrc->fence_ctx);
913 	xe_bo_unpin_map_no_vm(lrc->bo);
914 }
915 
916 /*
917  * wa_bb_setup_utilization() - Write commands to wa bb to assist
918  * in calculating active context run ticks.
919  *
920  * Context Timestamp (CTX_TIMESTAMP) in the LRC accumulates the run ticks of the
921  * context, but only gets updated when the context switches out. In order to
922  * check how long a context has been active before it switches out, two things
923  * are required:
924  *
925  * (1) Determine if the context is running:
926  * To do so, we program the WA BB to set an initial value for CTX_TIMESTAMP in
927  * the LRC. The value chosen is 1 since 0 is the initial value when the LRC is
928  * initialized. During a query, we just check for this value to determine if the
929  * context is active. If the context switched out, it would overwrite this
930  * location with the actual CTX_TIMESTAMP MMIO value. Note that WA BB runs as
931  * the last part of context restore, so reusing this LRC location will not
932  * clobber anything.
933  *
934  * (2) Calculate the time that the context has been active for:
935  * The CTX_TIMESTAMP ticks only when the context is active. If a context is
936  * active, we just use the CTX_TIMESTAMP MMIO as the new value of utilization.
937  * While doing so, we need to read the CTX_TIMESTAMP MMIO for the specific
938  * engine instance. Since we do not know which instance the context is running
939  * on until it is scheduled, we also read the ENGINE_ID MMIO in the WA BB and
940  * store it in the PPHSWP.
941  */
942 #define CONTEXT_ACTIVE 1ULL
943 static ssize_t wa_bb_setup_utilization(struct xe_lrc *lrc, struct xe_hw_engine *hwe,
944 				       u32 *batch, size_t max_len)
945 {
946 	u32 *cmd = batch;
947 
948 	if (xe_gt_WARN_ON(lrc->gt, max_len < 12))
949 		return -ENOSPC;
950 
951 	*cmd++ = MI_STORE_REGISTER_MEM | MI_SRM_USE_GGTT | MI_SRM_ADD_CS_OFFSET;
952 	*cmd++ = ENGINE_ID(0).addr;
953 	*cmd++ = __xe_lrc_engine_id_ggtt_addr(lrc);
954 	*cmd++ = 0;
955 
956 	*cmd++ = MI_STORE_DATA_IMM | MI_SDI_GGTT | MI_SDI_NUM_DW(1);
957 	*cmd++ = __xe_lrc_ctx_timestamp_ggtt_addr(lrc);
958 	*cmd++ = 0;
959 	*cmd++ = lower_32_bits(CONTEXT_ACTIVE);
960 
961 	if (lrc_to_xe(lrc)->info.has_64bit_timestamp) {
962 		*cmd++ = MI_STORE_DATA_IMM | MI_SDI_GGTT | MI_SDI_NUM_DW(1);
963 		*cmd++ = __xe_lrc_ctx_timestamp_udw_ggtt_addr(lrc);
964 		*cmd++ = 0;
965 		*cmd++ = upper_32_bits(CONTEXT_ACTIVE);
966 	}
967 
968 	return cmd - batch;
969 }
970 
971 struct wa_bb_setup {
972 	ssize_t (*setup)(struct xe_lrc *lrc, struct xe_hw_engine *hwe,
973 			 u32 *batch, size_t max_size);
974 };
975 
976 static size_t wa_bb_offset(struct xe_lrc *lrc)
977 {
978 	return lrc->bo->size - LRC_WA_BB_SIZE;
979 }
980 
981 static int setup_wa_bb(struct xe_lrc *lrc, struct xe_hw_engine *hwe)
982 {
983 	const size_t max_size = LRC_WA_BB_SIZE;
984 	static const struct wa_bb_setup funcs[] = {
985 		{ .setup = wa_bb_setup_utilization },
986 	};
987 	ssize_t remain;
988 	u32 *cmd, *buf = NULL;
989 
990 	if (lrc->bo->vmap.is_iomem) {
991 		buf = kmalloc(max_size, GFP_KERNEL);
992 		if (!buf)
993 			return -ENOMEM;
994 		cmd = buf;
995 	} else {
996 		cmd = lrc->bo->vmap.vaddr + wa_bb_offset(lrc);
997 	}
998 
999 	remain = max_size / sizeof(*cmd);
1000 
1001 	for (size_t i = 0; i < ARRAY_SIZE(funcs); i++) {
1002 		ssize_t len = funcs[i].setup(lrc, hwe, cmd, remain);
1003 
1004 		remain -= len;
1005 
1006 		/*
1007 		 * There should always be at least 1 additional dword for
1008 		 * the end marker
1009 		 */
1010 		if (len < 0 || xe_gt_WARN_ON(lrc->gt, remain < 1))
1011 			goto fail;
1012 
1013 		cmd += len;
1014 	}
1015 
1016 	*cmd++ = MI_BATCH_BUFFER_END;
1017 
1018 	if (buf) {
1019 		xe_map_memcpy_to(gt_to_xe(lrc->gt), &lrc->bo->vmap,
1020 				 wa_bb_offset(lrc), buf,
1021 				 (cmd - buf) * sizeof(*cmd));
1022 		kfree(buf);
1023 	}
1024 
1025 	xe_lrc_write_ctx_reg(lrc, CTX_BB_PER_CTX_PTR, xe_bo_ggtt_addr(lrc->bo) +
1026 			     wa_bb_offset(lrc) + 1);
1027 
1028 	return 0;
1029 
1030 fail:
1031 	kfree(buf);
1032 	return -ENOSPC;
1033 }
1034 
1035 #define PVC_CTX_ASID		(0x2e + 1)
1036 #define PVC_CTX_ACC_CTR_THOLD	(0x2a + 1)
1037 
1038 static int xe_lrc_init(struct xe_lrc *lrc, struct xe_hw_engine *hwe,
1039 		       struct xe_vm *vm, u32 ring_size, u16 msix_vec,
1040 		       u32 init_flags)
1041 {
1042 	struct xe_gt *gt = hwe->gt;
1043 	struct xe_tile *tile = gt_to_tile(gt);
1044 	struct xe_device *xe = gt_to_xe(gt);
1045 	struct iosys_map map;
1046 	void *init_data = NULL;
1047 	u32 arb_enable;
1048 	u32 lrc_size;
1049 	u32 bo_flags;
1050 	int err;
1051 
1052 	kref_init(&lrc->refcount);
1053 	lrc->gt = gt;
1054 	lrc->flags = 0;
1055 	lrc_size = ring_size + xe_gt_lrc_size(gt, hwe->class);
1056 	if (xe_gt_has_indirect_ring_state(gt))
1057 		lrc->flags |= XE_LRC_FLAG_INDIRECT_RING_STATE;
1058 
1059 	bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT |
1060 		   XE_BO_FLAG_GGTT_INVALIDATE;
1061 	if (vm && vm->xef) /* userspace */
1062 		bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE;
1063 
1064 	/*
1065 	 * FIXME: Perma-pinning LRC as we don't yet support moving GGTT address
1066 	 * via VM bind calls.
1067 	 */
1068 	lrc->bo = xe_bo_create_pin_map(xe, tile, NULL,
1069 				       lrc_size + LRC_WA_BB_SIZE,
1070 				       ttm_bo_type_kernel,
1071 				       bo_flags);
1072 	if (IS_ERR(lrc->bo))
1073 		return PTR_ERR(lrc->bo);
1074 
1075 	lrc->size = lrc_size;
1076 	lrc->ring.size = ring_size;
1077 	lrc->ring.tail = 0;
1078 
1079 	xe_hw_fence_ctx_init(&lrc->fence_ctx, hwe->gt,
1080 			     hwe->fence_irq, hwe->name);
1081 
1082 	if (!gt->default_lrc[hwe->class]) {
1083 		init_data = empty_lrc_data(hwe);
1084 		if (!init_data) {
1085 			err = -ENOMEM;
1086 			goto err_lrc_finish;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Init Per-Process of HW status Page, LRC / context state to known
1092 	 * values
1093 	 */
1094 	map = __xe_lrc_pphwsp_map(lrc);
1095 	if (!init_data) {
1096 		xe_map_memset(xe, &map, 0, 0, LRC_PPHWSP_SIZE);	/* PPHWSP */
1097 		xe_map_memcpy_to(xe, &map, LRC_PPHWSP_SIZE,
1098 				 gt->default_lrc[hwe->class] + LRC_PPHWSP_SIZE,
1099 				 xe_gt_lrc_size(gt, hwe->class) - LRC_PPHWSP_SIZE);
1100 	} else {
1101 		xe_map_memcpy_to(xe, &map, 0, init_data,
1102 				 xe_gt_lrc_size(gt, hwe->class));
1103 		kfree(init_data);
1104 	}
1105 
1106 	if (vm) {
1107 		xe_lrc_set_ppgtt(lrc, vm);
1108 
1109 		if (vm->xef)
1110 			xe_drm_client_add_bo(vm->xef->client, lrc->bo);
1111 	}
1112 
1113 	if (xe_device_has_msix(xe)) {
1114 		xe_lrc_write_ctx_reg(lrc, CTX_INT_STATUS_REPORT_PTR,
1115 				     xe_memirq_status_ptr(&tile->memirq, hwe));
1116 		xe_lrc_write_ctx_reg(lrc, CTX_INT_SRC_REPORT_PTR,
1117 				     xe_memirq_source_ptr(&tile->memirq, hwe));
1118 		xe_lrc_write_ctx_reg(lrc, CTX_CS_INT_VEC_DATA, msix_vec << 16 | msix_vec);
1119 	}
1120 
1121 	if (xe_gt_has_indirect_ring_state(gt)) {
1122 		xe_lrc_write_ctx_reg(lrc, CTX_INDIRECT_RING_STATE,
1123 				     __xe_lrc_indirect_ring_ggtt_addr(lrc));
1124 
1125 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START,
1126 					      __xe_lrc_ring_ggtt_addr(lrc));
1127 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START_UDW, 0);
1128 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD, 0);
1129 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL, lrc->ring.tail);
1130 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_CTL,
1131 					      RING_CTL_SIZE(lrc->ring.size) | RING_VALID);
1132 	} else {
1133 		xe_lrc_write_ctx_reg(lrc, CTX_RING_START, __xe_lrc_ring_ggtt_addr(lrc));
1134 		xe_lrc_write_ctx_reg(lrc, CTX_RING_HEAD, 0);
1135 		xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, lrc->ring.tail);
1136 		xe_lrc_write_ctx_reg(lrc, CTX_RING_CTL,
1137 				     RING_CTL_SIZE(lrc->ring.size) | RING_VALID);
1138 	}
1139 
1140 	if (init_flags & XE_LRC_CREATE_RUNALONE)
1141 		xe_lrc_write_ctx_reg(lrc, CTX_CONTEXT_CONTROL,
1142 				     xe_lrc_read_ctx_reg(lrc, CTX_CONTEXT_CONTROL) |
1143 				     _MASKED_BIT_ENABLE(CTX_CTRL_RUN_ALONE));
1144 
1145 	if (init_flags & XE_LRC_CREATE_PXP)
1146 		xe_lrc_write_ctx_reg(lrc, CTX_CONTEXT_CONTROL,
1147 				     xe_lrc_read_ctx_reg(lrc, CTX_CONTEXT_CONTROL) |
1148 				     _MASKED_BIT_ENABLE(CTX_CTRL_PXP_ENABLE));
1149 
1150 	lrc->ctx_timestamp = 0;
1151 	xe_lrc_write_ctx_reg(lrc, CTX_TIMESTAMP, 0);
1152 	if (lrc_to_xe(lrc)->info.has_64bit_timestamp)
1153 		xe_lrc_write_ctx_reg(lrc, CTX_TIMESTAMP_UDW, 0);
1154 
1155 	if (xe->info.has_asid && vm)
1156 		xe_lrc_write_ctx_reg(lrc, PVC_CTX_ASID, vm->usm.asid);
1157 
1158 	lrc->desc = LRC_VALID;
1159 	lrc->desc |= FIELD_PREP(LRC_ADDRESSING_MODE, LRC_LEGACY_64B_CONTEXT);
1160 	/* TODO: Priority */
1161 
1162 	/* While this appears to have something about privileged batches or
1163 	 * some such, it really just means PPGTT mode.
1164 	 */
1165 	if (vm)
1166 		lrc->desc |= LRC_PRIVILEGE;
1167 
1168 	if (GRAPHICS_VERx100(xe) < 1250) {
1169 		lrc->desc |= FIELD_PREP(LRC_ENGINE_INSTANCE, hwe->instance);
1170 		lrc->desc |= FIELD_PREP(LRC_ENGINE_CLASS, hwe->class);
1171 	}
1172 
1173 	arb_enable = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1174 	xe_lrc_write_ring(lrc, &arb_enable, sizeof(arb_enable));
1175 
1176 	map = __xe_lrc_seqno_map(lrc);
1177 	xe_map_write32(lrc_to_xe(lrc), &map, lrc->fence_ctx.next_seqno - 1);
1178 
1179 	map = __xe_lrc_start_seqno_map(lrc);
1180 	xe_map_write32(lrc_to_xe(lrc), &map, lrc->fence_ctx.next_seqno - 1);
1181 
1182 	err = setup_wa_bb(lrc, hwe);
1183 	if (err)
1184 		goto err_lrc_finish;
1185 
1186 	return 0;
1187 
1188 err_lrc_finish:
1189 	xe_lrc_finish(lrc);
1190 	return err;
1191 }
1192 
1193 /**
1194  * xe_lrc_create - Create a LRC
1195  * @hwe: Hardware Engine
1196  * @vm: The VM (address space)
1197  * @ring_size: LRC ring size
1198  * @msix_vec: MSI-X interrupt vector (for platforms that support it)
1199  * @flags: LRC initialization flags
1200  *
1201  * Allocate and initialize the Logical Ring Context (LRC).
1202  *
1203  * Return pointer to created LRC upon success and an error pointer
1204  * upon failure.
1205  */
1206 struct xe_lrc *xe_lrc_create(struct xe_hw_engine *hwe, struct xe_vm *vm,
1207 			     u32 ring_size, u16 msix_vec, u32 flags)
1208 {
1209 	struct xe_lrc *lrc;
1210 	int err;
1211 
1212 	lrc = kzalloc(sizeof(*lrc), GFP_KERNEL);
1213 	if (!lrc)
1214 		return ERR_PTR(-ENOMEM);
1215 
1216 	err = xe_lrc_init(lrc, hwe, vm, ring_size, msix_vec, flags);
1217 	if (err) {
1218 		kfree(lrc);
1219 		return ERR_PTR(err);
1220 	}
1221 
1222 	return lrc;
1223 }
1224 
1225 /**
1226  * xe_lrc_destroy - Destroy the LRC
1227  * @ref: reference to LRC
1228  *
1229  * Called when ref == 0, release resources held by the Logical Ring Context
1230  * (LRC) and free the LRC memory.
1231  */
1232 void xe_lrc_destroy(struct kref *ref)
1233 {
1234 	struct xe_lrc *lrc = container_of(ref, struct xe_lrc, refcount);
1235 
1236 	xe_lrc_finish(lrc);
1237 	kfree(lrc);
1238 }
1239 
1240 void xe_lrc_set_ring_tail(struct xe_lrc *lrc, u32 tail)
1241 {
1242 	if (xe_lrc_has_indirect_ring_state(lrc))
1243 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL, tail);
1244 	else
1245 		xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, tail);
1246 }
1247 
1248 u32 xe_lrc_ring_tail(struct xe_lrc *lrc)
1249 {
1250 	if (xe_lrc_has_indirect_ring_state(lrc))
1251 		return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL) & TAIL_ADDR;
1252 	else
1253 		return xe_lrc_read_ctx_reg(lrc, CTX_RING_TAIL) & TAIL_ADDR;
1254 }
1255 
1256 static u32 xe_lrc_ring_start(struct xe_lrc *lrc)
1257 {
1258 	if (xe_lrc_has_indirect_ring_state(lrc))
1259 		return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START);
1260 	else
1261 		return xe_lrc_read_ctx_reg(lrc, CTX_RING_START);
1262 }
1263 
1264 void xe_lrc_set_ring_head(struct xe_lrc *lrc, u32 head)
1265 {
1266 	if (xe_lrc_has_indirect_ring_state(lrc))
1267 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD, head);
1268 	else
1269 		xe_lrc_write_ctx_reg(lrc, CTX_RING_HEAD, head);
1270 }
1271 
1272 u32 xe_lrc_ring_head(struct xe_lrc *lrc)
1273 {
1274 	if (xe_lrc_has_indirect_ring_state(lrc))
1275 		return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD) & HEAD_ADDR;
1276 	else
1277 		return xe_lrc_read_ctx_reg(lrc, CTX_RING_HEAD) & HEAD_ADDR;
1278 }
1279 
1280 u32 xe_lrc_ring_space(struct xe_lrc *lrc)
1281 {
1282 	const u32 head = xe_lrc_ring_head(lrc);
1283 	const u32 tail = lrc->ring.tail;
1284 	const u32 size = lrc->ring.size;
1285 
1286 	return ((head - tail - 1) & (size - 1)) + 1;
1287 }
1288 
1289 static void __xe_lrc_write_ring(struct xe_lrc *lrc, struct iosys_map ring,
1290 				const void *data, size_t size)
1291 {
1292 	struct xe_device *xe = lrc_to_xe(lrc);
1293 
1294 	iosys_map_incr(&ring, lrc->ring.tail);
1295 	xe_map_memcpy_to(xe, &ring, 0, data, size);
1296 	lrc->ring.tail = (lrc->ring.tail + size) & (lrc->ring.size - 1);
1297 }
1298 
1299 void xe_lrc_write_ring(struct xe_lrc *lrc, const void *data, size_t size)
1300 {
1301 	struct xe_device *xe = lrc_to_xe(lrc);
1302 	struct iosys_map ring;
1303 	u32 rhs;
1304 	size_t aligned_size;
1305 
1306 	xe_assert(xe, IS_ALIGNED(size, 4));
1307 	aligned_size = ALIGN(size, 8);
1308 
1309 	ring = __xe_lrc_ring_map(lrc);
1310 
1311 	xe_assert(xe, lrc->ring.tail < lrc->ring.size);
1312 	rhs = lrc->ring.size - lrc->ring.tail;
1313 	if (size > rhs) {
1314 		__xe_lrc_write_ring(lrc, ring, data, rhs);
1315 		__xe_lrc_write_ring(lrc, ring, data + rhs, size - rhs);
1316 	} else {
1317 		__xe_lrc_write_ring(lrc, ring, data, size);
1318 	}
1319 
1320 	if (aligned_size > size) {
1321 		u32 noop = MI_NOOP;
1322 
1323 		__xe_lrc_write_ring(lrc, ring, &noop, sizeof(noop));
1324 	}
1325 }
1326 
1327 u64 xe_lrc_descriptor(struct xe_lrc *lrc)
1328 {
1329 	return lrc->desc | xe_lrc_ggtt_addr(lrc);
1330 }
1331 
1332 u32 xe_lrc_seqno_ggtt_addr(struct xe_lrc *lrc)
1333 {
1334 	return __xe_lrc_seqno_ggtt_addr(lrc);
1335 }
1336 
1337 /**
1338  * xe_lrc_alloc_seqno_fence() - Allocate an lrc seqno fence.
1339  *
1340  * Allocate but don't initialize an lrc seqno fence.
1341  *
1342  * Return: Pointer to the allocated fence or
1343  * negative error pointer on error.
1344  */
1345 struct dma_fence *xe_lrc_alloc_seqno_fence(void)
1346 {
1347 	return xe_hw_fence_alloc();
1348 }
1349 
1350 /**
1351  * xe_lrc_free_seqno_fence() - Free an lrc seqno fence.
1352  * @fence: Pointer to the fence to free.
1353  *
1354  * Frees an lrc seqno fence that hasn't yet been
1355  * initialized.
1356  */
1357 void xe_lrc_free_seqno_fence(struct dma_fence *fence)
1358 {
1359 	xe_hw_fence_free(fence);
1360 }
1361 
1362 /**
1363  * xe_lrc_init_seqno_fence() - Initialize an lrc seqno fence.
1364  * @lrc: Pointer to the lrc.
1365  * @fence: Pointer to the fence to initialize.
1366  *
1367  * Initializes a pre-allocated lrc seqno fence.
1368  * After initialization, the fence is subject to normal
1369  * dma-fence refcounting.
1370  */
1371 void xe_lrc_init_seqno_fence(struct xe_lrc *lrc, struct dma_fence *fence)
1372 {
1373 	xe_hw_fence_init(fence, &lrc->fence_ctx, __xe_lrc_seqno_map(lrc));
1374 }
1375 
1376 s32 xe_lrc_seqno(struct xe_lrc *lrc)
1377 {
1378 	struct iosys_map map = __xe_lrc_seqno_map(lrc);
1379 
1380 	return xe_map_read32(lrc_to_xe(lrc), &map);
1381 }
1382 
1383 s32 xe_lrc_start_seqno(struct xe_lrc *lrc)
1384 {
1385 	struct iosys_map map = __xe_lrc_start_seqno_map(lrc);
1386 
1387 	return xe_map_read32(lrc_to_xe(lrc), &map);
1388 }
1389 
1390 u32 xe_lrc_start_seqno_ggtt_addr(struct xe_lrc *lrc)
1391 {
1392 	return __xe_lrc_start_seqno_ggtt_addr(lrc);
1393 }
1394 
1395 u32 xe_lrc_parallel_ggtt_addr(struct xe_lrc *lrc)
1396 {
1397 	return __xe_lrc_parallel_ggtt_addr(lrc);
1398 }
1399 
1400 struct iosys_map xe_lrc_parallel_map(struct xe_lrc *lrc)
1401 {
1402 	return __xe_lrc_parallel_map(lrc);
1403 }
1404 
1405 /**
1406  * xe_lrc_engine_id() - Read engine id value
1407  * @lrc: Pointer to the lrc.
1408  *
1409  * Returns: context id value
1410  */
1411 static u32 xe_lrc_engine_id(struct xe_lrc *lrc)
1412 {
1413 	struct xe_device *xe = lrc_to_xe(lrc);
1414 	struct iosys_map map;
1415 
1416 	map = __xe_lrc_engine_id_map(lrc);
1417 	return xe_map_read32(xe, &map);
1418 }
1419 
1420 static int instr_dw(u32 cmd_header)
1421 {
1422 	/* GFXPIPE "SINGLE_DW" opcodes are a single dword */
1423 	if ((cmd_header & (XE_INSTR_CMD_TYPE | GFXPIPE_PIPELINE)) ==
1424 	    GFXPIPE_SINGLE_DW_CMD(0, 0))
1425 		return 1;
1426 
1427 	/* 3DSTATE_SO_DECL_LIST has a 9-bit dword length rather than 8 */
1428 	if ((cmd_header & GFXPIPE_MATCH_MASK) == CMD_3DSTATE_SO_DECL_LIST)
1429 		return REG_FIELD_GET(CMD_3DSTATE_SO_DECL_LIST_DW_LEN, cmd_header) + 2;
1430 
1431 	/* Most instructions have the # of dwords (minus 2) in 7:0 */
1432 	return REG_FIELD_GET(XE_INSTR_LEN_MASK, cmd_header) + 2;
1433 }
1434 
1435 static int dump_mi_command(struct drm_printer *p,
1436 			   struct xe_gt *gt,
1437 			   u32 *dw,
1438 			   int remaining_dw)
1439 {
1440 	u32 inst_header = *dw;
1441 	u32 numdw = instr_dw(inst_header);
1442 	u32 opcode = REG_FIELD_GET(MI_OPCODE, inst_header);
1443 	int num_noop;
1444 
1445 	/* First check for commands that don't have/use a '# DW' field */
1446 	switch (inst_header & MI_OPCODE) {
1447 	case MI_NOOP:
1448 		num_noop = 1;
1449 		while (num_noop < remaining_dw &&
1450 		       (*(++dw) & REG_GENMASK(31, 23)) == MI_NOOP)
1451 			num_noop++;
1452 		drm_printf(p, "[%#010x] MI_NOOP (%d dwords)\n", inst_header, num_noop);
1453 		return num_noop;
1454 
1455 	case MI_TOPOLOGY_FILTER:
1456 		drm_printf(p, "[%#010x] MI_TOPOLOGY_FILTER\n", inst_header);
1457 		return 1;
1458 
1459 	case MI_BATCH_BUFFER_END:
1460 		drm_printf(p, "[%#010x] MI_BATCH_BUFFER_END\n", inst_header);
1461 		/* Return 'remaining_dw' to consume the rest of the LRC */
1462 		return remaining_dw;
1463 	}
1464 
1465 	/*
1466 	 * Any remaining commands include a # of dwords.  We should make sure
1467 	 * it doesn't exceed the remaining size of the LRC.
1468 	 */
1469 	if (xe_gt_WARN_ON(gt, numdw > remaining_dw))
1470 		numdw = remaining_dw;
1471 
1472 	switch (inst_header & MI_OPCODE) {
1473 	case MI_LOAD_REGISTER_IMM:
1474 		drm_printf(p, "[%#010x] MI_LOAD_REGISTER_IMM: %d regs\n",
1475 			   inst_header, (numdw - 1) / 2);
1476 		for (int i = 1; i < numdw; i += 2)
1477 			drm_printf(p, " - %#6x = %#010x\n", dw[i], dw[i + 1]);
1478 		return numdw;
1479 
1480 	case MI_LOAD_REGISTER_MEM & MI_OPCODE:
1481 		drm_printf(p, "[%#010x] MI_LOAD_REGISTER_MEM: %s%s\n",
1482 			   inst_header,
1483 			   dw[0] & MI_LRI_LRM_CS_MMIO ? "CS_MMIO " : "",
1484 			   dw[0] & MI_LRM_USE_GGTT ? "USE_GGTT " : "");
1485 		if (numdw == 4)
1486 			drm_printf(p, " - %#6x = %#010llx\n",
1487 				   dw[1], ((u64)(dw[3]) << 32 | (u64)(dw[2])));
1488 		else
1489 			drm_printf(p, " - %*ph (%s)\n",
1490 				   (int)sizeof(u32) * (numdw - 1), dw + 1,
1491 				   numdw < 4 ? "truncated" : "malformed");
1492 		return numdw;
1493 
1494 	case MI_FORCE_WAKEUP:
1495 		drm_printf(p, "[%#010x] MI_FORCE_WAKEUP\n", inst_header);
1496 		return numdw;
1497 
1498 	default:
1499 		drm_printf(p, "[%#010x] unknown MI opcode %#x, likely %d dwords\n",
1500 			   inst_header, opcode, numdw);
1501 		return numdw;
1502 	}
1503 }
1504 
1505 static int dump_gfxpipe_command(struct drm_printer *p,
1506 				struct xe_gt *gt,
1507 				u32 *dw,
1508 				int remaining_dw)
1509 {
1510 	u32 numdw = instr_dw(*dw);
1511 	u32 pipeline = REG_FIELD_GET(GFXPIPE_PIPELINE, *dw);
1512 	u32 opcode = REG_FIELD_GET(GFXPIPE_OPCODE, *dw);
1513 	u32 subopcode = REG_FIELD_GET(GFXPIPE_SUBOPCODE, *dw);
1514 
1515 	/*
1516 	 * Make sure we haven't mis-parsed a number of dwords that exceeds the
1517 	 * remaining size of the LRC.
1518 	 */
1519 	if (xe_gt_WARN_ON(gt, numdw > remaining_dw))
1520 		numdw = remaining_dw;
1521 
1522 	switch (*dw & GFXPIPE_MATCH_MASK) {
1523 #define MATCH(cmd) \
1524 	case cmd: \
1525 		drm_printf(p, "[%#010x] " #cmd " (%d dwords)\n", *dw, numdw); \
1526 		return numdw
1527 #define MATCH3D(cmd) \
1528 	case CMD_##cmd: \
1529 		drm_printf(p, "[%#010x] " #cmd " (%d dwords)\n", *dw, numdw); \
1530 		return numdw
1531 
1532 	MATCH(STATE_BASE_ADDRESS);
1533 	MATCH(STATE_SIP);
1534 	MATCH(GPGPU_CSR_BASE_ADDRESS);
1535 	MATCH(STATE_COMPUTE_MODE);
1536 	MATCH3D(3DSTATE_BTD);
1537 	MATCH(STATE_SYSTEM_MEM_FENCE_ADDRESS);
1538 	MATCH(STATE_CONTEXT_DATA_BASE_ADDRESS);
1539 
1540 	MATCH3D(3DSTATE_VF_STATISTICS);
1541 
1542 	MATCH(PIPELINE_SELECT);
1543 
1544 	MATCH3D(3DSTATE_DRAWING_RECTANGLE_FAST);
1545 	MATCH3D(3DSTATE_CLEAR_PARAMS);
1546 	MATCH3D(3DSTATE_DEPTH_BUFFER);
1547 	MATCH3D(3DSTATE_STENCIL_BUFFER);
1548 	MATCH3D(3DSTATE_HIER_DEPTH_BUFFER);
1549 	MATCH3D(3DSTATE_VERTEX_BUFFERS);
1550 	MATCH3D(3DSTATE_VERTEX_ELEMENTS);
1551 	MATCH3D(3DSTATE_INDEX_BUFFER);
1552 	MATCH3D(3DSTATE_VF);
1553 	MATCH3D(3DSTATE_MULTISAMPLE);
1554 	MATCH3D(3DSTATE_CC_STATE_POINTERS);
1555 	MATCH3D(3DSTATE_SCISSOR_STATE_POINTERS);
1556 	MATCH3D(3DSTATE_VS);
1557 	MATCH3D(3DSTATE_GS);
1558 	MATCH3D(3DSTATE_CLIP);
1559 	MATCH3D(3DSTATE_SF);
1560 	MATCH3D(3DSTATE_WM);
1561 	MATCH3D(3DSTATE_CONSTANT_VS);
1562 	MATCH3D(3DSTATE_CONSTANT_GS);
1563 	MATCH3D(3DSTATE_CONSTANT_PS);
1564 	MATCH3D(3DSTATE_SAMPLE_MASK);
1565 	MATCH3D(3DSTATE_CONSTANT_HS);
1566 	MATCH3D(3DSTATE_CONSTANT_DS);
1567 	MATCH3D(3DSTATE_HS);
1568 	MATCH3D(3DSTATE_TE);
1569 	MATCH3D(3DSTATE_DS);
1570 	MATCH3D(3DSTATE_STREAMOUT);
1571 	MATCH3D(3DSTATE_SBE);
1572 	MATCH3D(3DSTATE_PS);
1573 	MATCH3D(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP);
1574 	MATCH3D(3DSTATE_CPS_POINTERS);
1575 	MATCH3D(3DSTATE_VIEWPORT_STATE_POINTERS_CC);
1576 	MATCH3D(3DSTATE_BLEND_STATE_POINTERS);
1577 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_VS);
1578 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_HS);
1579 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_DS);
1580 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_GS);
1581 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_PS);
1582 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_VS);
1583 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_HS);
1584 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_DS);
1585 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_GS);
1586 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_PS);
1587 	MATCH3D(3DSTATE_VF_INSTANCING);
1588 	MATCH3D(3DSTATE_VF_SGVS);
1589 	MATCH3D(3DSTATE_VF_TOPOLOGY);
1590 	MATCH3D(3DSTATE_WM_CHROMAKEY);
1591 	MATCH3D(3DSTATE_PS_BLEND);
1592 	MATCH3D(3DSTATE_WM_DEPTH_STENCIL);
1593 	MATCH3D(3DSTATE_PS_EXTRA);
1594 	MATCH3D(3DSTATE_RASTER);
1595 	MATCH3D(3DSTATE_SBE_SWIZ);
1596 	MATCH3D(3DSTATE_WM_HZ_OP);
1597 	MATCH3D(3DSTATE_VF_COMPONENT_PACKING);
1598 	MATCH3D(3DSTATE_VF_SGVS_2);
1599 	MATCH3D(3DSTATE_VFG);
1600 	MATCH3D(3DSTATE_URB_ALLOC_VS);
1601 	MATCH3D(3DSTATE_URB_ALLOC_HS);
1602 	MATCH3D(3DSTATE_URB_ALLOC_DS);
1603 	MATCH3D(3DSTATE_URB_ALLOC_GS);
1604 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_0);
1605 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_1);
1606 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_2);
1607 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_3);
1608 	MATCH3D(3DSTATE_PRIMITIVE_REPLICATION);
1609 	MATCH3D(3DSTATE_TBIMR_TILE_PASS_INFO);
1610 	MATCH3D(3DSTATE_AMFS);
1611 	MATCH3D(3DSTATE_DEPTH_BOUNDS);
1612 	MATCH3D(3DSTATE_AMFS_TEXTURE_POINTERS);
1613 	MATCH3D(3DSTATE_CONSTANT_TS_POINTER);
1614 	MATCH3D(3DSTATE_MESH_CONTROL);
1615 	MATCH3D(3DSTATE_MESH_DISTRIB);
1616 	MATCH3D(3DSTATE_TASK_REDISTRIB);
1617 	MATCH3D(3DSTATE_MESH_SHADER);
1618 	MATCH3D(3DSTATE_MESH_SHADER_DATA);
1619 	MATCH3D(3DSTATE_TASK_CONTROL);
1620 	MATCH3D(3DSTATE_TASK_SHADER);
1621 	MATCH3D(3DSTATE_TASK_SHADER_DATA);
1622 	MATCH3D(3DSTATE_URB_ALLOC_MESH);
1623 	MATCH3D(3DSTATE_URB_ALLOC_TASK);
1624 	MATCH3D(3DSTATE_CLIP_MESH);
1625 	MATCH3D(3DSTATE_SBE_MESH);
1626 	MATCH3D(3DSTATE_CPSIZE_CONTROL_BUFFER);
1627 	MATCH3D(3DSTATE_COARSE_PIXEL);
1628 
1629 	MATCH3D(3DSTATE_DRAWING_RECTANGLE);
1630 	MATCH3D(3DSTATE_CHROMA_KEY);
1631 	MATCH3D(3DSTATE_POLY_STIPPLE_OFFSET);
1632 	MATCH3D(3DSTATE_POLY_STIPPLE_PATTERN);
1633 	MATCH3D(3DSTATE_LINE_STIPPLE);
1634 	MATCH3D(3DSTATE_AA_LINE_PARAMETERS);
1635 	MATCH3D(3DSTATE_MONOFILTER_SIZE);
1636 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_VS);
1637 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_HS);
1638 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_DS);
1639 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_GS);
1640 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_PS);
1641 	MATCH3D(3DSTATE_SO_DECL_LIST);
1642 	MATCH3D(3DSTATE_SO_BUFFER);
1643 	MATCH3D(3DSTATE_BINDING_TABLE_POOL_ALLOC);
1644 	MATCH3D(3DSTATE_SAMPLE_PATTERN);
1645 	MATCH3D(3DSTATE_3D_MODE);
1646 	MATCH3D(3DSTATE_SUBSLICE_HASH_TABLE);
1647 	MATCH3D(3DSTATE_SLICE_TABLE_STATE_POINTERS);
1648 	MATCH3D(3DSTATE_PTBR_TILE_PASS_INFO);
1649 
1650 	default:
1651 		drm_printf(p, "[%#010x] unknown GFXPIPE command (pipeline=%#x, opcode=%#x, subopcode=%#x), likely %d dwords\n",
1652 			   *dw, pipeline, opcode, subopcode, numdw);
1653 		return numdw;
1654 	}
1655 }
1656 
1657 static int dump_gfx_state_command(struct drm_printer *p,
1658 				  struct xe_gt *gt,
1659 				  u32 *dw,
1660 				  int remaining_dw)
1661 {
1662 	u32 numdw = instr_dw(*dw);
1663 	u32 opcode = REG_FIELD_GET(GFX_STATE_OPCODE, *dw);
1664 
1665 	/*
1666 	 * Make sure we haven't mis-parsed a number of dwords that exceeds the
1667 	 * remaining size of the LRC.
1668 	 */
1669 	if (xe_gt_WARN_ON(gt, numdw > remaining_dw))
1670 		numdw = remaining_dw;
1671 
1672 	switch (*dw & (XE_INSTR_GFX_STATE | GFX_STATE_OPCODE)) {
1673 	MATCH(STATE_WRITE_INLINE);
1674 
1675 	default:
1676 		drm_printf(p, "[%#010x] unknown GFX_STATE command (opcode=%#x), likely %d dwords\n",
1677 			   *dw, opcode, numdw);
1678 		return numdw;
1679 	}
1680 }
1681 
1682 void xe_lrc_dump_default(struct drm_printer *p,
1683 			 struct xe_gt *gt,
1684 			 enum xe_engine_class hwe_class)
1685 {
1686 	u32 *dw;
1687 	int remaining_dw, num_dw;
1688 
1689 	if (!gt->default_lrc[hwe_class]) {
1690 		drm_printf(p, "No default LRC for class %d\n", hwe_class);
1691 		return;
1692 	}
1693 
1694 	/*
1695 	 * Skip the beginning of the LRC since it contains the per-process
1696 	 * hardware status page.
1697 	 */
1698 	dw = gt->default_lrc[hwe_class] + LRC_PPHWSP_SIZE;
1699 	remaining_dw = (xe_gt_lrc_size(gt, hwe_class) - LRC_PPHWSP_SIZE) / 4;
1700 
1701 	while (remaining_dw > 0) {
1702 		if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_MI) {
1703 			num_dw = dump_mi_command(p, gt, dw, remaining_dw);
1704 		} else if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_GFXPIPE) {
1705 			num_dw = dump_gfxpipe_command(p, gt, dw, remaining_dw);
1706 		} else if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_GFX_STATE) {
1707 			num_dw = dump_gfx_state_command(p, gt, dw, remaining_dw);
1708 		} else {
1709 			num_dw = min(instr_dw(*dw), remaining_dw);
1710 			drm_printf(p, "[%#10x] Unknown instruction of type %#x, likely %d dwords\n",
1711 				   *dw, REG_FIELD_GET(XE_INSTR_CMD_TYPE, *dw),
1712 				   num_dw);
1713 		}
1714 
1715 		dw += num_dw;
1716 		remaining_dw -= num_dw;
1717 	}
1718 }
1719 
1720 struct instr_state {
1721 	u32 instr;
1722 	u16 num_dw;
1723 };
1724 
1725 static const struct instr_state xe_hpg_svg_state[] = {
1726 	{ .instr = CMD_3DSTATE_CONSTANT_VS, .num_dw = 11 },
1727 	{ .instr = CMD_3DSTATE_CONSTANT_HS, .num_dw = 11 },
1728 	{ .instr = CMD_3DSTATE_CONSTANT_DS, .num_dw = 11 },
1729 	{ .instr = CMD_3DSTATE_CONSTANT_GS, .num_dw = 11 },
1730 	{ .instr = CMD_3DSTATE_VERTEX_ELEMENTS, .num_dw = 69 },
1731 	{ .instr = CMD_3DSTATE_VF_COMPONENT_PACKING, .num_dw = 5 },
1732 	{ .instr = CMD_3DSTATE_VF_SGVS, .num_dw = 2 },
1733 	{ .instr = CMD_3DSTATE_VF_SGVS_2, .num_dw = 3 },
1734 	{ .instr = CMD_3DSTATE_VS, .num_dw = 9 },
1735 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_VS, .num_dw = 2 },
1736 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_VS, .num_dw = 2 },
1737 	{ .instr = CMD_3DSTATE_URB_ALLOC_VS, .num_dw = 3 },
1738 	{ .instr = CMD_3DSTATE_STREAMOUT, .num_dw = 5 },
1739 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_0, .num_dw = 8 },
1740 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_1, .num_dw = 8 },
1741 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_2, .num_dw = 8 },
1742 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_3, .num_dw = 8 },
1743 	{ .instr = CMD_3DSTATE_CLIP, .num_dw = 4 },
1744 	{ .instr = CMD_3DSTATE_PRIMITIVE_REPLICATION, .num_dw = 6 },
1745 	{ .instr = CMD_3DSTATE_CLIP_MESH, .num_dw = 2 },
1746 	{ .instr = CMD_3DSTATE_SF, .num_dw = 4 },
1747 	{ .instr = CMD_3DSTATE_SCISSOR_STATE_POINTERS, .num_dw = 2 },
1748 	{ .instr = CMD_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, .num_dw = 2 },
1749 	{ .instr = CMD_3DSTATE_RASTER, .num_dw = 5 },
1750 	{ .instr = CMD_3DSTATE_TBIMR_TILE_PASS_INFO, .num_dw = 4 },
1751 	{ .instr = CMD_3DSTATE_WM_HZ_OP, .num_dw = 6 },
1752 	{ .instr = CMD_3DSTATE_MULTISAMPLE, .num_dw = 2 },
1753 	{ .instr = CMD_3DSTATE_HS, .num_dw = 9 },
1754 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_HS, .num_dw = 2 },
1755 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_HS, .num_dw = 2 },
1756 	{ .instr = CMD_3DSTATE_URB_ALLOC_HS, .num_dw = 3 },
1757 	{ .instr = CMD_3DSTATE_TASK_CONTROL, .num_dw = 3 },
1758 	{ .instr = CMD_3DSTATE_TASK_SHADER, .num_dw = 7 },
1759 	{ .instr = CMD_3DSTATE_TASK_SHADER_DATA, .num_dw = 10 },
1760 	{ .instr = CMD_3DSTATE_URB_ALLOC_TASK, .num_dw = 3 },
1761 	{ .instr = CMD_3DSTATE_TE, .num_dw = 5 },
1762 	{ .instr = CMD_3DSTATE_TASK_REDISTRIB, .num_dw = 2 },
1763 	{ .instr = CMD_3DSTATE_DS, .num_dw = 11 },
1764 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_DS, .num_dw = 2 },
1765 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_DS, .num_dw = 2 },
1766 	{ .instr = CMD_3DSTATE_URB_ALLOC_DS, .num_dw = 3 },
1767 	{ .instr = CMD_3DSTATE_GS, .num_dw = 10 },
1768 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_GS, .num_dw = 2 },
1769 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_GS, .num_dw = 2 },
1770 	{ .instr = CMD_3DSTATE_URB_ALLOC_GS, .num_dw = 3 },
1771 	{ .instr = CMD_3DSTATE_MESH_CONTROL, .num_dw = 3 },
1772 	{ .instr = CMD_3DSTATE_MESH_SHADER_DATA, .num_dw = 10 },
1773 	{ .instr = CMD_3DSTATE_URB_ALLOC_MESH, .num_dw = 3 },
1774 	{ .instr = CMD_3DSTATE_MESH_SHADER, .num_dw = 8 },
1775 	{ .instr = CMD_3DSTATE_DRAWING_RECTANGLE, .num_dw = 4 },
1776 };
1777 
1778 void xe_lrc_emit_hwe_state_instructions(struct xe_exec_queue *q, struct xe_bb *bb)
1779 {
1780 	struct xe_gt *gt = q->hwe->gt;
1781 	struct xe_device *xe = gt_to_xe(gt);
1782 	const struct instr_state *state_table = NULL;
1783 	int state_table_size = 0;
1784 
1785 	/*
1786 	 * Wa_14019789679
1787 	 *
1788 	 * If the driver doesn't explicitly emit the SVG instructions while
1789 	 * setting up the default LRC, the context switch will write 0's
1790 	 * (noops) into the LRC memory rather than the expected instruction
1791 	 * headers.  Application contexts start out as a copy of the default
1792 	 * LRC, and if they also do not emit specific settings for some SVG
1793 	 * state, then on context restore they'll unintentionally inherit
1794 	 * whatever state setting the previous context had programmed into the
1795 	 * hardware (i.e., the lack of a 3DSTATE_* instruction in the LRC will
1796 	 * prevent the hardware from resetting that state back to any specific
1797 	 * value).
1798 	 *
1799 	 * The official workaround only requires emitting 3DSTATE_MESH_CONTROL
1800 	 * since that's a specific state setting that can easily cause GPU
1801 	 * hangs if unintentionally inherited.  However to be safe we'll
1802 	 * continue to emit all of the SVG state since it's best not to leak
1803 	 * any of the state between contexts, even if that leakage is harmless.
1804 	 */
1805 	if (XE_WA(gt, 14019789679) && q->hwe->class == XE_ENGINE_CLASS_RENDER) {
1806 		state_table = xe_hpg_svg_state;
1807 		state_table_size = ARRAY_SIZE(xe_hpg_svg_state);
1808 	}
1809 
1810 	if (!state_table) {
1811 		xe_gt_dbg(gt, "No non-register state to emit on graphics ver %d.%02d\n",
1812 			  GRAPHICS_VER(xe), GRAPHICS_VERx100(xe) % 100);
1813 		return;
1814 	}
1815 
1816 	for (int i = 0; i < state_table_size; i++) {
1817 		u32 instr = state_table[i].instr;
1818 		u16 num_dw = state_table[i].num_dw;
1819 		bool is_single_dw = ((instr & GFXPIPE_PIPELINE) == PIPELINE_SINGLE_DW);
1820 
1821 		xe_gt_assert(gt, (instr & XE_INSTR_CMD_TYPE) == XE_INSTR_GFXPIPE);
1822 		xe_gt_assert(gt, num_dw != 0);
1823 		xe_gt_assert(gt, is_single_dw ^ (num_dw > 1));
1824 
1825 		/*
1826 		 * Xe2's SVG context is the same as the one on DG2 / MTL
1827 		 * except that 3DSTATE_DRAWING_RECTANGLE (non-pipelined) has
1828 		 * been replaced by 3DSTATE_DRAWING_RECTANGLE_FAST (pipelined).
1829 		 * Just make the replacement here rather than defining a
1830 		 * whole separate table for the single trivial change.
1831 		 */
1832 		if (GRAPHICS_VER(xe) >= 20 &&
1833 		    instr == CMD_3DSTATE_DRAWING_RECTANGLE)
1834 			instr = CMD_3DSTATE_DRAWING_RECTANGLE_FAST;
1835 
1836 		bb->cs[bb->len] = instr;
1837 		if (!is_single_dw)
1838 			bb->cs[bb->len] |= (num_dw - 2);
1839 
1840 		bb->len += num_dw;
1841 	}
1842 }
1843 
1844 struct xe_lrc_snapshot *xe_lrc_snapshot_capture(struct xe_lrc *lrc)
1845 {
1846 	struct xe_lrc_snapshot *snapshot = kmalloc(sizeof(*snapshot), GFP_NOWAIT);
1847 
1848 	if (!snapshot)
1849 		return NULL;
1850 
1851 	snapshot->context_desc = xe_lrc_ggtt_addr(lrc);
1852 	snapshot->ring_addr = __xe_lrc_ring_ggtt_addr(lrc);
1853 	snapshot->indirect_context_desc = xe_lrc_indirect_ring_ggtt_addr(lrc);
1854 	snapshot->head = xe_lrc_ring_head(lrc);
1855 	snapshot->tail.internal = lrc->ring.tail;
1856 	snapshot->tail.memory = xe_lrc_ring_tail(lrc);
1857 	snapshot->start = xe_lrc_ring_start(lrc);
1858 	snapshot->start_seqno = xe_lrc_start_seqno(lrc);
1859 	snapshot->seqno = xe_lrc_seqno(lrc);
1860 	snapshot->lrc_bo = xe_bo_get(lrc->bo);
1861 	snapshot->lrc_offset = xe_lrc_pphwsp_offset(lrc);
1862 	snapshot->lrc_size = lrc->bo->size - snapshot->lrc_offset -
1863 		LRC_WA_BB_SIZE;
1864 	snapshot->lrc_snapshot = NULL;
1865 	snapshot->ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(lrc));
1866 	snapshot->ctx_job_timestamp = xe_lrc_ctx_job_timestamp(lrc);
1867 	return snapshot;
1868 }
1869 
1870 void xe_lrc_snapshot_capture_delayed(struct xe_lrc_snapshot *snapshot)
1871 {
1872 	struct xe_bo *bo;
1873 	struct iosys_map src;
1874 
1875 	if (!snapshot)
1876 		return;
1877 
1878 	bo = snapshot->lrc_bo;
1879 	snapshot->lrc_bo = NULL;
1880 
1881 	snapshot->lrc_snapshot = kvmalloc(snapshot->lrc_size, GFP_KERNEL);
1882 	if (!snapshot->lrc_snapshot)
1883 		goto put_bo;
1884 
1885 	xe_bo_lock(bo, false);
1886 	if (!ttm_bo_vmap(&bo->ttm, &src)) {
1887 		xe_map_memcpy_from(xe_bo_device(bo),
1888 				   snapshot->lrc_snapshot, &src, snapshot->lrc_offset,
1889 				   snapshot->lrc_size);
1890 		ttm_bo_vunmap(&bo->ttm, &src);
1891 	} else {
1892 		kvfree(snapshot->lrc_snapshot);
1893 		snapshot->lrc_snapshot = NULL;
1894 	}
1895 	xe_bo_unlock(bo);
1896 put_bo:
1897 	xe_bo_put(bo);
1898 }
1899 
1900 void xe_lrc_snapshot_print(struct xe_lrc_snapshot *snapshot, struct drm_printer *p)
1901 {
1902 	unsigned long i;
1903 
1904 	if (!snapshot)
1905 		return;
1906 
1907 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", snapshot->context_desc);
1908 	drm_printf(p, "\tHW Ring address: 0x%08x\n",
1909 		   snapshot->ring_addr);
1910 	drm_printf(p, "\tHW Indirect Ring State: 0x%08x\n",
1911 		   snapshot->indirect_context_desc);
1912 	drm_printf(p, "\tLRC Head: (memory) %u\n", snapshot->head);
1913 	drm_printf(p, "\tLRC Tail: (internal) %u, (memory) %u\n",
1914 		   snapshot->tail.internal, snapshot->tail.memory);
1915 	drm_printf(p, "\tRing start: (memory) 0x%08x\n", snapshot->start);
1916 	drm_printf(p, "\tStart seqno: (memory) %d\n", snapshot->start_seqno);
1917 	drm_printf(p, "\tSeqno: (memory) %d\n", snapshot->seqno);
1918 	drm_printf(p, "\tTimestamp: 0x%08x\n", snapshot->ctx_timestamp);
1919 	drm_printf(p, "\tJob Timestamp: 0x%08x\n", snapshot->ctx_job_timestamp);
1920 
1921 	if (!snapshot->lrc_snapshot)
1922 		return;
1923 
1924 	drm_printf(p, "\t[HWSP].length: 0x%x\n", LRC_PPHWSP_SIZE);
1925 	drm_puts(p, "\t[HWSP].data: ");
1926 	for (i = 0; i < LRC_PPHWSP_SIZE; i += sizeof(u32)) {
1927 		u32 *val = snapshot->lrc_snapshot + i;
1928 		char dumped[ASCII85_BUFSZ];
1929 
1930 		drm_puts(p, ascii85_encode(*val, dumped));
1931 	}
1932 
1933 	drm_printf(p, "\n\t[HWCTX].length: 0x%lx\n", snapshot->lrc_size - LRC_PPHWSP_SIZE);
1934 	drm_puts(p, "\t[HWCTX].data: ");
1935 	for (; i < snapshot->lrc_size; i += sizeof(u32)) {
1936 		u32 *val = snapshot->lrc_snapshot + i;
1937 		char dumped[ASCII85_BUFSZ];
1938 
1939 		drm_puts(p, ascii85_encode(*val, dumped));
1940 	}
1941 	drm_puts(p, "\n");
1942 }
1943 
1944 void xe_lrc_snapshot_free(struct xe_lrc_snapshot *snapshot)
1945 {
1946 	if (!snapshot)
1947 		return;
1948 
1949 	kvfree(snapshot->lrc_snapshot);
1950 	if (snapshot->lrc_bo)
1951 		xe_bo_put(snapshot->lrc_bo);
1952 
1953 	kfree(snapshot);
1954 }
1955 
1956 static int get_ctx_timestamp(struct xe_lrc *lrc, u32 engine_id, u64 *reg_ctx_ts)
1957 {
1958 	u16 class = REG_FIELD_GET(ENGINE_CLASS_ID, engine_id);
1959 	u16 instance = REG_FIELD_GET(ENGINE_INSTANCE_ID, engine_id);
1960 	struct xe_hw_engine *hwe;
1961 	u64 val;
1962 
1963 	hwe = xe_gt_hw_engine(lrc->gt, class, instance, false);
1964 	if (xe_gt_WARN_ONCE(lrc->gt, !hwe || xe_hw_engine_is_reserved(hwe),
1965 			    "Unexpected engine class:instance %d:%d for context utilization\n",
1966 			    class, instance))
1967 		return -1;
1968 
1969 	if (lrc_to_xe(lrc)->info.has_64bit_timestamp)
1970 		val = xe_mmio_read64_2x32(&hwe->gt->mmio,
1971 					  RING_CTX_TIMESTAMP(hwe->mmio_base));
1972 	else
1973 		val = xe_mmio_read32(&hwe->gt->mmio,
1974 				     RING_CTX_TIMESTAMP(hwe->mmio_base));
1975 
1976 	*reg_ctx_ts = val;
1977 
1978 	return 0;
1979 }
1980 
1981 /**
1982  * xe_lrc_update_timestamp() - Update ctx timestamp
1983  * @lrc: Pointer to the lrc.
1984  * @old_ts: Old timestamp value
1985  *
1986  * Populate @old_ts current saved ctx timestamp, read new ctx timestamp and
1987  * update saved value. With support for active contexts, the calculation may be
1988  * slightly racy, so follow a read-again logic to ensure that the context is
1989  * still active before returning the right timestamp.
1990  *
1991  * Returns: New ctx timestamp value
1992  */
1993 u64 xe_lrc_update_timestamp(struct xe_lrc *lrc, u64 *old_ts)
1994 {
1995 	u64 lrc_ts, reg_ts;
1996 	u32 engine_id;
1997 
1998 	*old_ts = lrc->ctx_timestamp;
1999 
2000 	lrc_ts = xe_lrc_ctx_timestamp(lrc);
2001 	/* CTX_TIMESTAMP mmio read is invalid on VF, so return the LRC value */
2002 	if (IS_SRIOV_VF(lrc_to_xe(lrc))) {
2003 		lrc->ctx_timestamp = lrc_ts;
2004 		goto done;
2005 	}
2006 
2007 	if (lrc_ts == CONTEXT_ACTIVE) {
2008 		engine_id = xe_lrc_engine_id(lrc);
2009 		if (!get_ctx_timestamp(lrc, engine_id, &reg_ts))
2010 			lrc->ctx_timestamp = reg_ts;
2011 
2012 		/* read lrc again to ensure context is still active */
2013 		lrc_ts = xe_lrc_ctx_timestamp(lrc);
2014 	}
2015 
2016 	/*
2017 	 * If context switched out, just use the lrc_ts. Note that this needs to
2018 	 * be a separate if condition.
2019 	 */
2020 	if (lrc_ts != CONTEXT_ACTIVE)
2021 		lrc->ctx_timestamp = lrc_ts;
2022 
2023 done:
2024 	trace_xe_lrc_update_timestamp(lrc, *old_ts);
2025 
2026 	return lrc->ctx_timestamp;
2027 }
2028 
2029 /**
2030  * xe_lrc_ring_is_idle() - LRC is idle
2031  * @lrc: Pointer to the lrc.
2032  *
2033  * Compare LRC ring head and tail to determine if idle.
2034  *
2035  * Return: True is ring is idle, False otherwise
2036  */
2037 bool xe_lrc_ring_is_idle(struct xe_lrc *lrc)
2038 {
2039 	return xe_lrc_ring_head(lrc) == xe_lrc_ring_tail(lrc);
2040 }
2041