xref: /linux/drivers/gpu/drm/xe/xe_irq.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_irq.h"
7 
8 #include <linux/sched/clock.h>
9 
10 #include <drm/drm_managed.h>
11 
12 #include "display/xe_display.h"
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_regs.h"
15 #include "xe_device.h"
16 #include "xe_drv.h"
17 #include "xe_gsc_proxy.h"
18 #include "xe_gt.h"
19 #include "xe_guc.h"
20 #include "xe_hw_engine.h"
21 #include "xe_memirq.h"
22 #include "xe_mmio.h"
23 #include "xe_sriov.h"
24 
25 /*
26  * Interrupt registers for a unit are always consecutive and ordered
27  * ISR, IMR, IIR, IER.
28  */
29 #define IMR(offset)				XE_REG(offset + 0x4)
30 #define IIR(offset)				XE_REG(offset + 0x8)
31 #define IER(offset)				XE_REG(offset + 0xc)
32 
33 static void assert_iir_is_zero(struct xe_gt *mmio, struct xe_reg reg)
34 {
35 	u32 val = xe_mmio_read32(mmio, reg);
36 
37 	if (val == 0)
38 		return;
39 
40 	drm_WARN(&gt_to_xe(mmio)->drm, 1,
41 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
42 		 reg.addr, val);
43 	xe_mmio_write32(mmio, reg, 0xffffffff);
44 	xe_mmio_read32(mmio, reg);
45 	xe_mmio_write32(mmio, reg, 0xffffffff);
46 	xe_mmio_read32(mmio, reg);
47 }
48 
49 /*
50  * Unmask and enable the specified interrupts.  Does not check current state,
51  * so any bits not specified here will become masked and disabled.
52  */
53 static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits)
54 {
55 	struct xe_gt *mmio = tile->primary_gt;
56 
57 	/*
58 	 * If we're just enabling an interrupt now, it shouldn't already
59 	 * be raised in the IIR.
60 	 */
61 	assert_iir_is_zero(mmio, IIR(irqregs));
62 
63 	xe_mmio_write32(mmio, IER(irqregs), bits);
64 	xe_mmio_write32(mmio, IMR(irqregs), ~bits);
65 
66 	/* Posting read */
67 	xe_mmio_read32(mmio, IMR(irqregs));
68 }
69 
70 /* Mask and disable all interrupts. */
71 static void mask_and_disable(struct xe_tile *tile, u32 irqregs)
72 {
73 	struct xe_gt *mmio = tile->primary_gt;
74 
75 	xe_mmio_write32(mmio, IMR(irqregs), ~0);
76 	/* Posting read */
77 	xe_mmio_read32(mmio, IMR(irqregs));
78 
79 	xe_mmio_write32(mmio, IER(irqregs), 0);
80 
81 	/* IIR can theoretically queue up two events. Be paranoid. */
82 	xe_mmio_write32(mmio, IIR(irqregs), ~0);
83 	xe_mmio_read32(mmio, IIR(irqregs));
84 	xe_mmio_write32(mmio, IIR(irqregs), ~0);
85 	xe_mmio_read32(mmio, IIR(irqregs));
86 }
87 
88 static u32 xelp_intr_disable(struct xe_device *xe)
89 {
90 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
91 
92 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0);
93 
94 	/*
95 	 * Now with master disabled, get a sample of level indications
96 	 * for this interrupt. Indications will be cleared on related acks.
97 	 * New indications can and will light up during processing,
98 	 * and will generate new interrupt after enabling master.
99 	 */
100 	return xe_mmio_read32(mmio, GFX_MSTR_IRQ);
101 }
102 
103 static u32
104 gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl)
105 {
106 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
107 	u32 iir;
108 
109 	if (!(master_ctl & GU_MISC_IRQ))
110 		return 0;
111 
112 	iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET));
113 	if (likely(iir))
114 		xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir);
115 
116 	return iir;
117 }
118 
119 static inline void xelp_intr_enable(struct xe_device *xe, bool stall)
120 {
121 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
122 
123 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ);
124 	if (stall)
125 		xe_mmio_read32(mmio, GFX_MSTR_IRQ);
126 }
127 
128 /* Enable/unmask the HWE interrupts for a specific GT's engines. */
129 void xe_irq_enable_hwe(struct xe_gt *gt)
130 {
131 	struct xe_device *xe = gt_to_xe(gt);
132 	u32 ccs_mask, bcs_mask;
133 	u32 irqs, dmask, smask;
134 	u32 gsc_mask = 0;
135 	u32 heci_mask = 0;
136 
137 	if (xe_device_uc_enabled(xe)) {
138 		irqs = GT_RENDER_USER_INTERRUPT |
139 			GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
140 	} else {
141 		irqs = GT_RENDER_USER_INTERRUPT |
142 		       GT_CS_MASTER_ERROR_INTERRUPT |
143 		       GT_CONTEXT_SWITCH_INTERRUPT |
144 		       GT_WAIT_SEMAPHORE_INTERRUPT;
145 	}
146 
147 	ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE);
148 	bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY);
149 
150 	dmask = irqs << 16 | irqs;
151 	smask = irqs << 16;
152 
153 	if (!xe_gt_is_media_type(gt)) {
154 		/* Enable interrupts for each engine class */
155 		xe_mmio_write32(gt, RENDER_COPY_INTR_ENABLE, dmask);
156 		if (ccs_mask)
157 			xe_mmio_write32(gt, CCS_RSVD_INTR_ENABLE, smask);
158 
159 		/* Unmask interrupts for each engine instance */
160 		xe_mmio_write32(gt, RCS0_RSVD_INTR_MASK, ~smask);
161 		xe_mmio_write32(gt, BCS_RSVD_INTR_MASK, ~smask);
162 		if (bcs_mask & (BIT(1)|BIT(2)))
163 			xe_mmio_write32(gt, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask);
164 		if (bcs_mask & (BIT(3)|BIT(4)))
165 			xe_mmio_write32(gt, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask);
166 		if (bcs_mask & (BIT(5)|BIT(6)))
167 			xe_mmio_write32(gt, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask);
168 		if (bcs_mask & (BIT(7)|BIT(8)))
169 			xe_mmio_write32(gt, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask);
170 		if (ccs_mask & (BIT(0)|BIT(1)))
171 			xe_mmio_write32(gt, CCS0_CCS1_INTR_MASK, ~dmask);
172 		if (ccs_mask & (BIT(2)|BIT(3)))
173 			xe_mmio_write32(gt,  CCS2_CCS3_INTR_MASK, ~dmask);
174 	}
175 
176 	if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) {
177 		/* Enable interrupts for each engine class */
178 		xe_mmio_write32(gt, VCS_VECS_INTR_ENABLE, dmask);
179 
180 		/* Unmask interrupts for each engine instance */
181 		xe_mmio_write32(gt, VCS0_VCS1_INTR_MASK, ~dmask);
182 		xe_mmio_write32(gt, VCS2_VCS3_INTR_MASK, ~dmask);
183 		xe_mmio_write32(gt, VECS0_VECS1_INTR_MASK, ~dmask);
184 
185 		/*
186 		 * the heci2 interrupt is enabled via the same register as the
187 		 * GSCCS interrupts, but it has its own mask register.
188 		 */
189 		if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) {
190 			gsc_mask = irqs;
191 			heci_mask = GSC_IRQ_INTF(1);
192 		} else if (HAS_HECI_GSCFI(xe)) {
193 			gsc_mask = GSC_IRQ_INTF(1);
194 		}
195 
196 		if (gsc_mask) {
197 			xe_mmio_write32(gt, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask);
198 			xe_mmio_write32(gt, GUNIT_GSC_INTR_MASK, ~gsc_mask);
199 		}
200 		if (heci_mask)
201 			xe_mmio_write32(gt, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16));
202 	}
203 }
204 
205 static u32
206 gt_engine_identity(struct xe_device *xe,
207 		   struct xe_gt *mmio,
208 		   const unsigned int bank,
209 		   const unsigned int bit)
210 {
211 	u32 timeout_ts;
212 	u32 ident;
213 
214 	lockdep_assert_held(&xe->irq.lock);
215 
216 	xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit));
217 
218 	/*
219 	 * NB: Specs do not specify how long to spin wait,
220 	 * so we do ~100us as an educated guess.
221 	 */
222 	timeout_ts = (local_clock() >> 10) + 100;
223 	do {
224 		ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank));
225 	} while (!(ident & INTR_DATA_VALID) &&
226 		 !time_after32(local_clock() >> 10, timeout_ts));
227 
228 	if (unlikely(!(ident & INTR_DATA_VALID))) {
229 		drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
230 			bank, bit, ident);
231 		return 0;
232 	}
233 
234 	xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident);
235 
236 	return ident;
237 }
238 
239 #define   OTHER_MEDIA_GUC_INSTANCE           16
240 
241 static void
242 gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir)
243 {
244 	if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt))
245 		return xe_guc_irq_handler(&gt->uc.guc, iir);
246 	if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt))
247 		return xe_guc_irq_handler(&gt->uc.guc, iir);
248 	if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt))
249 		return xe_gsc_proxy_irq_handler(&gt->uc.gsc, iir);
250 
251 	if (instance != OTHER_GUC_INSTANCE &&
252 	    instance != OTHER_MEDIA_GUC_INSTANCE) {
253 		WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
254 			  instance, iir);
255 	}
256 }
257 
258 static struct xe_gt *pick_engine_gt(struct xe_tile *tile,
259 				    enum xe_engine_class class,
260 				    unsigned int instance)
261 {
262 	struct xe_device *xe = tile_to_xe(tile);
263 
264 	if (MEDIA_VER(xe) < 13)
265 		return tile->primary_gt;
266 
267 	switch (class) {
268 	case XE_ENGINE_CLASS_VIDEO_DECODE:
269 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
270 		return tile->media_gt;
271 	case XE_ENGINE_CLASS_OTHER:
272 		switch (instance) {
273 		case OTHER_MEDIA_GUC_INSTANCE:
274 		case OTHER_GSC_INSTANCE:
275 		case OTHER_GSC_HECI2_INSTANCE:
276 			return tile->media_gt;
277 		default:
278 			break;
279 		};
280 		fallthrough;
281 	default:
282 		return tile->primary_gt;
283 	}
284 }
285 
286 static void gt_irq_handler(struct xe_tile *tile,
287 			   u32 master_ctl, unsigned long *intr_dw,
288 			   u32 *identity)
289 {
290 	struct xe_device *xe = tile_to_xe(tile);
291 	struct xe_gt *mmio = tile->primary_gt;
292 	unsigned int bank, bit;
293 	u16 instance, intr_vec;
294 	enum xe_engine_class class;
295 	struct xe_hw_engine *hwe;
296 
297 	spin_lock(&xe->irq.lock);
298 
299 	for (bank = 0; bank < 2; bank++) {
300 		if (!(master_ctl & GT_DW_IRQ(bank)))
301 			continue;
302 
303 		intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank));
304 		for_each_set_bit(bit, intr_dw + bank, 32)
305 			identity[bit] = gt_engine_identity(xe, mmio, bank, bit);
306 		xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]);
307 
308 		for_each_set_bit(bit, intr_dw + bank, 32) {
309 			struct xe_gt *engine_gt;
310 
311 			class = INTR_ENGINE_CLASS(identity[bit]);
312 			instance = INTR_ENGINE_INSTANCE(identity[bit]);
313 			intr_vec = INTR_ENGINE_INTR(identity[bit]);
314 
315 			engine_gt = pick_engine_gt(tile, class, instance);
316 
317 			hwe = xe_gt_hw_engine(engine_gt, class, instance, false);
318 			if (hwe) {
319 				xe_hw_engine_handle_irq(hwe, intr_vec);
320 				continue;
321 			}
322 
323 			if (class == XE_ENGINE_CLASS_OTHER) {
324 				/* HECI GSCFI interrupts come from outside of GT */
325 				if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE)
326 					xe_heci_gsc_irq_handler(xe, intr_vec);
327 				else
328 					gt_other_irq_handler(engine_gt, instance, intr_vec);
329 				continue;
330 			}
331 		}
332 	}
333 
334 	spin_unlock(&xe->irq.lock);
335 }
336 
337 /*
338  * Top-level interrupt handler for Xe_LP platforms (which did not have
339  * a "master tile" interrupt register.
340  */
341 static irqreturn_t xelp_irq_handler(int irq, void *arg)
342 {
343 	struct xe_device *xe = arg;
344 	struct xe_tile *tile = xe_device_get_root_tile(xe);
345 	u32 master_ctl, gu_misc_iir;
346 	unsigned long intr_dw[2];
347 	u32 identity[32];
348 
349 	spin_lock(&xe->irq.lock);
350 	if (!xe->irq.enabled) {
351 		spin_unlock(&xe->irq.lock);
352 		return IRQ_NONE;
353 	}
354 	spin_unlock(&xe->irq.lock);
355 
356 	master_ctl = xelp_intr_disable(xe);
357 	if (!master_ctl) {
358 		xelp_intr_enable(xe, false);
359 		return IRQ_NONE;
360 	}
361 
362 	gt_irq_handler(tile, master_ctl, intr_dw, identity);
363 
364 	xe_display_irq_handler(xe, master_ctl);
365 
366 	gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
367 
368 	xelp_intr_enable(xe, false);
369 
370 	xe_display_irq_enable(xe, gu_misc_iir);
371 
372 	return IRQ_HANDLED;
373 }
374 
375 static u32 dg1_intr_disable(struct xe_device *xe)
376 {
377 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
378 	u32 val;
379 
380 	/* First disable interrupts */
381 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0);
382 
383 	/* Get the indication levels and ack the master unit */
384 	val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
385 	if (unlikely(!val))
386 		return 0;
387 
388 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val);
389 
390 	return val;
391 }
392 
393 static void dg1_intr_enable(struct xe_device *xe, bool stall)
394 {
395 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
396 
397 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
398 	if (stall)
399 		xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
400 }
401 
402 /*
403  * Top-level interrupt handler for Xe_LP+ and beyond.  These platforms have
404  * a "master tile" interrupt register which must be consulted before the
405  * "graphics master" interrupt register.
406  */
407 static irqreturn_t dg1_irq_handler(int irq, void *arg)
408 {
409 	struct xe_device *xe = arg;
410 	struct xe_tile *tile;
411 	u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0;
412 	unsigned long intr_dw[2];
413 	u32 identity[32];
414 	u8 id;
415 
416 	/* TODO: This really shouldn't be copied+pasted */
417 
418 	spin_lock(&xe->irq.lock);
419 	if (!xe->irq.enabled) {
420 		spin_unlock(&xe->irq.lock);
421 		return IRQ_NONE;
422 	}
423 	spin_unlock(&xe->irq.lock);
424 
425 	master_tile_ctl = dg1_intr_disable(xe);
426 	if (!master_tile_ctl) {
427 		dg1_intr_enable(xe, false);
428 		return IRQ_NONE;
429 	}
430 
431 	for_each_tile(tile, xe, id) {
432 		struct xe_gt *mmio = tile->primary_gt;
433 
434 		if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0)
435 			continue;
436 
437 		master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ);
438 
439 		/*
440 		 * We might be in irq handler just when PCIe DPC is initiated
441 		 * and all MMIO reads will be returned with all 1's. Ignore this
442 		 * irq as device is inaccessible.
443 		 */
444 		if (master_ctl == REG_GENMASK(31, 0)) {
445 			drm_dbg(&tile_to_xe(tile)->drm,
446 				"Ignore this IRQ as device might be in DPC containment.\n");
447 			return IRQ_HANDLED;
448 		}
449 
450 		xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl);
451 
452 		gt_irq_handler(tile, master_ctl, intr_dw, identity);
453 
454 		/*
455 		 * Display interrupts (including display backlight operations
456 		 * that get reported as Gunit GSE) would only be hooked up to
457 		 * the primary tile.
458 		 */
459 		if (id == 0) {
460 			xe_display_irq_handler(xe, master_ctl);
461 			gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
462 		}
463 	}
464 
465 	dg1_intr_enable(xe, false);
466 	xe_display_irq_enable(xe, gu_misc_iir);
467 
468 	return IRQ_HANDLED;
469 }
470 
471 static void gt_irq_reset(struct xe_tile *tile)
472 {
473 	struct xe_gt *mmio = tile->primary_gt;
474 
475 	u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
476 						   XE_ENGINE_CLASS_COMPUTE);
477 	u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
478 						   XE_ENGINE_CLASS_COPY);
479 
480 	/* Disable RCS, BCS, VCS and VECS class engines. */
481 	xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0);
482 	xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0);
483 	if (ccs_mask)
484 		xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0);
485 
486 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
487 	xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK,	~0);
488 	xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK,	~0);
489 	if (bcs_mask & (BIT(1)|BIT(2)))
490 		xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0);
491 	if (bcs_mask & (BIT(3)|BIT(4)))
492 		xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0);
493 	if (bcs_mask & (BIT(5)|BIT(6)))
494 		xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0);
495 	if (bcs_mask & (BIT(7)|BIT(8)))
496 		xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0);
497 	xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK,	~0);
498 	xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK,	~0);
499 	xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK,	~0);
500 	if (ccs_mask & (BIT(0)|BIT(1)))
501 		xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0);
502 	if (ccs_mask & (BIT(2)|BIT(3)))
503 		xe_mmio_write32(mmio,  CCS2_CCS3_INTR_MASK, ~0);
504 
505 	if ((tile->media_gt &&
506 	     xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) ||
507 	    HAS_HECI_GSCFI(tile_to_xe(tile))) {
508 		xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0);
509 		xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0);
510 		xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0);
511 	}
512 
513 	xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0);
514 	xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK,  ~0);
515 	xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE,	 0);
516 	xe_mmio_write32(mmio, GUC_SG_INTR_MASK,		~0);
517 }
518 
519 static void xelp_irq_reset(struct xe_tile *tile)
520 {
521 	xelp_intr_disable(tile_to_xe(tile));
522 
523 	gt_irq_reset(tile);
524 
525 	if (IS_SRIOV_VF(tile_to_xe(tile)))
526 		return;
527 
528 	mask_and_disable(tile, PCU_IRQ_OFFSET);
529 }
530 
531 static void dg1_irq_reset(struct xe_tile *tile)
532 {
533 	if (tile->id == 0)
534 		dg1_intr_disable(tile_to_xe(tile));
535 
536 	gt_irq_reset(tile);
537 
538 	if (IS_SRIOV_VF(tile_to_xe(tile)))
539 		return;
540 
541 	mask_and_disable(tile, PCU_IRQ_OFFSET);
542 }
543 
544 static void dg1_irq_reset_mstr(struct xe_tile *tile)
545 {
546 	struct xe_gt *mmio = tile->primary_gt;
547 
548 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0);
549 }
550 
551 static void vf_irq_reset(struct xe_device *xe)
552 {
553 	struct xe_tile *tile;
554 	unsigned int id;
555 
556 	xe_assert(xe, IS_SRIOV_VF(xe));
557 
558 	if (GRAPHICS_VERx100(xe) < 1210)
559 		xelp_intr_disable(xe);
560 	else
561 		xe_assert(xe, xe_device_has_memirq(xe));
562 
563 	for_each_tile(tile, xe, id) {
564 		if (xe_device_has_memirq(xe))
565 			xe_memirq_reset(&tile->sriov.vf.memirq);
566 		else
567 			gt_irq_reset(tile);
568 	}
569 }
570 
571 static void xe_irq_reset(struct xe_device *xe)
572 {
573 	struct xe_tile *tile;
574 	u8 id;
575 
576 	if (IS_SRIOV_VF(xe))
577 		return vf_irq_reset(xe);
578 
579 	for_each_tile(tile, xe, id) {
580 		if (GRAPHICS_VERx100(xe) >= 1210)
581 			dg1_irq_reset(tile);
582 		else
583 			xelp_irq_reset(tile);
584 	}
585 
586 	tile = xe_device_get_root_tile(xe);
587 	mask_and_disable(tile, GU_MISC_IRQ_OFFSET);
588 	xe_display_irq_reset(xe);
589 
590 	/*
591 	 * The tile's top-level status register should be the last one
592 	 * to be reset to avoid possible bit re-latching from lower
593 	 * level interrupts.
594 	 */
595 	if (GRAPHICS_VERx100(xe) >= 1210) {
596 		for_each_tile(tile, xe, id)
597 			dg1_irq_reset_mstr(tile);
598 	}
599 }
600 
601 static void vf_irq_postinstall(struct xe_device *xe)
602 {
603 	struct xe_tile *tile;
604 	unsigned int id;
605 
606 	for_each_tile(tile, xe, id)
607 		if (xe_device_has_memirq(xe))
608 			xe_memirq_postinstall(&tile->sriov.vf.memirq);
609 
610 	if (GRAPHICS_VERx100(xe) < 1210)
611 		xelp_intr_enable(xe, true);
612 	else
613 		xe_assert(xe, xe_device_has_memirq(xe));
614 }
615 
616 static void xe_irq_postinstall(struct xe_device *xe)
617 {
618 	if (IS_SRIOV_VF(xe))
619 		return vf_irq_postinstall(xe);
620 
621 	xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe));
622 
623 	/*
624 	 * ASLE backlight operations are reported via GUnit GSE interrupts
625 	 * on the root tile.
626 	 */
627 	unmask_and_enable(xe_device_get_root_tile(xe),
628 			  GU_MISC_IRQ_OFFSET, GU_MISC_GSE);
629 
630 	/* Enable top-level interrupts */
631 	if (GRAPHICS_VERx100(xe) >= 1210)
632 		dg1_intr_enable(xe, true);
633 	else
634 		xelp_intr_enable(xe, true);
635 }
636 
637 static irqreturn_t vf_mem_irq_handler(int irq, void *arg)
638 {
639 	struct xe_device *xe = arg;
640 	struct xe_tile *tile;
641 	unsigned int id;
642 
643 	spin_lock(&xe->irq.lock);
644 	if (!xe->irq.enabled) {
645 		spin_unlock(&xe->irq.lock);
646 		return IRQ_NONE;
647 	}
648 	spin_unlock(&xe->irq.lock);
649 
650 	for_each_tile(tile, xe, id)
651 		xe_memirq_handler(&tile->sriov.vf.memirq);
652 
653 	return IRQ_HANDLED;
654 }
655 
656 static irq_handler_t xe_irq_handler(struct xe_device *xe)
657 {
658 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
659 		return vf_mem_irq_handler;
660 
661 	if (GRAPHICS_VERx100(xe) >= 1210)
662 		return dg1_irq_handler;
663 	else
664 		return xelp_irq_handler;
665 }
666 
667 static void irq_uninstall(struct drm_device *drm, void *arg)
668 {
669 	struct xe_device *xe = arg;
670 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
671 	int irq;
672 
673 	if (!xe->irq.enabled)
674 		return;
675 
676 	xe->irq.enabled = false;
677 	xe_irq_reset(xe);
678 
679 	irq = pci_irq_vector(pdev, 0);
680 	free_irq(irq, xe);
681 }
682 
683 int xe_irq_install(struct xe_device *xe)
684 {
685 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
686 	unsigned int irq_flags = PCI_IRQ_MSIX;
687 	irq_handler_t irq_handler;
688 	int err, irq, nvec;
689 
690 	irq_handler = xe_irq_handler(xe);
691 	if (!irq_handler) {
692 		drm_err(&xe->drm, "No supported interrupt handler");
693 		return -EINVAL;
694 	}
695 
696 	xe_irq_reset(xe);
697 
698 	nvec = pci_msix_vec_count(pdev);
699 	if (nvec <= 0) {
700 		if (nvec == -EINVAL) {
701 			/* MSIX capability is not supported in the device, using MSI */
702 			irq_flags = PCI_IRQ_MSI;
703 			nvec = 1;
704 		} else {
705 			drm_err(&xe->drm, "MSIX: Failed getting count\n");
706 			return nvec;
707 		}
708 	}
709 
710 	err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags);
711 	if (err < 0) {
712 		drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err);
713 		return err;
714 	}
715 
716 	irq = pci_irq_vector(pdev, 0);
717 	err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe);
718 	if (err < 0) {
719 		drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err);
720 		return err;
721 	}
722 
723 	xe->irq.enabled = true;
724 
725 	xe_irq_postinstall(xe);
726 
727 	err = drmm_add_action_or_reset(&xe->drm, irq_uninstall, xe);
728 	if (err)
729 		goto free_irq_handler;
730 
731 	return 0;
732 
733 free_irq_handler:
734 	free_irq(irq, xe);
735 
736 	return err;
737 }
738 
739 void xe_irq_shutdown(struct xe_device *xe)
740 {
741 	irq_uninstall(&xe->drm, xe);
742 }
743 
744 void xe_irq_suspend(struct xe_device *xe)
745 {
746 	int irq = to_pci_dev(xe->drm.dev)->irq;
747 
748 	spin_lock_irq(&xe->irq.lock);
749 	xe->irq.enabled = false; /* no new irqs */
750 	spin_unlock_irq(&xe->irq.lock);
751 
752 	synchronize_irq(irq); /* flush irqs */
753 	xe_irq_reset(xe); /* turn irqs off */
754 }
755 
756 void xe_irq_resume(struct xe_device *xe)
757 {
758 	struct xe_gt *gt;
759 	int id;
760 
761 	/*
762 	 * lock not needed:
763 	 * 1. no irq will arrive before the postinstall
764 	 * 2. display is not yet resumed
765 	 */
766 	xe->irq.enabled = true;
767 	xe_irq_reset(xe);
768 	xe_irq_postinstall(xe); /* turn irqs on */
769 
770 	for_each_gt(gt, xe, id)
771 		xe_irq_enable_hwe(gt);
772 }
773