xref: /linux/drivers/gpu/drm/xe/xe_irq.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_irq.h"
7 
8 #include <linux/sched/clock.h>
9 
10 #include <drm/drm_managed.h>
11 
12 #include "display/xe_display.h"
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_regs.h"
15 #include "xe_device.h"
16 #include "xe_drv.h"
17 #include "xe_gsc_proxy.h"
18 #include "xe_gt.h"
19 #include "xe_guc.h"
20 #include "xe_hw_engine.h"
21 #include "xe_memirq.h"
22 #include "xe_mmio.h"
23 #include "xe_sriov.h"
24 
25 /*
26  * Interrupt registers for a unit are always consecutive and ordered
27  * ISR, IMR, IIR, IER.
28  */
29 #define IMR(offset)				XE_REG(offset + 0x4)
30 #define IIR(offset)				XE_REG(offset + 0x8)
31 #define IER(offset)				XE_REG(offset + 0xc)
32 
33 static void assert_iir_is_zero(struct xe_gt *mmio, struct xe_reg reg)
34 {
35 	u32 val = xe_mmio_read32(mmio, reg);
36 
37 	if (val == 0)
38 		return;
39 
40 	drm_WARN(&gt_to_xe(mmio)->drm, 1,
41 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
42 		 reg.addr, val);
43 	xe_mmio_write32(mmio, reg, 0xffffffff);
44 	xe_mmio_read32(mmio, reg);
45 	xe_mmio_write32(mmio, reg, 0xffffffff);
46 	xe_mmio_read32(mmio, reg);
47 }
48 
49 /*
50  * Unmask and enable the specified interrupts.  Does not check current state,
51  * so any bits not specified here will become masked and disabled.
52  */
53 static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits)
54 {
55 	struct xe_gt *mmio = tile->primary_gt;
56 
57 	/*
58 	 * If we're just enabling an interrupt now, it shouldn't already
59 	 * be raised in the IIR.
60 	 */
61 	assert_iir_is_zero(mmio, IIR(irqregs));
62 
63 	xe_mmio_write32(mmio, IER(irqregs), bits);
64 	xe_mmio_write32(mmio, IMR(irqregs), ~bits);
65 
66 	/* Posting read */
67 	xe_mmio_read32(mmio, IMR(irqregs));
68 }
69 
70 /* Mask and disable all interrupts. */
71 static void mask_and_disable(struct xe_tile *tile, u32 irqregs)
72 {
73 	struct xe_gt *mmio = tile->primary_gt;
74 
75 	xe_mmio_write32(mmio, IMR(irqregs), ~0);
76 	/* Posting read */
77 	xe_mmio_read32(mmio, IMR(irqregs));
78 
79 	xe_mmio_write32(mmio, IER(irqregs), 0);
80 
81 	/* IIR can theoretically queue up two events. Be paranoid. */
82 	xe_mmio_write32(mmio, IIR(irqregs), ~0);
83 	xe_mmio_read32(mmio, IIR(irqregs));
84 	xe_mmio_write32(mmio, IIR(irqregs), ~0);
85 	xe_mmio_read32(mmio, IIR(irqregs));
86 }
87 
88 static u32 xelp_intr_disable(struct xe_device *xe)
89 {
90 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
91 
92 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0);
93 
94 	/*
95 	 * Now with master disabled, get a sample of level indications
96 	 * for this interrupt. Indications will be cleared on related acks.
97 	 * New indications can and will light up during processing,
98 	 * and will generate new interrupt after enabling master.
99 	 */
100 	return xe_mmio_read32(mmio, GFX_MSTR_IRQ);
101 }
102 
103 static u32
104 gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl)
105 {
106 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
107 	u32 iir;
108 
109 	if (!(master_ctl & GU_MISC_IRQ))
110 		return 0;
111 
112 	iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET));
113 	if (likely(iir))
114 		xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir);
115 
116 	return iir;
117 }
118 
119 static inline void xelp_intr_enable(struct xe_device *xe, bool stall)
120 {
121 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
122 
123 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ);
124 	if (stall)
125 		xe_mmio_read32(mmio, GFX_MSTR_IRQ);
126 }
127 
128 /* Enable/unmask the HWE interrupts for a specific GT's engines. */
129 void xe_irq_enable_hwe(struct xe_gt *gt)
130 {
131 	struct xe_device *xe = gt_to_xe(gt);
132 	u32 ccs_mask, bcs_mask;
133 	u32 irqs, dmask, smask;
134 	u32 gsc_mask = 0;
135 	u32 heci_mask = 0;
136 
137 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
138 		return;
139 
140 	if (xe_device_uc_enabled(xe)) {
141 		irqs = GT_RENDER_USER_INTERRUPT |
142 			GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
143 	} else {
144 		irqs = GT_RENDER_USER_INTERRUPT |
145 		       GT_CS_MASTER_ERROR_INTERRUPT |
146 		       GT_CONTEXT_SWITCH_INTERRUPT |
147 		       GT_WAIT_SEMAPHORE_INTERRUPT;
148 	}
149 
150 	ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE);
151 	bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY);
152 
153 	dmask = irqs << 16 | irqs;
154 	smask = irqs << 16;
155 
156 	if (!xe_gt_is_media_type(gt)) {
157 		/* Enable interrupts for each engine class */
158 		xe_mmio_write32(gt, RENDER_COPY_INTR_ENABLE, dmask);
159 		if (ccs_mask)
160 			xe_mmio_write32(gt, CCS_RSVD_INTR_ENABLE, smask);
161 
162 		/* Unmask interrupts for each engine instance */
163 		xe_mmio_write32(gt, RCS0_RSVD_INTR_MASK, ~smask);
164 		xe_mmio_write32(gt, BCS_RSVD_INTR_MASK, ~smask);
165 		if (bcs_mask & (BIT(1)|BIT(2)))
166 			xe_mmio_write32(gt, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask);
167 		if (bcs_mask & (BIT(3)|BIT(4)))
168 			xe_mmio_write32(gt, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask);
169 		if (bcs_mask & (BIT(5)|BIT(6)))
170 			xe_mmio_write32(gt, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask);
171 		if (bcs_mask & (BIT(7)|BIT(8)))
172 			xe_mmio_write32(gt, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask);
173 		if (ccs_mask & (BIT(0)|BIT(1)))
174 			xe_mmio_write32(gt, CCS0_CCS1_INTR_MASK, ~dmask);
175 		if (ccs_mask & (BIT(2)|BIT(3)))
176 			xe_mmio_write32(gt,  CCS2_CCS3_INTR_MASK, ~dmask);
177 	}
178 
179 	if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) {
180 		/* Enable interrupts for each engine class */
181 		xe_mmio_write32(gt, VCS_VECS_INTR_ENABLE, dmask);
182 
183 		/* Unmask interrupts for each engine instance */
184 		xe_mmio_write32(gt, VCS0_VCS1_INTR_MASK, ~dmask);
185 		xe_mmio_write32(gt, VCS2_VCS3_INTR_MASK, ~dmask);
186 		xe_mmio_write32(gt, VECS0_VECS1_INTR_MASK, ~dmask);
187 
188 		/*
189 		 * the heci2 interrupt is enabled via the same register as the
190 		 * GSCCS interrupts, but it has its own mask register.
191 		 */
192 		if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) {
193 			gsc_mask = irqs | GSC_ER_COMPLETE;
194 			heci_mask = GSC_IRQ_INTF(1);
195 		} else if (HAS_HECI_GSCFI(xe)) {
196 			gsc_mask = GSC_IRQ_INTF(1);
197 		}
198 
199 		if (gsc_mask) {
200 			xe_mmio_write32(gt, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask);
201 			xe_mmio_write32(gt, GUNIT_GSC_INTR_MASK, ~gsc_mask);
202 		}
203 		if (heci_mask)
204 			xe_mmio_write32(gt, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16));
205 	}
206 }
207 
208 static u32
209 gt_engine_identity(struct xe_device *xe,
210 		   struct xe_gt *mmio,
211 		   const unsigned int bank,
212 		   const unsigned int bit)
213 {
214 	u32 timeout_ts;
215 	u32 ident;
216 
217 	lockdep_assert_held(&xe->irq.lock);
218 
219 	xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit));
220 
221 	/*
222 	 * NB: Specs do not specify how long to spin wait,
223 	 * so we do ~100us as an educated guess.
224 	 */
225 	timeout_ts = (local_clock() >> 10) + 100;
226 	do {
227 		ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank));
228 	} while (!(ident & INTR_DATA_VALID) &&
229 		 !time_after32(local_clock() >> 10, timeout_ts));
230 
231 	if (unlikely(!(ident & INTR_DATA_VALID))) {
232 		drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
233 			bank, bit, ident);
234 		return 0;
235 	}
236 
237 	xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident);
238 
239 	return ident;
240 }
241 
242 #define   OTHER_MEDIA_GUC_INSTANCE           16
243 
244 static void
245 gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir)
246 {
247 	if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt))
248 		return xe_guc_irq_handler(&gt->uc.guc, iir);
249 	if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt))
250 		return xe_guc_irq_handler(&gt->uc.guc, iir);
251 	if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt))
252 		return xe_gsc_proxy_irq_handler(&gt->uc.gsc, iir);
253 
254 	if (instance != OTHER_GUC_INSTANCE &&
255 	    instance != OTHER_MEDIA_GUC_INSTANCE) {
256 		WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
257 			  instance, iir);
258 	}
259 }
260 
261 static struct xe_gt *pick_engine_gt(struct xe_tile *tile,
262 				    enum xe_engine_class class,
263 				    unsigned int instance)
264 {
265 	struct xe_device *xe = tile_to_xe(tile);
266 
267 	if (MEDIA_VER(xe) < 13)
268 		return tile->primary_gt;
269 
270 	switch (class) {
271 	case XE_ENGINE_CLASS_VIDEO_DECODE:
272 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
273 		return tile->media_gt;
274 	case XE_ENGINE_CLASS_OTHER:
275 		switch (instance) {
276 		case OTHER_MEDIA_GUC_INSTANCE:
277 		case OTHER_GSC_INSTANCE:
278 		case OTHER_GSC_HECI2_INSTANCE:
279 			return tile->media_gt;
280 		default:
281 			break;
282 		};
283 		fallthrough;
284 	default:
285 		return tile->primary_gt;
286 	}
287 }
288 
289 static void gt_irq_handler(struct xe_tile *tile,
290 			   u32 master_ctl, unsigned long *intr_dw,
291 			   u32 *identity)
292 {
293 	struct xe_device *xe = tile_to_xe(tile);
294 	struct xe_gt *mmio = tile->primary_gt;
295 	unsigned int bank, bit;
296 	u16 instance, intr_vec;
297 	enum xe_engine_class class;
298 	struct xe_hw_engine *hwe;
299 
300 	spin_lock(&xe->irq.lock);
301 
302 	for (bank = 0; bank < 2; bank++) {
303 		if (!(master_ctl & GT_DW_IRQ(bank)))
304 			continue;
305 
306 		intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank));
307 		for_each_set_bit(bit, intr_dw + bank, 32)
308 			identity[bit] = gt_engine_identity(xe, mmio, bank, bit);
309 		xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]);
310 
311 		for_each_set_bit(bit, intr_dw + bank, 32) {
312 			struct xe_gt *engine_gt;
313 
314 			class = INTR_ENGINE_CLASS(identity[bit]);
315 			instance = INTR_ENGINE_INSTANCE(identity[bit]);
316 			intr_vec = INTR_ENGINE_INTR(identity[bit]);
317 
318 			engine_gt = pick_engine_gt(tile, class, instance);
319 
320 			hwe = xe_gt_hw_engine(engine_gt, class, instance, false);
321 			if (hwe) {
322 				xe_hw_engine_handle_irq(hwe, intr_vec);
323 				continue;
324 			}
325 
326 			if (class == XE_ENGINE_CLASS_OTHER) {
327 				/* HECI GSCFI interrupts come from outside of GT */
328 				if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE)
329 					xe_heci_gsc_irq_handler(xe, intr_vec);
330 				else
331 					gt_other_irq_handler(engine_gt, instance, intr_vec);
332 			}
333 		}
334 	}
335 
336 	spin_unlock(&xe->irq.lock);
337 }
338 
339 /*
340  * Top-level interrupt handler for Xe_LP platforms (which did not have
341  * a "master tile" interrupt register.
342  */
343 static irqreturn_t xelp_irq_handler(int irq, void *arg)
344 {
345 	struct xe_device *xe = arg;
346 	struct xe_tile *tile = xe_device_get_root_tile(xe);
347 	u32 master_ctl, gu_misc_iir;
348 	unsigned long intr_dw[2];
349 	u32 identity[32];
350 
351 	spin_lock(&xe->irq.lock);
352 	if (!xe->irq.enabled) {
353 		spin_unlock(&xe->irq.lock);
354 		return IRQ_NONE;
355 	}
356 	spin_unlock(&xe->irq.lock);
357 
358 	master_ctl = xelp_intr_disable(xe);
359 	if (!master_ctl) {
360 		xelp_intr_enable(xe, false);
361 		return IRQ_NONE;
362 	}
363 
364 	gt_irq_handler(tile, master_ctl, intr_dw, identity);
365 
366 	xe_display_irq_handler(xe, master_ctl);
367 
368 	gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
369 
370 	xelp_intr_enable(xe, false);
371 
372 	xe_display_irq_enable(xe, gu_misc_iir);
373 
374 	return IRQ_HANDLED;
375 }
376 
377 static u32 dg1_intr_disable(struct xe_device *xe)
378 {
379 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
380 	u32 val;
381 
382 	/* First disable interrupts */
383 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0);
384 
385 	/* Get the indication levels and ack the master unit */
386 	val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
387 	if (unlikely(!val))
388 		return 0;
389 
390 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val);
391 
392 	return val;
393 }
394 
395 static void dg1_intr_enable(struct xe_device *xe, bool stall)
396 {
397 	struct xe_gt *mmio = xe_root_mmio_gt(xe);
398 
399 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
400 	if (stall)
401 		xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
402 }
403 
404 /*
405  * Top-level interrupt handler for Xe_LP+ and beyond.  These platforms have
406  * a "master tile" interrupt register which must be consulted before the
407  * "graphics master" interrupt register.
408  */
409 static irqreturn_t dg1_irq_handler(int irq, void *arg)
410 {
411 	struct xe_device *xe = arg;
412 	struct xe_tile *tile;
413 	u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0;
414 	unsigned long intr_dw[2];
415 	u32 identity[32];
416 	u8 id;
417 
418 	/* TODO: This really shouldn't be copied+pasted */
419 
420 	spin_lock(&xe->irq.lock);
421 	if (!xe->irq.enabled) {
422 		spin_unlock(&xe->irq.lock);
423 		return IRQ_NONE;
424 	}
425 	spin_unlock(&xe->irq.lock);
426 
427 	master_tile_ctl = dg1_intr_disable(xe);
428 	if (!master_tile_ctl) {
429 		dg1_intr_enable(xe, false);
430 		return IRQ_NONE;
431 	}
432 
433 	for_each_tile(tile, xe, id) {
434 		struct xe_gt *mmio = tile->primary_gt;
435 
436 		if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0)
437 			continue;
438 
439 		master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ);
440 
441 		/*
442 		 * We might be in irq handler just when PCIe DPC is initiated
443 		 * and all MMIO reads will be returned with all 1's. Ignore this
444 		 * irq as device is inaccessible.
445 		 */
446 		if (master_ctl == REG_GENMASK(31, 0)) {
447 			drm_dbg(&tile_to_xe(tile)->drm,
448 				"Ignore this IRQ as device might be in DPC containment.\n");
449 			return IRQ_HANDLED;
450 		}
451 
452 		xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl);
453 
454 		gt_irq_handler(tile, master_ctl, intr_dw, identity);
455 
456 		/*
457 		 * Display interrupts (including display backlight operations
458 		 * that get reported as Gunit GSE) would only be hooked up to
459 		 * the primary tile.
460 		 */
461 		if (id == 0) {
462 			xe_display_irq_handler(xe, master_ctl);
463 			gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
464 		}
465 	}
466 
467 	dg1_intr_enable(xe, false);
468 	xe_display_irq_enable(xe, gu_misc_iir);
469 
470 	return IRQ_HANDLED;
471 }
472 
473 static void gt_irq_reset(struct xe_tile *tile)
474 {
475 	struct xe_gt *mmio = tile->primary_gt;
476 
477 	u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
478 						   XE_ENGINE_CLASS_COMPUTE);
479 	u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
480 						   XE_ENGINE_CLASS_COPY);
481 
482 	/* Disable RCS, BCS, VCS and VECS class engines. */
483 	xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0);
484 	xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0);
485 	if (ccs_mask)
486 		xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0);
487 
488 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
489 	xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK,	~0);
490 	xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK,	~0);
491 	if (bcs_mask & (BIT(1)|BIT(2)))
492 		xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0);
493 	if (bcs_mask & (BIT(3)|BIT(4)))
494 		xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0);
495 	if (bcs_mask & (BIT(5)|BIT(6)))
496 		xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0);
497 	if (bcs_mask & (BIT(7)|BIT(8)))
498 		xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0);
499 	xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK,	~0);
500 	xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK,	~0);
501 	xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK,	~0);
502 	if (ccs_mask & (BIT(0)|BIT(1)))
503 		xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0);
504 	if (ccs_mask & (BIT(2)|BIT(3)))
505 		xe_mmio_write32(mmio,  CCS2_CCS3_INTR_MASK, ~0);
506 
507 	if ((tile->media_gt &&
508 	     xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) ||
509 	    HAS_HECI_GSCFI(tile_to_xe(tile))) {
510 		xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0);
511 		xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0);
512 		xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0);
513 	}
514 
515 	xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0);
516 	xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK,  ~0);
517 	xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE,	 0);
518 	xe_mmio_write32(mmio, GUC_SG_INTR_MASK,		~0);
519 }
520 
521 static void xelp_irq_reset(struct xe_tile *tile)
522 {
523 	xelp_intr_disable(tile_to_xe(tile));
524 
525 	gt_irq_reset(tile);
526 
527 	if (IS_SRIOV_VF(tile_to_xe(tile)))
528 		return;
529 
530 	mask_and_disable(tile, PCU_IRQ_OFFSET);
531 }
532 
533 static void dg1_irq_reset(struct xe_tile *tile)
534 {
535 	if (tile->id == 0)
536 		dg1_intr_disable(tile_to_xe(tile));
537 
538 	gt_irq_reset(tile);
539 
540 	if (IS_SRIOV_VF(tile_to_xe(tile)))
541 		return;
542 
543 	mask_and_disable(tile, PCU_IRQ_OFFSET);
544 }
545 
546 static void dg1_irq_reset_mstr(struct xe_tile *tile)
547 {
548 	struct xe_gt *mmio = tile->primary_gt;
549 
550 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0);
551 }
552 
553 static void vf_irq_reset(struct xe_device *xe)
554 {
555 	struct xe_tile *tile;
556 	unsigned int id;
557 
558 	xe_assert(xe, IS_SRIOV_VF(xe));
559 
560 	if (GRAPHICS_VERx100(xe) < 1210)
561 		xelp_intr_disable(xe);
562 	else
563 		xe_assert(xe, xe_device_has_memirq(xe));
564 
565 	for_each_tile(tile, xe, id) {
566 		if (xe_device_has_memirq(xe))
567 			xe_memirq_reset(&tile->sriov.vf.memirq);
568 		else
569 			gt_irq_reset(tile);
570 	}
571 }
572 
573 static void xe_irq_reset(struct xe_device *xe)
574 {
575 	struct xe_tile *tile;
576 	u8 id;
577 
578 	if (IS_SRIOV_VF(xe))
579 		return vf_irq_reset(xe);
580 
581 	for_each_tile(tile, xe, id) {
582 		if (GRAPHICS_VERx100(xe) >= 1210)
583 			dg1_irq_reset(tile);
584 		else
585 			xelp_irq_reset(tile);
586 	}
587 
588 	tile = xe_device_get_root_tile(xe);
589 	mask_and_disable(tile, GU_MISC_IRQ_OFFSET);
590 	xe_display_irq_reset(xe);
591 
592 	/*
593 	 * The tile's top-level status register should be the last one
594 	 * to be reset to avoid possible bit re-latching from lower
595 	 * level interrupts.
596 	 */
597 	if (GRAPHICS_VERx100(xe) >= 1210) {
598 		for_each_tile(tile, xe, id)
599 			dg1_irq_reset_mstr(tile);
600 	}
601 }
602 
603 static void vf_irq_postinstall(struct xe_device *xe)
604 {
605 	struct xe_tile *tile;
606 	unsigned int id;
607 
608 	for_each_tile(tile, xe, id)
609 		if (xe_device_has_memirq(xe))
610 			xe_memirq_postinstall(&tile->sriov.vf.memirq);
611 
612 	if (GRAPHICS_VERx100(xe) < 1210)
613 		xelp_intr_enable(xe, true);
614 	else
615 		xe_assert(xe, xe_device_has_memirq(xe));
616 }
617 
618 static void xe_irq_postinstall(struct xe_device *xe)
619 {
620 	if (IS_SRIOV_VF(xe))
621 		return vf_irq_postinstall(xe);
622 
623 	xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe));
624 
625 	/*
626 	 * ASLE backlight operations are reported via GUnit GSE interrupts
627 	 * on the root tile.
628 	 */
629 	unmask_and_enable(xe_device_get_root_tile(xe),
630 			  GU_MISC_IRQ_OFFSET, GU_MISC_GSE);
631 
632 	/* Enable top-level interrupts */
633 	if (GRAPHICS_VERx100(xe) >= 1210)
634 		dg1_intr_enable(xe, true);
635 	else
636 		xelp_intr_enable(xe, true);
637 }
638 
639 static irqreturn_t vf_mem_irq_handler(int irq, void *arg)
640 {
641 	struct xe_device *xe = arg;
642 	struct xe_tile *tile;
643 	unsigned int id;
644 
645 	spin_lock(&xe->irq.lock);
646 	if (!xe->irq.enabled) {
647 		spin_unlock(&xe->irq.lock);
648 		return IRQ_NONE;
649 	}
650 	spin_unlock(&xe->irq.lock);
651 
652 	for_each_tile(tile, xe, id)
653 		xe_memirq_handler(&tile->sriov.vf.memirq);
654 
655 	return IRQ_HANDLED;
656 }
657 
658 static irq_handler_t xe_irq_handler(struct xe_device *xe)
659 {
660 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
661 		return vf_mem_irq_handler;
662 
663 	if (GRAPHICS_VERx100(xe) >= 1210)
664 		return dg1_irq_handler;
665 	else
666 		return xelp_irq_handler;
667 }
668 
669 static void irq_uninstall(void *arg)
670 {
671 	struct xe_device *xe = arg;
672 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
673 	int irq;
674 
675 	if (!xe->irq.enabled)
676 		return;
677 
678 	xe->irq.enabled = false;
679 	xe_irq_reset(xe);
680 
681 	irq = pci_irq_vector(pdev, 0);
682 	free_irq(irq, xe);
683 }
684 
685 int xe_irq_install(struct xe_device *xe)
686 {
687 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
688 	unsigned int irq_flags = PCI_IRQ_MSIX;
689 	irq_handler_t irq_handler;
690 	int err, irq, nvec;
691 
692 	irq_handler = xe_irq_handler(xe);
693 	if (!irq_handler) {
694 		drm_err(&xe->drm, "No supported interrupt handler");
695 		return -EINVAL;
696 	}
697 
698 	xe_irq_reset(xe);
699 
700 	nvec = pci_msix_vec_count(pdev);
701 	if (nvec <= 0) {
702 		if (nvec == -EINVAL) {
703 			/* MSIX capability is not supported in the device, using MSI */
704 			irq_flags = PCI_IRQ_MSI;
705 			nvec = 1;
706 		} else {
707 			drm_err(&xe->drm, "MSIX: Failed getting count\n");
708 			return nvec;
709 		}
710 	}
711 
712 	err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags);
713 	if (err < 0) {
714 		drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err);
715 		return err;
716 	}
717 
718 	irq = pci_irq_vector(pdev, 0);
719 	err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe);
720 	if (err < 0) {
721 		drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err);
722 		return err;
723 	}
724 
725 	xe->irq.enabled = true;
726 
727 	xe_irq_postinstall(xe);
728 
729 	err = devm_add_action_or_reset(xe->drm.dev, irq_uninstall, xe);
730 	if (err)
731 		goto free_irq_handler;
732 
733 	return 0;
734 
735 free_irq_handler:
736 	free_irq(irq, xe);
737 
738 	return err;
739 }
740 
741 void xe_irq_suspend(struct xe_device *xe)
742 {
743 	int irq = to_pci_dev(xe->drm.dev)->irq;
744 
745 	spin_lock_irq(&xe->irq.lock);
746 	xe->irq.enabled = false; /* no new irqs */
747 	spin_unlock_irq(&xe->irq.lock);
748 
749 	synchronize_irq(irq); /* flush irqs */
750 	xe_irq_reset(xe); /* turn irqs off */
751 }
752 
753 void xe_irq_resume(struct xe_device *xe)
754 {
755 	struct xe_gt *gt;
756 	int id;
757 
758 	/*
759 	 * lock not needed:
760 	 * 1. no irq will arrive before the postinstall
761 	 * 2. display is not yet resumed
762 	 */
763 	xe->irq.enabled = true;
764 	xe_irq_reset(xe);
765 	xe_irq_postinstall(xe); /* turn irqs on */
766 
767 	for_each_gt(gt, xe, id)
768 		xe_irq_enable_hwe(gt);
769 }
770