1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_lrc.h" 7 8 #include <generated/xe_wa_oob.h> 9 10 #include <linux/ascii85.h> 11 12 #include "instructions/xe_mi_commands.h" 13 #include "instructions/xe_gfxpipe_commands.h" 14 #include "instructions/xe_gfx_state_commands.h" 15 #include "regs/xe_engine_regs.h" 16 #include "regs/xe_lrc_layout.h" 17 #include "xe_bb.h" 18 #include "xe_bo.h" 19 #include "xe_device.h" 20 #include "xe_drm_client.h" 21 #include "xe_exec_queue_types.h" 22 #include "xe_gt.h" 23 #include "xe_gt_printk.h" 24 #include "xe_hw_fence.h" 25 #include "xe_map.h" 26 #include "xe_memirq.h" 27 #include "xe_mmio.h" 28 #include "xe_sriov.h" 29 #include "xe_trace_lrc.h" 30 #include "xe_vm.h" 31 #include "xe_wa.h" 32 33 #define LRC_VALID BIT_ULL(0) 34 #define LRC_PRIVILEGE BIT_ULL(8) 35 #define LRC_ADDRESSING_MODE GENMASK_ULL(4, 3) 36 #define LRC_LEGACY_64B_CONTEXT 3 37 38 #define LRC_ENGINE_CLASS GENMASK_ULL(63, 61) 39 #define LRC_ENGINE_INSTANCE GENMASK_ULL(53, 48) 40 41 #define LRC_PPHWSP_SIZE SZ_4K 42 #define LRC_INDIRECT_RING_STATE_SIZE SZ_4K 43 #define LRC_WA_BB_SIZE SZ_4K 44 45 static struct xe_device * 46 lrc_to_xe(struct xe_lrc *lrc) 47 { 48 return gt_to_xe(lrc->fence_ctx.gt); 49 } 50 51 size_t xe_gt_lrc_size(struct xe_gt *gt, enum xe_engine_class class) 52 { 53 struct xe_device *xe = gt_to_xe(gt); 54 size_t size; 55 56 /* Per-process HW status page (PPHWSP) */ 57 size = LRC_PPHWSP_SIZE; 58 59 /* Engine context image */ 60 switch (class) { 61 case XE_ENGINE_CLASS_RENDER: 62 if (GRAPHICS_VER(xe) >= 20) 63 size += 3 * SZ_4K; 64 else 65 size += 13 * SZ_4K; 66 break; 67 case XE_ENGINE_CLASS_COMPUTE: 68 if (GRAPHICS_VER(xe) >= 20) 69 size += 2 * SZ_4K; 70 else 71 size += 13 * SZ_4K; 72 break; 73 default: 74 WARN(1, "Unknown engine class: %d", class); 75 fallthrough; 76 case XE_ENGINE_CLASS_COPY: 77 case XE_ENGINE_CLASS_VIDEO_DECODE: 78 case XE_ENGINE_CLASS_VIDEO_ENHANCE: 79 case XE_ENGINE_CLASS_OTHER: 80 size += 1 * SZ_4K; 81 } 82 83 /* Add indirect ring state page */ 84 if (xe_gt_has_indirect_ring_state(gt)) 85 size += LRC_INDIRECT_RING_STATE_SIZE; 86 87 return size; 88 } 89 90 /* 91 * The per-platform tables are u8-encoded in @data. Decode @data and set the 92 * addresses' offset and commands in @regs. The following encoding is used 93 * for each byte. There are 2 steps: decoding commands and decoding addresses. 94 * 95 * Commands: 96 * [7]: create NOPs - number of NOPs are set in lower bits 97 * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set 98 * MI_LRI_FORCE_POSTED 99 * [5:0]: Number of NOPs or registers to set values to in case of 100 * MI_LOAD_REGISTER_IMM 101 * 102 * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count" 103 * number of registers. They are set by using the REG/REG16 macros: the former 104 * is used for offsets smaller than 0x200 while the latter is for values bigger 105 * than that. Those macros already set all the bits documented below correctly: 106 * 107 * [7]: When a register offset needs more than 6 bits, use additional bytes, to 108 * follow, for the lower bits 109 * [6:0]: Register offset, without considering the engine base. 110 * 111 * This function only tweaks the commands and register offsets. Values are not 112 * filled out. 113 */ 114 static void set_offsets(u32 *regs, 115 const u8 *data, 116 const struct xe_hw_engine *hwe) 117 #define NOP(x) (BIT(7) | (x)) 118 #define LRI(count, flags) ((flags) << 6 | (count) | \ 119 BUILD_BUG_ON_ZERO(count >= BIT(6))) 120 #define POSTED BIT(0) 121 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) 122 #define REG16(x) \ 123 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ 124 (((x) >> 2) & 0x7f) 125 { 126 const u32 base = hwe->mmio_base; 127 128 while (*data) { 129 u8 count, flags; 130 131 if (*data & BIT(7)) { /* skip */ 132 count = *data++ & ~BIT(7); 133 regs += count; 134 continue; 135 } 136 137 count = *data & 0x3f; 138 flags = *data >> 6; 139 data++; 140 141 *regs = MI_LOAD_REGISTER_IMM | MI_LRI_NUM_REGS(count); 142 if (flags & POSTED) 143 *regs |= MI_LRI_FORCE_POSTED; 144 *regs |= MI_LRI_LRM_CS_MMIO; 145 regs++; 146 147 xe_gt_assert(hwe->gt, count); 148 do { 149 u32 offset = 0; 150 u8 v; 151 152 do { 153 v = *data++; 154 offset <<= 7; 155 offset |= v & ~BIT(7); 156 } while (v & BIT(7)); 157 158 regs[0] = base + (offset << 2); 159 regs += 2; 160 } while (--count); 161 } 162 163 *regs = MI_BATCH_BUFFER_END | BIT(0); 164 } 165 166 static const u8 gen12_xcs_offsets[] = { 167 NOP(1), 168 LRI(13, POSTED), 169 REG16(0x244), 170 REG(0x034), 171 REG(0x030), 172 REG(0x038), 173 REG(0x03c), 174 REG(0x168), 175 REG(0x140), 176 REG(0x110), 177 REG(0x1c0), 178 REG(0x1c4), 179 REG(0x1c8), 180 REG(0x180), 181 REG16(0x2b4), 182 183 NOP(5), 184 LRI(9, POSTED), 185 REG16(0x3a8), 186 REG16(0x28c), 187 REG16(0x288), 188 REG16(0x284), 189 REG16(0x280), 190 REG16(0x27c), 191 REG16(0x278), 192 REG16(0x274), 193 REG16(0x270), 194 195 0 196 }; 197 198 static const u8 dg2_xcs_offsets[] = { 199 NOP(1), 200 LRI(15, POSTED), 201 REG16(0x244), 202 REG(0x034), 203 REG(0x030), 204 REG(0x038), 205 REG(0x03c), 206 REG(0x168), 207 REG(0x140), 208 REG(0x110), 209 REG(0x1c0), 210 REG(0x1c4), 211 REG(0x1c8), 212 REG(0x180), 213 REG16(0x2b4), 214 REG(0x120), 215 REG(0x124), 216 217 NOP(1), 218 LRI(9, POSTED), 219 REG16(0x3a8), 220 REG16(0x28c), 221 REG16(0x288), 222 REG16(0x284), 223 REG16(0x280), 224 REG16(0x27c), 225 REG16(0x278), 226 REG16(0x274), 227 REG16(0x270), 228 229 0 230 }; 231 232 static const u8 gen12_rcs_offsets[] = { 233 NOP(1), 234 LRI(13, POSTED), 235 REG16(0x244), 236 REG(0x034), 237 REG(0x030), 238 REG(0x038), 239 REG(0x03c), 240 REG(0x168), 241 REG(0x140), 242 REG(0x110), 243 REG(0x1c0), 244 REG(0x1c4), 245 REG(0x1c8), 246 REG(0x180), 247 REG16(0x2b4), 248 249 NOP(5), 250 LRI(9, POSTED), 251 REG16(0x3a8), 252 REG16(0x28c), 253 REG16(0x288), 254 REG16(0x284), 255 REG16(0x280), 256 REG16(0x27c), 257 REG16(0x278), 258 REG16(0x274), 259 REG16(0x270), 260 261 LRI(3, POSTED), 262 REG(0x1b0), 263 REG16(0x5a8), 264 REG16(0x5ac), 265 266 NOP(6), 267 LRI(1, 0), 268 REG(0x0c8), 269 NOP(3 + 9 + 1), 270 271 LRI(51, POSTED), 272 REG16(0x588), 273 REG16(0x588), 274 REG16(0x588), 275 REG16(0x588), 276 REG16(0x588), 277 REG16(0x588), 278 REG(0x028), 279 REG(0x09c), 280 REG(0x0c0), 281 REG(0x178), 282 REG(0x17c), 283 REG16(0x358), 284 REG(0x170), 285 REG(0x150), 286 REG(0x154), 287 REG(0x158), 288 REG16(0x41c), 289 REG16(0x600), 290 REG16(0x604), 291 REG16(0x608), 292 REG16(0x60c), 293 REG16(0x610), 294 REG16(0x614), 295 REG16(0x618), 296 REG16(0x61c), 297 REG16(0x620), 298 REG16(0x624), 299 REG16(0x628), 300 REG16(0x62c), 301 REG16(0x630), 302 REG16(0x634), 303 REG16(0x638), 304 REG16(0x63c), 305 REG16(0x640), 306 REG16(0x644), 307 REG16(0x648), 308 REG16(0x64c), 309 REG16(0x650), 310 REG16(0x654), 311 REG16(0x658), 312 REG16(0x65c), 313 REG16(0x660), 314 REG16(0x664), 315 REG16(0x668), 316 REG16(0x66c), 317 REG16(0x670), 318 REG16(0x674), 319 REG16(0x678), 320 REG16(0x67c), 321 REG(0x068), 322 REG(0x084), 323 NOP(1), 324 325 0 326 }; 327 328 static const u8 xehp_rcs_offsets[] = { 329 NOP(1), 330 LRI(13, POSTED), 331 REG16(0x244), 332 REG(0x034), 333 REG(0x030), 334 REG(0x038), 335 REG(0x03c), 336 REG(0x168), 337 REG(0x140), 338 REG(0x110), 339 REG(0x1c0), 340 REG(0x1c4), 341 REG(0x1c8), 342 REG(0x180), 343 REG16(0x2b4), 344 345 NOP(5), 346 LRI(9, POSTED), 347 REG16(0x3a8), 348 REG16(0x28c), 349 REG16(0x288), 350 REG16(0x284), 351 REG16(0x280), 352 REG16(0x27c), 353 REG16(0x278), 354 REG16(0x274), 355 REG16(0x270), 356 357 LRI(3, POSTED), 358 REG(0x1b0), 359 REG16(0x5a8), 360 REG16(0x5ac), 361 362 NOP(6), 363 LRI(1, 0), 364 REG(0x0c8), 365 366 0 367 }; 368 369 static const u8 dg2_rcs_offsets[] = { 370 NOP(1), 371 LRI(15, POSTED), 372 REG16(0x244), 373 REG(0x034), 374 REG(0x030), 375 REG(0x038), 376 REG(0x03c), 377 REG(0x168), 378 REG(0x140), 379 REG(0x110), 380 REG(0x1c0), 381 REG(0x1c4), 382 REG(0x1c8), 383 REG(0x180), 384 REG16(0x2b4), 385 REG(0x120), 386 REG(0x124), 387 388 NOP(1), 389 LRI(9, POSTED), 390 REG16(0x3a8), 391 REG16(0x28c), 392 REG16(0x288), 393 REG16(0x284), 394 REG16(0x280), 395 REG16(0x27c), 396 REG16(0x278), 397 REG16(0x274), 398 REG16(0x270), 399 400 LRI(3, POSTED), 401 REG(0x1b0), 402 REG16(0x5a8), 403 REG16(0x5ac), 404 405 NOP(6), 406 LRI(1, 0), 407 REG(0x0c8), 408 409 0 410 }; 411 412 static const u8 mtl_rcs_offsets[] = { 413 NOP(1), 414 LRI(15, POSTED), 415 REG16(0x244), 416 REG(0x034), 417 REG(0x030), 418 REG(0x038), 419 REG(0x03c), 420 REG(0x168), 421 REG(0x140), 422 REG(0x110), 423 REG(0x1c0), 424 REG(0x1c4), 425 REG(0x1c8), 426 REG(0x180), 427 REG16(0x2b4), 428 REG(0x120), 429 REG(0x124), 430 431 NOP(1), 432 LRI(9, POSTED), 433 REG16(0x3a8), 434 REG16(0x28c), 435 REG16(0x288), 436 REG16(0x284), 437 REG16(0x280), 438 REG16(0x27c), 439 REG16(0x278), 440 REG16(0x274), 441 REG16(0x270), 442 443 NOP(2), 444 LRI(2, POSTED), 445 REG16(0x5a8), 446 REG16(0x5ac), 447 448 NOP(6), 449 LRI(1, 0), 450 REG(0x0c8), 451 452 0 453 }; 454 455 #define XE2_CTX_COMMON \ 456 NOP(1), /* [0x00] */ \ 457 LRI(15, POSTED), /* [0x01] */ \ 458 REG16(0x244), /* [0x02] CTXT_SR_CTL */ \ 459 REG(0x034), /* [0x04] RING_BUFFER_HEAD */ \ 460 REG(0x030), /* [0x06] RING_BUFFER_TAIL */ \ 461 REG(0x038), /* [0x08] RING_BUFFER_START */ \ 462 REG(0x03c), /* [0x0a] RING_BUFFER_CONTROL */ \ 463 REG(0x168), /* [0x0c] BB_ADDR_UDW */ \ 464 REG(0x140), /* [0x0e] BB_ADDR */ \ 465 REG(0x110), /* [0x10] BB_STATE */ \ 466 REG(0x1c0), /* [0x12] BB_PER_CTX_PTR */ \ 467 REG(0x1c4), /* [0x14] RCS_INDIRECT_CTX */ \ 468 REG(0x1c8), /* [0x16] RCS_INDIRECT_CTX_OFFSET */ \ 469 REG(0x180), /* [0x18] CCID */ \ 470 REG16(0x2b4), /* [0x1a] SEMAPHORE_TOKEN */ \ 471 REG(0x120), /* [0x1c] PRT_BB_STATE */ \ 472 REG(0x124), /* [0x1e] PRT_BB_STATE_UDW */ \ 473 \ 474 NOP(1), /* [0x20] */ \ 475 LRI(9, POSTED), /* [0x21] */ \ 476 REG16(0x3a8), /* [0x22] CTX_TIMESTAMP */ \ 477 REG16(0x3ac), /* [0x24] CTX_TIMESTAMP_UDW */ \ 478 REG(0x108), /* [0x26] INDIRECT_RING_STATE */ \ 479 REG16(0x284), /* [0x28] dummy reg */ \ 480 REG16(0x280), /* [0x2a] CS_ACC_CTR_THOLD */ \ 481 REG16(0x27c), /* [0x2c] CS_CTX_SYS_PASID */ \ 482 REG16(0x278), /* [0x2e] CS_CTX_ASID */ \ 483 REG16(0x274), /* [0x30] PTBP_UDW */ \ 484 REG16(0x270) /* [0x32] PTBP_LDW */ 485 486 static const u8 xe2_rcs_offsets[] = { 487 XE2_CTX_COMMON, 488 489 NOP(2), /* [0x34] */ 490 LRI(2, POSTED), /* [0x36] */ 491 REG16(0x5a8), /* [0x37] CONTEXT_SCHEDULING_ATTRIBUTES */ 492 REG16(0x5ac), /* [0x39] PREEMPTION_STATUS */ 493 494 NOP(6), /* [0x41] */ 495 LRI(1, 0), /* [0x47] */ 496 REG(0x0c8), /* [0x48] R_PWR_CLK_STATE */ 497 498 0 499 }; 500 501 static const u8 xe2_bcs_offsets[] = { 502 XE2_CTX_COMMON, 503 504 NOP(4 + 8 + 1), /* [0x34] */ 505 LRI(2, POSTED), /* [0x41] */ 506 REG16(0x200), /* [0x42] BCS_SWCTRL */ 507 REG16(0x204), /* [0x44] BLIT_CCTL */ 508 509 0 510 }; 511 512 static const u8 xe2_xcs_offsets[] = { 513 XE2_CTX_COMMON, 514 515 0 516 }; 517 518 static const u8 xe2_indirect_ring_state_offsets[] = { 519 NOP(1), /* [0x00] */ 520 LRI(5, POSTED), /* [0x01] */ 521 REG(0x034), /* [0x02] RING_BUFFER_HEAD */ 522 REG(0x030), /* [0x04] RING_BUFFER_TAIL */ 523 REG(0x038), /* [0x06] RING_BUFFER_START */ 524 REG(0x048), /* [0x08] RING_BUFFER_START_UDW */ 525 REG(0x03c), /* [0x0a] RING_BUFFER_CONTROL */ 526 527 NOP(5), /* [0x0c] */ 528 LRI(9, POSTED), /* [0x11] */ 529 REG(0x168), /* [0x12] BB_ADDR_UDW */ 530 REG(0x140), /* [0x14] BB_ADDR */ 531 REG(0x110), /* [0x16] BB_STATE */ 532 REG16(0x588), /* [0x18] BB_STACK_WRITE_PORT */ 533 REG16(0x588), /* [0x20] BB_STACK_WRITE_PORT */ 534 REG16(0x588), /* [0x22] BB_STACK_WRITE_PORT */ 535 REG16(0x588), /* [0x24] BB_STACK_WRITE_PORT */ 536 REG16(0x588), /* [0x26] BB_STACK_WRITE_PORT */ 537 REG16(0x588), /* [0x28] BB_STACK_WRITE_PORT */ 538 539 NOP(12), /* [0x00] */ 540 541 0 542 }; 543 544 #undef REG16 545 #undef REG 546 #undef LRI 547 #undef NOP 548 549 static const u8 *reg_offsets(struct xe_device *xe, enum xe_engine_class class) 550 { 551 if (class == XE_ENGINE_CLASS_RENDER) { 552 if (GRAPHICS_VER(xe) >= 20) 553 return xe2_rcs_offsets; 554 else if (GRAPHICS_VERx100(xe) >= 1270) 555 return mtl_rcs_offsets; 556 else if (GRAPHICS_VERx100(xe) >= 1255) 557 return dg2_rcs_offsets; 558 else if (GRAPHICS_VERx100(xe) >= 1250) 559 return xehp_rcs_offsets; 560 else 561 return gen12_rcs_offsets; 562 } else if (class == XE_ENGINE_CLASS_COPY) { 563 if (GRAPHICS_VER(xe) >= 20) 564 return xe2_bcs_offsets; 565 else 566 return gen12_xcs_offsets; 567 } else { 568 if (GRAPHICS_VER(xe) >= 20) 569 return xe2_xcs_offsets; 570 else if (GRAPHICS_VERx100(xe) >= 1255) 571 return dg2_xcs_offsets; 572 else 573 return gen12_xcs_offsets; 574 } 575 } 576 577 static void set_context_control(u32 *regs, struct xe_hw_engine *hwe) 578 { 579 regs[CTX_CONTEXT_CONTROL] = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH | 580 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 581 582 if (xe_gt_has_indirect_ring_state(hwe->gt)) 583 regs[CTX_CONTEXT_CONTROL] |= 584 _MASKED_BIT_ENABLE(CTX_CTRL_INDIRECT_RING_STATE_ENABLE); 585 586 /* TODO: Timestamp */ 587 } 588 589 static void set_memory_based_intr(u32 *regs, struct xe_hw_engine *hwe) 590 { 591 struct xe_memirq *memirq = >_to_tile(hwe->gt)->memirq; 592 struct xe_device *xe = gt_to_xe(hwe->gt); 593 u8 num_regs; 594 595 if (!xe_device_uses_memirq(xe)) 596 return; 597 598 regs[CTX_LRM_INT_MASK_ENABLE] = MI_LOAD_REGISTER_MEM | 599 MI_LRI_LRM_CS_MMIO | MI_LRM_USE_GGTT; 600 regs[CTX_INT_MASK_ENABLE_REG] = RING_IMR(0).addr; 601 regs[CTX_INT_MASK_ENABLE_PTR] = xe_memirq_enable_ptr(memirq); 602 603 num_regs = xe_device_has_msix(xe) ? 3 : 2; 604 regs[CTX_LRI_INT_REPORT_PTR] = MI_LOAD_REGISTER_IMM | MI_LRI_NUM_REGS(num_regs) | 605 MI_LRI_LRM_CS_MMIO | MI_LRI_FORCE_POSTED; 606 regs[CTX_INT_STATUS_REPORT_REG] = RING_INT_STATUS_RPT_PTR(0).addr; 607 regs[CTX_INT_STATUS_REPORT_PTR] = xe_memirq_status_ptr(memirq, hwe); 608 regs[CTX_INT_SRC_REPORT_REG] = RING_INT_SRC_RPT_PTR(0).addr; 609 regs[CTX_INT_SRC_REPORT_PTR] = xe_memirq_source_ptr(memirq, hwe); 610 611 if (xe_device_has_msix(xe)) { 612 regs[CTX_CS_INT_VEC_REG] = CS_INT_VEC(0).addr; 613 /* CTX_CS_INT_VEC_DATA will be set in xe_lrc_init */ 614 } 615 } 616 617 static int lrc_ring_mi_mode(struct xe_hw_engine *hwe) 618 { 619 struct xe_device *xe = gt_to_xe(hwe->gt); 620 621 if (GRAPHICS_VERx100(xe) >= 1250) 622 return 0x70; 623 else 624 return 0x60; 625 } 626 627 static void reset_stop_ring(u32 *regs, struct xe_hw_engine *hwe) 628 { 629 int x; 630 631 x = lrc_ring_mi_mode(hwe); 632 regs[x + 1] &= ~STOP_RING; 633 regs[x + 1] |= STOP_RING << 16; 634 } 635 636 static inline bool xe_lrc_has_indirect_ring_state(struct xe_lrc *lrc) 637 { 638 return lrc->flags & XE_LRC_FLAG_INDIRECT_RING_STATE; 639 } 640 641 static inline u32 __xe_lrc_ring_offset(struct xe_lrc *lrc) 642 { 643 return 0; 644 } 645 646 u32 xe_lrc_pphwsp_offset(struct xe_lrc *lrc) 647 { 648 return lrc->ring.size; 649 } 650 651 /* Make the magic macros work */ 652 #define __xe_lrc_pphwsp_offset xe_lrc_pphwsp_offset 653 #define __xe_lrc_regs_offset xe_lrc_regs_offset 654 655 #define LRC_SEQNO_PPHWSP_OFFSET 512 656 #define LRC_START_SEQNO_PPHWSP_OFFSET (LRC_SEQNO_PPHWSP_OFFSET + 8) 657 #define LRC_CTX_JOB_TIMESTAMP_OFFSET (LRC_START_SEQNO_PPHWSP_OFFSET + 8) 658 #define LRC_PARALLEL_PPHWSP_OFFSET 2048 659 #define LRC_ENGINE_ID_PPHWSP_OFFSET 2096 660 661 u32 xe_lrc_regs_offset(struct xe_lrc *lrc) 662 { 663 return xe_lrc_pphwsp_offset(lrc) + LRC_PPHWSP_SIZE; 664 } 665 666 static size_t lrc_reg_size(struct xe_device *xe) 667 { 668 if (GRAPHICS_VERx100(xe) >= 1250) 669 return 96 * sizeof(u32); 670 else 671 return 80 * sizeof(u32); 672 } 673 674 size_t xe_lrc_skip_size(struct xe_device *xe) 675 { 676 return LRC_PPHWSP_SIZE + lrc_reg_size(xe); 677 } 678 679 static inline u32 __xe_lrc_seqno_offset(struct xe_lrc *lrc) 680 { 681 /* The seqno is stored in the driver-defined portion of PPHWSP */ 682 return xe_lrc_pphwsp_offset(lrc) + LRC_SEQNO_PPHWSP_OFFSET; 683 } 684 685 static inline u32 __xe_lrc_start_seqno_offset(struct xe_lrc *lrc) 686 { 687 /* The start seqno is stored in the driver-defined portion of PPHWSP */ 688 return xe_lrc_pphwsp_offset(lrc) + LRC_START_SEQNO_PPHWSP_OFFSET; 689 } 690 691 static u32 __xe_lrc_ctx_job_timestamp_offset(struct xe_lrc *lrc) 692 { 693 /* This is stored in the driver-defined portion of PPHWSP */ 694 return xe_lrc_pphwsp_offset(lrc) + LRC_CTX_JOB_TIMESTAMP_OFFSET; 695 } 696 697 static inline u32 __xe_lrc_parallel_offset(struct xe_lrc *lrc) 698 { 699 /* The parallel is stored in the driver-defined portion of PPHWSP */ 700 return xe_lrc_pphwsp_offset(lrc) + LRC_PARALLEL_PPHWSP_OFFSET; 701 } 702 703 static inline u32 __xe_lrc_engine_id_offset(struct xe_lrc *lrc) 704 { 705 return xe_lrc_pphwsp_offset(lrc) + LRC_ENGINE_ID_PPHWSP_OFFSET; 706 } 707 708 static u32 __xe_lrc_ctx_timestamp_offset(struct xe_lrc *lrc) 709 { 710 return __xe_lrc_regs_offset(lrc) + CTX_TIMESTAMP * sizeof(u32); 711 } 712 713 static u32 __xe_lrc_ctx_timestamp_udw_offset(struct xe_lrc *lrc) 714 { 715 return __xe_lrc_regs_offset(lrc) + CTX_TIMESTAMP_UDW * sizeof(u32); 716 } 717 718 static inline u32 __xe_lrc_indirect_ring_offset(struct xe_lrc *lrc) 719 { 720 /* Indirect ring state page is at the very end of LRC */ 721 return lrc->size - LRC_INDIRECT_RING_STATE_SIZE; 722 } 723 724 #define DECL_MAP_ADDR_HELPERS(elem) \ 725 static inline struct iosys_map __xe_lrc_##elem##_map(struct xe_lrc *lrc) \ 726 { \ 727 struct iosys_map map = lrc->bo->vmap; \ 728 \ 729 xe_assert(lrc_to_xe(lrc), !iosys_map_is_null(&map)); \ 730 iosys_map_incr(&map, __xe_lrc_##elem##_offset(lrc)); \ 731 return map; \ 732 } \ 733 static inline u32 __maybe_unused __xe_lrc_##elem##_ggtt_addr(struct xe_lrc *lrc) \ 734 { \ 735 return xe_bo_ggtt_addr(lrc->bo) + __xe_lrc_##elem##_offset(lrc); \ 736 } \ 737 738 DECL_MAP_ADDR_HELPERS(ring) 739 DECL_MAP_ADDR_HELPERS(pphwsp) 740 DECL_MAP_ADDR_HELPERS(seqno) 741 DECL_MAP_ADDR_HELPERS(regs) 742 DECL_MAP_ADDR_HELPERS(start_seqno) 743 DECL_MAP_ADDR_HELPERS(ctx_job_timestamp) 744 DECL_MAP_ADDR_HELPERS(ctx_timestamp) 745 DECL_MAP_ADDR_HELPERS(ctx_timestamp_udw) 746 DECL_MAP_ADDR_HELPERS(parallel) 747 DECL_MAP_ADDR_HELPERS(indirect_ring) 748 DECL_MAP_ADDR_HELPERS(engine_id) 749 750 #undef DECL_MAP_ADDR_HELPERS 751 752 /** 753 * xe_lrc_ctx_timestamp_ggtt_addr() - Get ctx timestamp GGTT address 754 * @lrc: Pointer to the lrc. 755 * 756 * Returns: ctx timestamp GGTT address 757 */ 758 u32 xe_lrc_ctx_timestamp_ggtt_addr(struct xe_lrc *lrc) 759 { 760 return __xe_lrc_ctx_timestamp_ggtt_addr(lrc); 761 } 762 763 /** 764 * xe_lrc_ctx_timestamp_udw_ggtt_addr() - Get ctx timestamp udw GGTT address 765 * @lrc: Pointer to the lrc. 766 * 767 * Returns: ctx timestamp udw GGTT address 768 */ 769 u32 xe_lrc_ctx_timestamp_udw_ggtt_addr(struct xe_lrc *lrc) 770 { 771 return __xe_lrc_ctx_timestamp_udw_ggtt_addr(lrc); 772 } 773 774 /** 775 * xe_lrc_ctx_timestamp() - Read ctx timestamp value 776 * @lrc: Pointer to the lrc. 777 * 778 * Returns: ctx timestamp value 779 */ 780 u64 xe_lrc_ctx_timestamp(struct xe_lrc *lrc) 781 { 782 struct xe_device *xe = lrc_to_xe(lrc); 783 struct iosys_map map; 784 u32 ldw, udw = 0; 785 786 map = __xe_lrc_ctx_timestamp_map(lrc); 787 ldw = xe_map_read32(xe, &map); 788 789 if (xe->info.has_64bit_timestamp) { 790 map = __xe_lrc_ctx_timestamp_udw_map(lrc); 791 udw = xe_map_read32(xe, &map); 792 } 793 794 return (u64)udw << 32 | ldw; 795 } 796 797 /** 798 * xe_lrc_ctx_job_timestamp_ggtt_addr() - Get ctx job timestamp GGTT address 799 * @lrc: Pointer to the lrc. 800 * 801 * Returns: ctx timestamp job GGTT address 802 */ 803 u32 xe_lrc_ctx_job_timestamp_ggtt_addr(struct xe_lrc *lrc) 804 { 805 return __xe_lrc_ctx_job_timestamp_ggtt_addr(lrc); 806 } 807 808 /** 809 * xe_lrc_ctx_job_timestamp() - Read ctx job timestamp value 810 * @lrc: Pointer to the lrc. 811 * 812 * Returns: ctx timestamp job value 813 */ 814 u32 xe_lrc_ctx_job_timestamp(struct xe_lrc *lrc) 815 { 816 struct xe_device *xe = lrc_to_xe(lrc); 817 struct iosys_map map; 818 819 map = __xe_lrc_ctx_job_timestamp_map(lrc); 820 return xe_map_read32(xe, &map); 821 } 822 823 u32 xe_lrc_ggtt_addr(struct xe_lrc *lrc) 824 { 825 return __xe_lrc_pphwsp_ggtt_addr(lrc); 826 } 827 828 u32 xe_lrc_indirect_ring_ggtt_addr(struct xe_lrc *lrc) 829 { 830 if (!xe_lrc_has_indirect_ring_state(lrc)) 831 return 0; 832 833 return __xe_lrc_indirect_ring_ggtt_addr(lrc); 834 } 835 836 static u32 xe_lrc_read_indirect_ctx_reg(struct xe_lrc *lrc, int reg_nr) 837 { 838 struct xe_device *xe = lrc_to_xe(lrc); 839 struct iosys_map map; 840 841 map = __xe_lrc_indirect_ring_map(lrc); 842 iosys_map_incr(&map, reg_nr * sizeof(u32)); 843 return xe_map_read32(xe, &map); 844 } 845 846 static void xe_lrc_write_indirect_ctx_reg(struct xe_lrc *lrc, 847 int reg_nr, u32 val) 848 { 849 struct xe_device *xe = lrc_to_xe(lrc); 850 struct iosys_map map; 851 852 map = __xe_lrc_indirect_ring_map(lrc); 853 iosys_map_incr(&map, reg_nr * sizeof(u32)); 854 xe_map_write32(xe, &map, val); 855 } 856 857 u32 xe_lrc_read_ctx_reg(struct xe_lrc *lrc, int reg_nr) 858 { 859 struct xe_device *xe = lrc_to_xe(lrc); 860 struct iosys_map map; 861 862 map = __xe_lrc_regs_map(lrc); 863 iosys_map_incr(&map, reg_nr * sizeof(u32)); 864 return xe_map_read32(xe, &map); 865 } 866 867 void xe_lrc_write_ctx_reg(struct xe_lrc *lrc, int reg_nr, u32 val) 868 { 869 struct xe_device *xe = lrc_to_xe(lrc); 870 struct iosys_map map; 871 872 map = __xe_lrc_regs_map(lrc); 873 iosys_map_incr(&map, reg_nr * sizeof(u32)); 874 xe_map_write32(xe, &map, val); 875 } 876 877 static void *empty_lrc_data(struct xe_hw_engine *hwe) 878 { 879 struct xe_gt *gt = hwe->gt; 880 void *data; 881 u32 *regs; 882 883 data = kzalloc(xe_gt_lrc_size(gt, hwe->class), GFP_KERNEL); 884 if (!data) 885 return NULL; 886 887 /* 1st page: Per-Process of HW status Page */ 888 regs = data + LRC_PPHWSP_SIZE; 889 set_offsets(regs, reg_offsets(gt_to_xe(gt), hwe->class), hwe); 890 set_context_control(regs, hwe); 891 set_memory_based_intr(regs, hwe); 892 reset_stop_ring(regs, hwe); 893 if (xe_gt_has_indirect_ring_state(gt)) { 894 regs = data + xe_gt_lrc_size(gt, hwe->class) - 895 LRC_INDIRECT_RING_STATE_SIZE; 896 set_offsets(regs, xe2_indirect_ring_state_offsets, hwe); 897 } 898 899 return data; 900 } 901 902 static void xe_lrc_set_ppgtt(struct xe_lrc *lrc, struct xe_vm *vm) 903 { 904 u64 desc = xe_vm_pdp4_descriptor(vm, gt_to_tile(lrc->gt)); 905 906 xe_lrc_write_ctx_reg(lrc, CTX_PDP0_UDW, upper_32_bits(desc)); 907 xe_lrc_write_ctx_reg(lrc, CTX_PDP0_LDW, lower_32_bits(desc)); 908 } 909 910 static void xe_lrc_finish(struct xe_lrc *lrc) 911 { 912 xe_hw_fence_ctx_finish(&lrc->fence_ctx); 913 xe_bo_unpin_map_no_vm(lrc->bo); 914 } 915 916 static size_t wa_bb_offset(struct xe_lrc *lrc) 917 { 918 return lrc->bo->size - LRC_WA_BB_SIZE; 919 } 920 921 /* 922 * xe_lrc_setup_utilization() - Setup wa bb to assist in calculating active 923 * context run ticks. 924 * @lrc: Pointer to the lrc. 925 * 926 * Context Timestamp (CTX_TIMESTAMP) in the LRC accumulates the run ticks of the 927 * context, but only gets updated when the context switches out. In order to 928 * check how long a context has been active before it switches out, two things 929 * are required: 930 * 931 * (1) Determine if the context is running: 932 * To do so, we program the WA BB to set an initial value for CTX_TIMESTAMP in 933 * the LRC. The value chosen is 1 since 0 is the initial value when the LRC is 934 * initialized. During a query, we just check for this value to determine if the 935 * context is active. If the context switched out, it would overwrite this 936 * location with the actual CTX_TIMESTAMP MMIO value. Note that WA BB runs as 937 * the last part of context restore, so reusing this LRC location will not 938 * clobber anything. 939 * 940 * (2) Calculate the time that the context has been active for: 941 * The CTX_TIMESTAMP ticks only when the context is active. If a context is 942 * active, we just use the CTX_TIMESTAMP MMIO as the new value of utilization. 943 * While doing so, we need to read the CTX_TIMESTAMP MMIO for the specific 944 * engine instance. Since we do not know which instance the context is running 945 * on until it is scheduled, we also read the ENGINE_ID MMIO in the WA BB and 946 * store it in the PPHSWP. 947 */ 948 #define CONTEXT_ACTIVE 1ULL 949 static int xe_lrc_setup_utilization(struct xe_lrc *lrc) 950 { 951 const size_t max_size = LRC_WA_BB_SIZE; 952 u32 *cmd, *buf = NULL; 953 954 if (lrc->bo->vmap.is_iomem) { 955 buf = kmalloc(max_size, GFP_KERNEL); 956 if (!buf) 957 return -ENOMEM; 958 cmd = buf; 959 } else { 960 cmd = lrc->bo->vmap.vaddr + wa_bb_offset(lrc); 961 } 962 963 *cmd++ = MI_STORE_REGISTER_MEM | MI_SRM_USE_GGTT | MI_SRM_ADD_CS_OFFSET; 964 *cmd++ = ENGINE_ID(0).addr; 965 *cmd++ = __xe_lrc_engine_id_ggtt_addr(lrc); 966 *cmd++ = 0; 967 968 *cmd++ = MI_STORE_DATA_IMM | MI_SDI_GGTT | MI_SDI_NUM_DW(1); 969 *cmd++ = __xe_lrc_ctx_timestamp_ggtt_addr(lrc); 970 *cmd++ = 0; 971 *cmd++ = lower_32_bits(CONTEXT_ACTIVE); 972 973 if (lrc_to_xe(lrc)->info.has_64bit_timestamp) { 974 *cmd++ = MI_STORE_DATA_IMM | MI_SDI_GGTT | MI_SDI_NUM_DW(1); 975 *cmd++ = __xe_lrc_ctx_timestamp_udw_ggtt_addr(lrc); 976 *cmd++ = 0; 977 *cmd++ = upper_32_bits(CONTEXT_ACTIVE); 978 } 979 980 *cmd++ = MI_BATCH_BUFFER_END; 981 982 if (buf) { 983 xe_map_memcpy_to(gt_to_xe(lrc->gt), &lrc->bo->vmap, 984 wa_bb_offset(lrc), buf, 985 (cmd - buf) * sizeof(*cmd)); 986 kfree(buf); 987 } 988 989 xe_lrc_write_ctx_reg(lrc, CTX_BB_PER_CTX_PTR, xe_bo_ggtt_addr(lrc->bo) + 990 wa_bb_offset(lrc) + 1); 991 992 return 0; 993 } 994 995 #define PVC_CTX_ASID (0x2e + 1) 996 #define PVC_CTX_ACC_CTR_THOLD (0x2a + 1) 997 998 static int xe_lrc_init(struct xe_lrc *lrc, struct xe_hw_engine *hwe, 999 struct xe_vm *vm, u32 ring_size, u16 msix_vec, 1000 u32 init_flags) 1001 { 1002 struct xe_gt *gt = hwe->gt; 1003 struct xe_tile *tile = gt_to_tile(gt); 1004 struct xe_device *xe = gt_to_xe(gt); 1005 struct iosys_map map; 1006 void *init_data = NULL; 1007 u32 arb_enable; 1008 u32 lrc_size; 1009 u32 bo_flags; 1010 int err; 1011 1012 kref_init(&lrc->refcount); 1013 lrc->gt = gt; 1014 lrc->flags = 0; 1015 lrc_size = ring_size + xe_gt_lrc_size(gt, hwe->class); 1016 if (xe_gt_has_indirect_ring_state(gt)) 1017 lrc->flags |= XE_LRC_FLAG_INDIRECT_RING_STATE; 1018 1019 bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT | 1020 XE_BO_FLAG_GGTT_INVALIDATE; 1021 if (vm && vm->xef) /* userspace */ 1022 bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE; 1023 1024 /* 1025 * FIXME: Perma-pinning LRC as we don't yet support moving GGTT address 1026 * via VM bind calls. 1027 */ 1028 lrc->bo = xe_bo_create_pin_map(xe, tile, NULL, 1029 lrc_size + LRC_WA_BB_SIZE, 1030 ttm_bo_type_kernel, 1031 bo_flags); 1032 if (IS_ERR(lrc->bo)) 1033 return PTR_ERR(lrc->bo); 1034 1035 lrc->size = lrc_size; 1036 lrc->ring.size = ring_size; 1037 lrc->ring.tail = 0; 1038 1039 xe_hw_fence_ctx_init(&lrc->fence_ctx, hwe->gt, 1040 hwe->fence_irq, hwe->name); 1041 1042 if (!gt->default_lrc[hwe->class]) { 1043 init_data = empty_lrc_data(hwe); 1044 if (!init_data) { 1045 err = -ENOMEM; 1046 goto err_lrc_finish; 1047 } 1048 } 1049 1050 /* 1051 * Init Per-Process of HW status Page, LRC / context state to known 1052 * values 1053 */ 1054 map = __xe_lrc_pphwsp_map(lrc); 1055 if (!init_data) { 1056 xe_map_memset(xe, &map, 0, 0, LRC_PPHWSP_SIZE); /* PPHWSP */ 1057 xe_map_memcpy_to(xe, &map, LRC_PPHWSP_SIZE, 1058 gt->default_lrc[hwe->class] + LRC_PPHWSP_SIZE, 1059 xe_gt_lrc_size(gt, hwe->class) - LRC_PPHWSP_SIZE); 1060 } else { 1061 xe_map_memcpy_to(xe, &map, 0, init_data, 1062 xe_gt_lrc_size(gt, hwe->class)); 1063 kfree(init_data); 1064 } 1065 1066 if (vm) { 1067 xe_lrc_set_ppgtt(lrc, vm); 1068 1069 if (vm->xef) 1070 xe_drm_client_add_bo(vm->xef->client, lrc->bo); 1071 } 1072 1073 if (xe_device_has_msix(xe)) { 1074 xe_lrc_write_ctx_reg(lrc, CTX_INT_STATUS_REPORT_PTR, 1075 xe_memirq_status_ptr(&tile->memirq, hwe)); 1076 xe_lrc_write_ctx_reg(lrc, CTX_INT_SRC_REPORT_PTR, 1077 xe_memirq_source_ptr(&tile->memirq, hwe)); 1078 xe_lrc_write_ctx_reg(lrc, CTX_CS_INT_VEC_DATA, msix_vec << 16 | msix_vec); 1079 } 1080 1081 if (xe_gt_has_indirect_ring_state(gt)) { 1082 xe_lrc_write_ctx_reg(lrc, CTX_INDIRECT_RING_STATE, 1083 __xe_lrc_indirect_ring_ggtt_addr(lrc)); 1084 1085 xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START, 1086 __xe_lrc_ring_ggtt_addr(lrc)); 1087 xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START_UDW, 0); 1088 xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD, 0); 1089 xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL, lrc->ring.tail); 1090 xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_CTL, 1091 RING_CTL_SIZE(lrc->ring.size) | RING_VALID); 1092 } else { 1093 xe_lrc_write_ctx_reg(lrc, CTX_RING_START, __xe_lrc_ring_ggtt_addr(lrc)); 1094 xe_lrc_write_ctx_reg(lrc, CTX_RING_HEAD, 0); 1095 xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, lrc->ring.tail); 1096 xe_lrc_write_ctx_reg(lrc, CTX_RING_CTL, 1097 RING_CTL_SIZE(lrc->ring.size) | RING_VALID); 1098 } 1099 1100 if (init_flags & XE_LRC_CREATE_RUNALONE) 1101 xe_lrc_write_ctx_reg(lrc, CTX_CONTEXT_CONTROL, 1102 xe_lrc_read_ctx_reg(lrc, CTX_CONTEXT_CONTROL) | 1103 _MASKED_BIT_ENABLE(CTX_CTRL_RUN_ALONE)); 1104 1105 if (init_flags & XE_LRC_CREATE_PXP) 1106 xe_lrc_write_ctx_reg(lrc, CTX_CONTEXT_CONTROL, 1107 xe_lrc_read_ctx_reg(lrc, CTX_CONTEXT_CONTROL) | 1108 _MASKED_BIT_ENABLE(CTX_CTRL_PXP_ENABLE)); 1109 1110 lrc->ctx_timestamp = 0; 1111 xe_lrc_write_ctx_reg(lrc, CTX_TIMESTAMP, 0); 1112 if (lrc_to_xe(lrc)->info.has_64bit_timestamp) 1113 xe_lrc_write_ctx_reg(lrc, CTX_TIMESTAMP_UDW, 0); 1114 1115 if (xe->info.has_asid && vm) 1116 xe_lrc_write_ctx_reg(lrc, PVC_CTX_ASID, vm->usm.asid); 1117 1118 lrc->desc = LRC_VALID; 1119 lrc->desc |= FIELD_PREP(LRC_ADDRESSING_MODE, LRC_LEGACY_64B_CONTEXT); 1120 /* TODO: Priority */ 1121 1122 /* While this appears to have something about privileged batches or 1123 * some such, it really just means PPGTT mode. 1124 */ 1125 if (vm) 1126 lrc->desc |= LRC_PRIVILEGE; 1127 1128 if (GRAPHICS_VERx100(xe) < 1250) { 1129 lrc->desc |= FIELD_PREP(LRC_ENGINE_INSTANCE, hwe->instance); 1130 lrc->desc |= FIELD_PREP(LRC_ENGINE_CLASS, hwe->class); 1131 } 1132 1133 arb_enable = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1134 xe_lrc_write_ring(lrc, &arb_enable, sizeof(arb_enable)); 1135 1136 map = __xe_lrc_seqno_map(lrc); 1137 xe_map_write32(lrc_to_xe(lrc), &map, lrc->fence_ctx.next_seqno - 1); 1138 1139 map = __xe_lrc_start_seqno_map(lrc); 1140 xe_map_write32(lrc_to_xe(lrc), &map, lrc->fence_ctx.next_seqno - 1); 1141 1142 err = xe_lrc_setup_utilization(lrc); 1143 if (err) 1144 goto err_lrc_finish; 1145 1146 return 0; 1147 1148 err_lrc_finish: 1149 xe_lrc_finish(lrc); 1150 return err; 1151 } 1152 1153 /** 1154 * xe_lrc_create - Create a LRC 1155 * @hwe: Hardware Engine 1156 * @vm: The VM (address space) 1157 * @ring_size: LRC ring size 1158 * @msix_vec: MSI-X interrupt vector (for platforms that support it) 1159 * @flags: LRC initialization flags 1160 * 1161 * Allocate and initialize the Logical Ring Context (LRC). 1162 * 1163 * Return pointer to created LRC upon success and an error pointer 1164 * upon failure. 1165 */ 1166 struct xe_lrc *xe_lrc_create(struct xe_hw_engine *hwe, struct xe_vm *vm, 1167 u32 ring_size, u16 msix_vec, u32 flags) 1168 { 1169 struct xe_lrc *lrc; 1170 int err; 1171 1172 lrc = kzalloc(sizeof(*lrc), GFP_KERNEL); 1173 if (!lrc) 1174 return ERR_PTR(-ENOMEM); 1175 1176 err = xe_lrc_init(lrc, hwe, vm, ring_size, msix_vec, flags); 1177 if (err) { 1178 kfree(lrc); 1179 return ERR_PTR(err); 1180 } 1181 1182 return lrc; 1183 } 1184 1185 /** 1186 * xe_lrc_destroy - Destroy the LRC 1187 * @ref: reference to LRC 1188 * 1189 * Called when ref == 0, release resources held by the Logical Ring Context 1190 * (LRC) and free the LRC memory. 1191 */ 1192 void xe_lrc_destroy(struct kref *ref) 1193 { 1194 struct xe_lrc *lrc = container_of(ref, struct xe_lrc, refcount); 1195 1196 xe_lrc_finish(lrc); 1197 kfree(lrc); 1198 } 1199 1200 void xe_lrc_set_ring_tail(struct xe_lrc *lrc, u32 tail) 1201 { 1202 if (xe_lrc_has_indirect_ring_state(lrc)) 1203 xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL, tail); 1204 else 1205 xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, tail); 1206 } 1207 1208 u32 xe_lrc_ring_tail(struct xe_lrc *lrc) 1209 { 1210 if (xe_lrc_has_indirect_ring_state(lrc)) 1211 return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL) & TAIL_ADDR; 1212 else 1213 return xe_lrc_read_ctx_reg(lrc, CTX_RING_TAIL) & TAIL_ADDR; 1214 } 1215 1216 static u32 xe_lrc_ring_start(struct xe_lrc *lrc) 1217 { 1218 if (xe_lrc_has_indirect_ring_state(lrc)) 1219 return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START); 1220 else 1221 return xe_lrc_read_ctx_reg(lrc, CTX_RING_START); 1222 } 1223 1224 void xe_lrc_set_ring_head(struct xe_lrc *lrc, u32 head) 1225 { 1226 if (xe_lrc_has_indirect_ring_state(lrc)) 1227 xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD, head); 1228 else 1229 xe_lrc_write_ctx_reg(lrc, CTX_RING_HEAD, head); 1230 } 1231 1232 u32 xe_lrc_ring_head(struct xe_lrc *lrc) 1233 { 1234 if (xe_lrc_has_indirect_ring_state(lrc)) 1235 return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD) & HEAD_ADDR; 1236 else 1237 return xe_lrc_read_ctx_reg(lrc, CTX_RING_HEAD) & HEAD_ADDR; 1238 } 1239 1240 u32 xe_lrc_ring_space(struct xe_lrc *lrc) 1241 { 1242 const u32 head = xe_lrc_ring_head(lrc); 1243 const u32 tail = lrc->ring.tail; 1244 const u32 size = lrc->ring.size; 1245 1246 return ((head - tail - 1) & (size - 1)) + 1; 1247 } 1248 1249 static void __xe_lrc_write_ring(struct xe_lrc *lrc, struct iosys_map ring, 1250 const void *data, size_t size) 1251 { 1252 struct xe_device *xe = lrc_to_xe(lrc); 1253 1254 iosys_map_incr(&ring, lrc->ring.tail); 1255 xe_map_memcpy_to(xe, &ring, 0, data, size); 1256 lrc->ring.tail = (lrc->ring.tail + size) & (lrc->ring.size - 1); 1257 } 1258 1259 void xe_lrc_write_ring(struct xe_lrc *lrc, const void *data, size_t size) 1260 { 1261 struct xe_device *xe = lrc_to_xe(lrc); 1262 struct iosys_map ring; 1263 u32 rhs; 1264 size_t aligned_size; 1265 1266 xe_assert(xe, IS_ALIGNED(size, 4)); 1267 aligned_size = ALIGN(size, 8); 1268 1269 ring = __xe_lrc_ring_map(lrc); 1270 1271 xe_assert(xe, lrc->ring.tail < lrc->ring.size); 1272 rhs = lrc->ring.size - lrc->ring.tail; 1273 if (size > rhs) { 1274 __xe_lrc_write_ring(lrc, ring, data, rhs); 1275 __xe_lrc_write_ring(lrc, ring, data + rhs, size - rhs); 1276 } else { 1277 __xe_lrc_write_ring(lrc, ring, data, size); 1278 } 1279 1280 if (aligned_size > size) { 1281 u32 noop = MI_NOOP; 1282 1283 __xe_lrc_write_ring(lrc, ring, &noop, sizeof(noop)); 1284 } 1285 } 1286 1287 u64 xe_lrc_descriptor(struct xe_lrc *lrc) 1288 { 1289 return lrc->desc | xe_lrc_ggtt_addr(lrc); 1290 } 1291 1292 u32 xe_lrc_seqno_ggtt_addr(struct xe_lrc *lrc) 1293 { 1294 return __xe_lrc_seqno_ggtt_addr(lrc); 1295 } 1296 1297 /** 1298 * xe_lrc_alloc_seqno_fence() - Allocate an lrc seqno fence. 1299 * 1300 * Allocate but don't initialize an lrc seqno fence. 1301 * 1302 * Return: Pointer to the allocated fence or 1303 * negative error pointer on error. 1304 */ 1305 struct dma_fence *xe_lrc_alloc_seqno_fence(void) 1306 { 1307 return xe_hw_fence_alloc(); 1308 } 1309 1310 /** 1311 * xe_lrc_free_seqno_fence() - Free an lrc seqno fence. 1312 * @fence: Pointer to the fence to free. 1313 * 1314 * Frees an lrc seqno fence that hasn't yet been 1315 * initialized. 1316 */ 1317 void xe_lrc_free_seqno_fence(struct dma_fence *fence) 1318 { 1319 xe_hw_fence_free(fence); 1320 } 1321 1322 /** 1323 * xe_lrc_init_seqno_fence() - Initialize an lrc seqno fence. 1324 * @lrc: Pointer to the lrc. 1325 * @fence: Pointer to the fence to initialize. 1326 * 1327 * Initializes a pre-allocated lrc seqno fence. 1328 * After initialization, the fence is subject to normal 1329 * dma-fence refcounting. 1330 */ 1331 void xe_lrc_init_seqno_fence(struct xe_lrc *lrc, struct dma_fence *fence) 1332 { 1333 xe_hw_fence_init(fence, &lrc->fence_ctx, __xe_lrc_seqno_map(lrc)); 1334 } 1335 1336 s32 xe_lrc_seqno(struct xe_lrc *lrc) 1337 { 1338 struct iosys_map map = __xe_lrc_seqno_map(lrc); 1339 1340 return xe_map_read32(lrc_to_xe(lrc), &map); 1341 } 1342 1343 s32 xe_lrc_start_seqno(struct xe_lrc *lrc) 1344 { 1345 struct iosys_map map = __xe_lrc_start_seqno_map(lrc); 1346 1347 return xe_map_read32(lrc_to_xe(lrc), &map); 1348 } 1349 1350 u32 xe_lrc_start_seqno_ggtt_addr(struct xe_lrc *lrc) 1351 { 1352 return __xe_lrc_start_seqno_ggtt_addr(lrc); 1353 } 1354 1355 u32 xe_lrc_parallel_ggtt_addr(struct xe_lrc *lrc) 1356 { 1357 return __xe_lrc_parallel_ggtt_addr(lrc); 1358 } 1359 1360 struct iosys_map xe_lrc_parallel_map(struct xe_lrc *lrc) 1361 { 1362 return __xe_lrc_parallel_map(lrc); 1363 } 1364 1365 /** 1366 * xe_lrc_engine_id() - Read engine id value 1367 * @lrc: Pointer to the lrc. 1368 * 1369 * Returns: context id value 1370 */ 1371 static u32 xe_lrc_engine_id(struct xe_lrc *lrc) 1372 { 1373 struct xe_device *xe = lrc_to_xe(lrc); 1374 struct iosys_map map; 1375 1376 map = __xe_lrc_engine_id_map(lrc); 1377 return xe_map_read32(xe, &map); 1378 } 1379 1380 static int instr_dw(u32 cmd_header) 1381 { 1382 /* GFXPIPE "SINGLE_DW" opcodes are a single dword */ 1383 if ((cmd_header & (XE_INSTR_CMD_TYPE | GFXPIPE_PIPELINE)) == 1384 GFXPIPE_SINGLE_DW_CMD(0, 0)) 1385 return 1; 1386 1387 /* 3DSTATE_SO_DECL_LIST has a 9-bit dword length rather than 8 */ 1388 if ((cmd_header & GFXPIPE_MATCH_MASK) == CMD_3DSTATE_SO_DECL_LIST) 1389 return REG_FIELD_GET(CMD_3DSTATE_SO_DECL_LIST_DW_LEN, cmd_header) + 2; 1390 1391 /* Most instructions have the # of dwords (minus 2) in 7:0 */ 1392 return REG_FIELD_GET(XE_INSTR_LEN_MASK, cmd_header) + 2; 1393 } 1394 1395 static int dump_mi_command(struct drm_printer *p, 1396 struct xe_gt *gt, 1397 u32 *dw, 1398 int remaining_dw) 1399 { 1400 u32 inst_header = *dw; 1401 u32 numdw = instr_dw(inst_header); 1402 u32 opcode = REG_FIELD_GET(MI_OPCODE, inst_header); 1403 int num_noop; 1404 1405 /* First check for commands that don't have/use a '# DW' field */ 1406 switch (inst_header & MI_OPCODE) { 1407 case MI_NOOP: 1408 num_noop = 1; 1409 while (num_noop < remaining_dw && 1410 (*(++dw) & REG_GENMASK(31, 23)) == MI_NOOP) 1411 num_noop++; 1412 drm_printf(p, "[%#010x] MI_NOOP (%d dwords)\n", inst_header, num_noop); 1413 return num_noop; 1414 1415 case MI_TOPOLOGY_FILTER: 1416 drm_printf(p, "[%#010x] MI_TOPOLOGY_FILTER\n", inst_header); 1417 return 1; 1418 1419 case MI_BATCH_BUFFER_END: 1420 drm_printf(p, "[%#010x] MI_BATCH_BUFFER_END\n", inst_header); 1421 /* Return 'remaining_dw' to consume the rest of the LRC */ 1422 return remaining_dw; 1423 } 1424 1425 /* 1426 * Any remaining commands include a # of dwords. We should make sure 1427 * it doesn't exceed the remaining size of the LRC. 1428 */ 1429 if (xe_gt_WARN_ON(gt, numdw > remaining_dw)) 1430 numdw = remaining_dw; 1431 1432 switch (inst_header & MI_OPCODE) { 1433 case MI_LOAD_REGISTER_IMM: 1434 drm_printf(p, "[%#010x] MI_LOAD_REGISTER_IMM: %d regs\n", 1435 inst_header, (numdw - 1) / 2); 1436 for (int i = 1; i < numdw; i += 2) 1437 drm_printf(p, " - %#6x = %#010x\n", dw[i], dw[i + 1]); 1438 return numdw; 1439 1440 case MI_LOAD_REGISTER_MEM & MI_OPCODE: 1441 drm_printf(p, "[%#010x] MI_LOAD_REGISTER_MEM: %s%s\n", 1442 inst_header, 1443 dw[0] & MI_LRI_LRM_CS_MMIO ? "CS_MMIO " : "", 1444 dw[0] & MI_LRM_USE_GGTT ? "USE_GGTT " : ""); 1445 if (numdw == 4) 1446 drm_printf(p, " - %#6x = %#010llx\n", 1447 dw[1], ((u64)(dw[3]) << 32 | (u64)(dw[2]))); 1448 else 1449 drm_printf(p, " - %*ph (%s)\n", 1450 (int)sizeof(u32) * (numdw - 1), dw + 1, 1451 numdw < 4 ? "truncated" : "malformed"); 1452 return numdw; 1453 1454 case MI_FORCE_WAKEUP: 1455 drm_printf(p, "[%#010x] MI_FORCE_WAKEUP\n", inst_header); 1456 return numdw; 1457 1458 default: 1459 drm_printf(p, "[%#010x] unknown MI opcode %#x, likely %d dwords\n", 1460 inst_header, opcode, numdw); 1461 return numdw; 1462 } 1463 } 1464 1465 static int dump_gfxpipe_command(struct drm_printer *p, 1466 struct xe_gt *gt, 1467 u32 *dw, 1468 int remaining_dw) 1469 { 1470 u32 numdw = instr_dw(*dw); 1471 u32 pipeline = REG_FIELD_GET(GFXPIPE_PIPELINE, *dw); 1472 u32 opcode = REG_FIELD_GET(GFXPIPE_OPCODE, *dw); 1473 u32 subopcode = REG_FIELD_GET(GFXPIPE_SUBOPCODE, *dw); 1474 1475 /* 1476 * Make sure we haven't mis-parsed a number of dwords that exceeds the 1477 * remaining size of the LRC. 1478 */ 1479 if (xe_gt_WARN_ON(gt, numdw > remaining_dw)) 1480 numdw = remaining_dw; 1481 1482 switch (*dw & GFXPIPE_MATCH_MASK) { 1483 #define MATCH(cmd) \ 1484 case cmd: \ 1485 drm_printf(p, "[%#010x] " #cmd " (%d dwords)\n", *dw, numdw); \ 1486 return numdw 1487 #define MATCH3D(cmd) \ 1488 case CMD_##cmd: \ 1489 drm_printf(p, "[%#010x] " #cmd " (%d dwords)\n", *dw, numdw); \ 1490 return numdw 1491 1492 MATCH(STATE_BASE_ADDRESS); 1493 MATCH(STATE_SIP); 1494 MATCH(GPGPU_CSR_BASE_ADDRESS); 1495 MATCH(STATE_COMPUTE_MODE); 1496 MATCH3D(3DSTATE_BTD); 1497 MATCH(STATE_SYSTEM_MEM_FENCE_ADDRESS); 1498 MATCH(STATE_CONTEXT_DATA_BASE_ADDRESS); 1499 1500 MATCH3D(3DSTATE_VF_STATISTICS); 1501 1502 MATCH(PIPELINE_SELECT); 1503 1504 MATCH3D(3DSTATE_DRAWING_RECTANGLE_FAST); 1505 MATCH3D(3DSTATE_CLEAR_PARAMS); 1506 MATCH3D(3DSTATE_DEPTH_BUFFER); 1507 MATCH3D(3DSTATE_STENCIL_BUFFER); 1508 MATCH3D(3DSTATE_HIER_DEPTH_BUFFER); 1509 MATCH3D(3DSTATE_VERTEX_BUFFERS); 1510 MATCH3D(3DSTATE_VERTEX_ELEMENTS); 1511 MATCH3D(3DSTATE_INDEX_BUFFER); 1512 MATCH3D(3DSTATE_VF); 1513 MATCH3D(3DSTATE_MULTISAMPLE); 1514 MATCH3D(3DSTATE_CC_STATE_POINTERS); 1515 MATCH3D(3DSTATE_SCISSOR_STATE_POINTERS); 1516 MATCH3D(3DSTATE_VS); 1517 MATCH3D(3DSTATE_GS); 1518 MATCH3D(3DSTATE_CLIP); 1519 MATCH3D(3DSTATE_SF); 1520 MATCH3D(3DSTATE_WM); 1521 MATCH3D(3DSTATE_CONSTANT_VS); 1522 MATCH3D(3DSTATE_CONSTANT_GS); 1523 MATCH3D(3DSTATE_CONSTANT_PS); 1524 MATCH3D(3DSTATE_SAMPLE_MASK); 1525 MATCH3D(3DSTATE_CONSTANT_HS); 1526 MATCH3D(3DSTATE_CONSTANT_DS); 1527 MATCH3D(3DSTATE_HS); 1528 MATCH3D(3DSTATE_TE); 1529 MATCH3D(3DSTATE_DS); 1530 MATCH3D(3DSTATE_STREAMOUT); 1531 MATCH3D(3DSTATE_SBE); 1532 MATCH3D(3DSTATE_PS); 1533 MATCH3D(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP); 1534 MATCH3D(3DSTATE_CPS_POINTERS); 1535 MATCH3D(3DSTATE_VIEWPORT_STATE_POINTERS_CC); 1536 MATCH3D(3DSTATE_BLEND_STATE_POINTERS); 1537 MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_VS); 1538 MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_HS); 1539 MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_DS); 1540 MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_GS); 1541 MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_PS); 1542 MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_VS); 1543 MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_HS); 1544 MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_DS); 1545 MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_GS); 1546 MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_PS); 1547 MATCH3D(3DSTATE_VF_INSTANCING); 1548 MATCH3D(3DSTATE_VF_SGVS); 1549 MATCH3D(3DSTATE_VF_TOPOLOGY); 1550 MATCH3D(3DSTATE_WM_CHROMAKEY); 1551 MATCH3D(3DSTATE_PS_BLEND); 1552 MATCH3D(3DSTATE_WM_DEPTH_STENCIL); 1553 MATCH3D(3DSTATE_PS_EXTRA); 1554 MATCH3D(3DSTATE_RASTER); 1555 MATCH3D(3DSTATE_SBE_SWIZ); 1556 MATCH3D(3DSTATE_WM_HZ_OP); 1557 MATCH3D(3DSTATE_VF_COMPONENT_PACKING); 1558 MATCH3D(3DSTATE_VF_SGVS_2); 1559 MATCH3D(3DSTATE_VFG); 1560 MATCH3D(3DSTATE_URB_ALLOC_VS); 1561 MATCH3D(3DSTATE_URB_ALLOC_HS); 1562 MATCH3D(3DSTATE_URB_ALLOC_DS); 1563 MATCH3D(3DSTATE_URB_ALLOC_GS); 1564 MATCH3D(3DSTATE_SO_BUFFER_INDEX_0); 1565 MATCH3D(3DSTATE_SO_BUFFER_INDEX_1); 1566 MATCH3D(3DSTATE_SO_BUFFER_INDEX_2); 1567 MATCH3D(3DSTATE_SO_BUFFER_INDEX_3); 1568 MATCH3D(3DSTATE_PRIMITIVE_REPLICATION); 1569 MATCH3D(3DSTATE_TBIMR_TILE_PASS_INFO); 1570 MATCH3D(3DSTATE_AMFS); 1571 MATCH3D(3DSTATE_DEPTH_BOUNDS); 1572 MATCH3D(3DSTATE_AMFS_TEXTURE_POINTERS); 1573 MATCH3D(3DSTATE_CONSTANT_TS_POINTER); 1574 MATCH3D(3DSTATE_MESH_CONTROL); 1575 MATCH3D(3DSTATE_MESH_DISTRIB); 1576 MATCH3D(3DSTATE_TASK_REDISTRIB); 1577 MATCH3D(3DSTATE_MESH_SHADER); 1578 MATCH3D(3DSTATE_MESH_SHADER_DATA); 1579 MATCH3D(3DSTATE_TASK_CONTROL); 1580 MATCH3D(3DSTATE_TASK_SHADER); 1581 MATCH3D(3DSTATE_TASK_SHADER_DATA); 1582 MATCH3D(3DSTATE_URB_ALLOC_MESH); 1583 MATCH3D(3DSTATE_URB_ALLOC_TASK); 1584 MATCH3D(3DSTATE_CLIP_MESH); 1585 MATCH3D(3DSTATE_SBE_MESH); 1586 MATCH3D(3DSTATE_CPSIZE_CONTROL_BUFFER); 1587 MATCH3D(3DSTATE_COARSE_PIXEL); 1588 1589 MATCH3D(3DSTATE_DRAWING_RECTANGLE); 1590 MATCH3D(3DSTATE_CHROMA_KEY); 1591 MATCH3D(3DSTATE_POLY_STIPPLE_OFFSET); 1592 MATCH3D(3DSTATE_POLY_STIPPLE_PATTERN); 1593 MATCH3D(3DSTATE_LINE_STIPPLE); 1594 MATCH3D(3DSTATE_AA_LINE_PARAMETERS); 1595 MATCH3D(3DSTATE_MONOFILTER_SIZE); 1596 MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_VS); 1597 MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_HS); 1598 MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_DS); 1599 MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_GS); 1600 MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_PS); 1601 MATCH3D(3DSTATE_SO_DECL_LIST); 1602 MATCH3D(3DSTATE_SO_BUFFER); 1603 MATCH3D(3DSTATE_BINDING_TABLE_POOL_ALLOC); 1604 MATCH3D(3DSTATE_SAMPLE_PATTERN); 1605 MATCH3D(3DSTATE_3D_MODE); 1606 MATCH3D(3DSTATE_SUBSLICE_HASH_TABLE); 1607 MATCH3D(3DSTATE_SLICE_TABLE_STATE_POINTERS); 1608 MATCH3D(3DSTATE_PTBR_TILE_PASS_INFO); 1609 1610 default: 1611 drm_printf(p, "[%#010x] unknown GFXPIPE command (pipeline=%#x, opcode=%#x, subopcode=%#x), likely %d dwords\n", 1612 *dw, pipeline, opcode, subopcode, numdw); 1613 return numdw; 1614 } 1615 } 1616 1617 static int dump_gfx_state_command(struct drm_printer *p, 1618 struct xe_gt *gt, 1619 u32 *dw, 1620 int remaining_dw) 1621 { 1622 u32 numdw = instr_dw(*dw); 1623 u32 opcode = REG_FIELD_GET(GFX_STATE_OPCODE, *dw); 1624 1625 /* 1626 * Make sure we haven't mis-parsed a number of dwords that exceeds the 1627 * remaining size of the LRC. 1628 */ 1629 if (xe_gt_WARN_ON(gt, numdw > remaining_dw)) 1630 numdw = remaining_dw; 1631 1632 switch (*dw & (XE_INSTR_GFX_STATE | GFX_STATE_OPCODE)) { 1633 MATCH(STATE_WRITE_INLINE); 1634 1635 default: 1636 drm_printf(p, "[%#010x] unknown GFX_STATE command (opcode=%#x), likely %d dwords\n", 1637 *dw, opcode, numdw); 1638 return numdw; 1639 } 1640 } 1641 1642 void xe_lrc_dump_default(struct drm_printer *p, 1643 struct xe_gt *gt, 1644 enum xe_engine_class hwe_class) 1645 { 1646 u32 *dw; 1647 int remaining_dw, num_dw; 1648 1649 if (!gt->default_lrc[hwe_class]) { 1650 drm_printf(p, "No default LRC for class %d\n", hwe_class); 1651 return; 1652 } 1653 1654 /* 1655 * Skip the beginning of the LRC since it contains the per-process 1656 * hardware status page. 1657 */ 1658 dw = gt->default_lrc[hwe_class] + LRC_PPHWSP_SIZE; 1659 remaining_dw = (xe_gt_lrc_size(gt, hwe_class) - LRC_PPHWSP_SIZE) / 4; 1660 1661 while (remaining_dw > 0) { 1662 if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_MI) { 1663 num_dw = dump_mi_command(p, gt, dw, remaining_dw); 1664 } else if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_GFXPIPE) { 1665 num_dw = dump_gfxpipe_command(p, gt, dw, remaining_dw); 1666 } else if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_GFX_STATE) { 1667 num_dw = dump_gfx_state_command(p, gt, dw, remaining_dw); 1668 } else { 1669 num_dw = min(instr_dw(*dw), remaining_dw); 1670 drm_printf(p, "[%#10x] Unknown instruction of type %#x, likely %d dwords\n", 1671 *dw, REG_FIELD_GET(XE_INSTR_CMD_TYPE, *dw), 1672 num_dw); 1673 } 1674 1675 dw += num_dw; 1676 remaining_dw -= num_dw; 1677 } 1678 } 1679 1680 struct instr_state { 1681 u32 instr; 1682 u16 num_dw; 1683 }; 1684 1685 static const struct instr_state xe_hpg_svg_state[] = { 1686 { .instr = CMD_3DSTATE_CONSTANT_VS, .num_dw = 11 }, 1687 { .instr = CMD_3DSTATE_CONSTANT_HS, .num_dw = 11 }, 1688 { .instr = CMD_3DSTATE_CONSTANT_DS, .num_dw = 11 }, 1689 { .instr = CMD_3DSTATE_CONSTANT_GS, .num_dw = 11 }, 1690 { .instr = CMD_3DSTATE_VERTEX_ELEMENTS, .num_dw = 69 }, 1691 { .instr = CMD_3DSTATE_VF_COMPONENT_PACKING, .num_dw = 5 }, 1692 { .instr = CMD_3DSTATE_VF_SGVS, .num_dw = 2 }, 1693 { .instr = CMD_3DSTATE_VF_SGVS_2, .num_dw = 3 }, 1694 { .instr = CMD_3DSTATE_VS, .num_dw = 9 }, 1695 { .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_VS, .num_dw = 2 }, 1696 { .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_VS, .num_dw = 2 }, 1697 { .instr = CMD_3DSTATE_URB_ALLOC_VS, .num_dw = 3 }, 1698 { .instr = CMD_3DSTATE_STREAMOUT, .num_dw = 5 }, 1699 { .instr = CMD_3DSTATE_SO_BUFFER_INDEX_0, .num_dw = 8 }, 1700 { .instr = CMD_3DSTATE_SO_BUFFER_INDEX_1, .num_dw = 8 }, 1701 { .instr = CMD_3DSTATE_SO_BUFFER_INDEX_2, .num_dw = 8 }, 1702 { .instr = CMD_3DSTATE_SO_BUFFER_INDEX_3, .num_dw = 8 }, 1703 { .instr = CMD_3DSTATE_CLIP, .num_dw = 4 }, 1704 { .instr = CMD_3DSTATE_PRIMITIVE_REPLICATION, .num_dw = 6 }, 1705 { .instr = CMD_3DSTATE_CLIP_MESH, .num_dw = 2 }, 1706 { .instr = CMD_3DSTATE_SF, .num_dw = 4 }, 1707 { .instr = CMD_3DSTATE_SCISSOR_STATE_POINTERS, .num_dw = 2 }, 1708 { .instr = CMD_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, .num_dw = 2 }, 1709 { .instr = CMD_3DSTATE_RASTER, .num_dw = 5 }, 1710 { .instr = CMD_3DSTATE_TBIMR_TILE_PASS_INFO, .num_dw = 4 }, 1711 { .instr = CMD_3DSTATE_WM_HZ_OP, .num_dw = 6 }, 1712 { .instr = CMD_3DSTATE_MULTISAMPLE, .num_dw = 2 }, 1713 { .instr = CMD_3DSTATE_HS, .num_dw = 9 }, 1714 { .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_HS, .num_dw = 2 }, 1715 { .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_HS, .num_dw = 2 }, 1716 { .instr = CMD_3DSTATE_URB_ALLOC_HS, .num_dw = 3 }, 1717 { .instr = CMD_3DSTATE_TASK_CONTROL, .num_dw = 3 }, 1718 { .instr = CMD_3DSTATE_TASK_SHADER, .num_dw = 7 }, 1719 { .instr = CMD_3DSTATE_TASK_SHADER_DATA, .num_dw = 10 }, 1720 { .instr = CMD_3DSTATE_URB_ALLOC_TASK, .num_dw = 3 }, 1721 { .instr = CMD_3DSTATE_TE, .num_dw = 5 }, 1722 { .instr = CMD_3DSTATE_TASK_REDISTRIB, .num_dw = 2 }, 1723 { .instr = CMD_3DSTATE_DS, .num_dw = 11 }, 1724 { .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_DS, .num_dw = 2 }, 1725 { .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_DS, .num_dw = 2 }, 1726 { .instr = CMD_3DSTATE_URB_ALLOC_DS, .num_dw = 3 }, 1727 { .instr = CMD_3DSTATE_GS, .num_dw = 10 }, 1728 { .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_GS, .num_dw = 2 }, 1729 { .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_GS, .num_dw = 2 }, 1730 { .instr = CMD_3DSTATE_URB_ALLOC_GS, .num_dw = 3 }, 1731 { .instr = CMD_3DSTATE_MESH_CONTROL, .num_dw = 3 }, 1732 { .instr = CMD_3DSTATE_MESH_SHADER_DATA, .num_dw = 10 }, 1733 { .instr = CMD_3DSTATE_URB_ALLOC_MESH, .num_dw = 3 }, 1734 { .instr = CMD_3DSTATE_MESH_SHADER, .num_dw = 8 }, 1735 { .instr = CMD_3DSTATE_DRAWING_RECTANGLE, .num_dw = 4 }, 1736 }; 1737 1738 void xe_lrc_emit_hwe_state_instructions(struct xe_exec_queue *q, struct xe_bb *bb) 1739 { 1740 struct xe_gt *gt = q->hwe->gt; 1741 struct xe_device *xe = gt_to_xe(gt); 1742 const struct instr_state *state_table = NULL; 1743 int state_table_size = 0; 1744 1745 /* 1746 * Wa_14019789679 1747 * 1748 * If the driver doesn't explicitly emit the SVG instructions while 1749 * setting up the default LRC, the context switch will write 0's 1750 * (noops) into the LRC memory rather than the expected instruction 1751 * headers. Application contexts start out as a copy of the default 1752 * LRC, and if they also do not emit specific settings for some SVG 1753 * state, then on context restore they'll unintentionally inherit 1754 * whatever state setting the previous context had programmed into the 1755 * hardware (i.e., the lack of a 3DSTATE_* instruction in the LRC will 1756 * prevent the hardware from resetting that state back to any specific 1757 * value). 1758 * 1759 * The official workaround only requires emitting 3DSTATE_MESH_CONTROL 1760 * since that's a specific state setting that can easily cause GPU 1761 * hangs if unintentionally inherited. However to be safe we'll 1762 * continue to emit all of the SVG state since it's best not to leak 1763 * any of the state between contexts, even if that leakage is harmless. 1764 */ 1765 if (XE_WA(gt, 14019789679) && q->hwe->class == XE_ENGINE_CLASS_RENDER) { 1766 state_table = xe_hpg_svg_state; 1767 state_table_size = ARRAY_SIZE(xe_hpg_svg_state); 1768 } 1769 1770 if (!state_table) { 1771 xe_gt_dbg(gt, "No non-register state to emit on graphics ver %d.%02d\n", 1772 GRAPHICS_VER(xe), GRAPHICS_VERx100(xe) % 100); 1773 return; 1774 } 1775 1776 for (int i = 0; i < state_table_size; i++) { 1777 u32 instr = state_table[i].instr; 1778 u16 num_dw = state_table[i].num_dw; 1779 bool is_single_dw = ((instr & GFXPIPE_PIPELINE) == PIPELINE_SINGLE_DW); 1780 1781 xe_gt_assert(gt, (instr & XE_INSTR_CMD_TYPE) == XE_INSTR_GFXPIPE); 1782 xe_gt_assert(gt, num_dw != 0); 1783 xe_gt_assert(gt, is_single_dw ^ (num_dw > 1)); 1784 1785 /* 1786 * Xe2's SVG context is the same as the one on DG2 / MTL 1787 * except that 3DSTATE_DRAWING_RECTANGLE (non-pipelined) has 1788 * been replaced by 3DSTATE_DRAWING_RECTANGLE_FAST (pipelined). 1789 * Just make the replacement here rather than defining a 1790 * whole separate table for the single trivial change. 1791 */ 1792 if (GRAPHICS_VER(xe) >= 20 && 1793 instr == CMD_3DSTATE_DRAWING_RECTANGLE) 1794 instr = CMD_3DSTATE_DRAWING_RECTANGLE_FAST; 1795 1796 bb->cs[bb->len] = instr; 1797 if (!is_single_dw) 1798 bb->cs[bb->len] |= (num_dw - 2); 1799 1800 bb->len += num_dw; 1801 } 1802 } 1803 1804 struct xe_lrc_snapshot *xe_lrc_snapshot_capture(struct xe_lrc *lrc) 1805 { 1806 struct xe_lrc_snapshot *snapshot = kmalloc(sizeof(*snapshot), GFP_NOWAIT); 1807 1808 if (!snapshot) 1809 return NULL; 1810 1811 snapshot->context_desc = xe_lrc_ggtt_addr(lrc); 1812 snapshot->ring_addr = __xe_lrc_ring_ggtt_addr(lrc); 1813 snapshot->indirect_context_desc = xe_lrc_indirect_ring_ggtt_addr(lrc); 1814 snapshot->head = xe_lrc_ring_head(lrc); 1815 snapshot->tail.internal = lrc->ring.tail; 1816 snapshot->tail.memory = xe_lrc_ring_tail(lrc); 1817 snapshot->start = xe_lrc_ring_start(lrc); 1818 snapshot->start_seqno = xe_lrc_start_seqno(lrc); 1819 snapshot->seqno = xe_lrc_seqno(lrc); 1820 snapshot->lrc_bo = xe_bo_get(lrc->bo); 1821 snapshot->lrc_offset = xe_lrc_pphwsp_offset(lrc); 1822 snapshot->lrc_size = lrc->bo->size - snapshot->lrc_offset - 1823 LRC_WA_BB_SIZE; 1824 snapshot->lrc_snapshot = NULL; 1825 snapshot->ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(lrc)); 1826 snapshot->ctx_job_timestamp = xe_lrc_ctx_job_timestamp(lrc); 1827 return snapshot; 1828 } 1829 1830 void xe_lrc_snapshot_capture_delayed(struct xe_lrc_snapshot *snapshot) 1831 { 1832 struct xe_bo *bo; 1833 struct iosys_map src; 1834 1835 if (!snapshot) 1836 return; 1837 1838 bo = snapshot->lrc_bo; 1839 snapshot->lrc_bo = NULL; 1840 1841 snapshot->lrc_snapshot = kvmalloc(snapshot->lrc_size, GFP_KERNEL); 1842 if (!snapshot->lrc_snapshot) 1843 goto put_bo; 1844 1845 xe_bo_lock(bo, false); 1846 if (!ttm_bo_vmap(&bo->ttm, &src)) { 1847 xe_map_memcpy_from(xe_bo_device(bo), 1848 snapshot->lrc_snapshot, &src, snapshot->lrc_offset, 1849 snapshot->lrc_size); 1850 ttm_bo_vunmap(&bo->ttm, &src); 1851 } else { 1852 kvfree(snapshot->lrc_snapshot); 1853 snapshot->lrc_snapshot = NULL; 1854 } 1855 xe_bo_unlock(bo); 1856 put_bo: 1857 xe_bo_put(bo); 1858 } 1859 1860 void xe_lrc_snapshot_print(struct xe_lrc_snapshot *snapshot, struct drm_printer *p) 1861 { 1862 unsigned long i; 1863 1864 if (!snapshot) 1865 return; 1866 1867 drm_printf(p, "\tHW Context Desc: 0x%08x\n", snapshot->context_desc); 1868 drm_printf(p, "\tHW Ring address: 0x%08x\n", 1869 snapshot->ring_addr); 1870 drm_printf(p, "\tHW Indirect Ring State: 0x%08x\n", 1871 snapshot->indirect_context_desc); 1872 drm_printf(p, "\tLRC Head: (memory) %u\n", snapshot->head); 1873 drm_printf(p, "\tLRC Tail: (internal) %u, (memory) %u\n", 1874 snapshot->tail.internal, snapshot->tail.memory); 1875 drm_printf(p, "\tRing start: (memory) 0x%08x\n", snapshot->start); 1876 drm_printf(p, "\tStart seqno: (memory) %d\n", snapshot->start_seqno); 1877 drm_printf(p, "\tSeqno: (memory) %d\n", snapshot->seqno); 1878 drm_printf(p, "\tTimestamp: 0x%08x\n", snapshot->ctx_timestamp); 1879 drm_printf(p, "\tJob Timestamp: 0x%08x\n", snapshot->ctx_job_timestamp); 1880 1881 if (!snapshot->lrc_snapshot) 1882 return; 1883 1884 drm_printf(p, "\t[HWSP].length: 0x%x\n", LRC_PPHWSP_SIZE); 1885 drm_puts(p, "\t[HWSP].data: "); 1886 for (i = 0; i < LRC_PPHWSP_SIZE; i += sizeof(u32)) { 1887 u32 *val = snapshot->lrc_snapshot + i; 1888 char dumped[ASCII85_BUFSZ]; 1889 1890 drm_puts(p, ascii85_encode(*val, dumped)); 1891 } 1892 1893 drm_printf(p, "\n\t[HWCTX].length: 0x%lx\n", snapshot->lrc_size - LRC_PPHWSP_SIZE); 1894 drm_puts(p, "\t[HWCTX].data: "); 1895 for (; i < snapshot->lrc_size; i += sizeof(u32)) { 1896 u32 *val = snapshot->lrc_snapshot + i; 1897 char dumped[ASCII85_BUFSZ]; 1898 1899 drm_puts(p, ascii85_encode(*val, dumped)); 1900 } 1901 drm_puts(p, "\n"); 1902 } 1903 1904 void xe_lrc_snapshot_free(struct xe_lrc_snapshot *snapshot) 1905 { 1906 if (!snapshot) 1907 return; 1908 1909 kvfree(snapshot->lrc_snapshot); 1910 if (snapshot->lrc_bo) 1911 xe_bo_put(snapshot->lrc_bo); 1912 1913 kfree(snapshot); 1914 } 1915 1916 static int get_ctx_timestamp(struct xe_lrc *lrc, u32 engine_id, u64 *reg_ctx_ts) 1917 { 1918 u16 class = REG_FIELD_GET(ENGINE_CLASS_ID, engine_id); 1919 u16 instance = REG_FIELD_GET(ENGINE_INSTANCE_ID, engine_id); 1920 struct xe_hw_engine *hwe; 1921 u64 val; 1922 1923 hwe = xe_gt_hw_engine(lrc->gt, class, instance, false); 1924 if (xe_gt_WARN_ONCE(lrc->gt, !hwe || xe_hw_engine_is_reserved(hwe), 1925 "Unexpected engine class:instance %d:%d for context utilization\n", 1926 class, instance)) 1927 return -1; 1928 1929 if (lrc_to_xe(lrc)->info.has_64bit_timestamp) 1930 val = xe_mmio_read64_2x32(&hwe->gt->mmio, 1931 RING_CTX_TIMESTAMP(hwe->mmio_base)); 1932 else 1933 val = xe_mmio_read32(&hwe->gt->mmio, 1934 RING_CTX_TIMESTAMP(hwe->mmio_base)); 1935 1936 *reg_ctx_ts = val; 1937 1938 return 0; 1939 } 1940 1941 /** 1942 * xe_lrc_update_timestamp() - Update ctx timestamp 1943 * @lrc: Pointer to the lrc. 1944 * @old_ts: Old timestamp value 1945 * 1946 * Populate @old_ts current saved ctx timestamp, read new ctx timestamp and 1947 * update saved value. With support for active contexts, the calculation may be 1948 * slightly racy, so follow a read-again logic to ensure that the context is 1949 * still active before returning the right timestamp. 1950 * 1951 * Returns: New ctx timestamp value 1952 */ 1953 u64 xe_lrc_update_timestamp(struct xe_lrc *lrc, u64 *old_ts) 1954 { 1955 u64 lrc_ts, reg_ts; 1956 u32 engine_id; 1957 1958 *old_ts = lrc->ctx_timestamp; 1959 1960 lrc_ts = xe_lrc_ctx_timestamp(lrc); 1961 /* CTX_TIMESTAMP mmio read is invalid on VF, so return the LRC value */ 1962 if (IS_SRIOV_VF(lrc_to_xe(lrc))) { 1963 lrc->ctx_timestamp = lrc_ts; 1964 goto done; 1965 } 1966 1967 if (lrc_ts == CONTEXT_ACTIVE) { 1968 engine_id = xe_lrc_engine_id(lrc); 1969 if (!get_ctx_timestamp(lrc, engine_id, ®_ts)) 1970 lrc->ctx_timestamp = reg_ts; 1971 1972 /* read lrc again to ensure context is still active */ 1973 lrc_ts = xe_lrc_ctx_timestamp(lrc); 1974 } 1975 1976 /* 1977 * If context switched out, just use the lrc_ts. Note that this needs to 1978 * be a separate if condition. 1979 */ 1980 if (lrc_ts != CONTEXT_ACTIVE) 1981 lrc->ctx_timestamp = lrc_ts; 1982 1983 done: 1984 trace_xe_lrc_update_timestamp(lrc, *old_ts); 1985 1986 return lrc->ctx_timestamp; 1987 } 1988 1989 /** 1990 * xe_lrc_ring_is_idle() - LRC is idle 1991 * @lrc: Pointer to the lrc. 1992 * 1993 * Compare LRC ring head and tail to determine if idle. 1994 * 1995 * Return: True is ring is idle, False otherwise 1996 */ 1997 bool xe_lrc_ring_is_idle(struct xe_lrc *lrc) 1998 { 1999 return xe_lrc_ring_head(lrc) == xe_lrc_ring_tail(lrc); 2000 } 2001