1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_irq.h" 7 8 #include <linux/sched/clock.h> 9 10 #include <drm/drm_managed.h> 11 12 #include "display/xe_display.h" 13 #include "regs/xe_irq_regs.h" 14 #include "xe_device.h" 15 #include "xe_drv.h" 16 #include "xe_gsc_proxy.h" 17 #include "xe_gt.h" 18 #include "xe_guc.h" 19 #include "xe_hw_engine.h" 20 #include "xe_memirq.h" 21 #include "xe_mmio.h" 22 #include "xe_sriov.h" 23 24 /* 25 * Interrupt registers for a unit are always consecutive and ordered 26 * ISR, IMR, IIR, IER. 27 */ 28 #define IMR(offset) XE_REG(offset + 0x4) 29 #define IIR(offset) XE_REG(offset + 0x8) 30 #define IER(offset) XE_REG(offset + 0xc) 31 32 static void assert_iir_is_zero(struct xe_mmio *mmio, struct xe_reg reg) 33 { 34 u32 val = xe_mmio_read32(mmio, reg); 35 36 if (val == 0) 37 return; 38 39 drm_WARN(&mmio->tile->xe->drm, 1, 40 "Interrupt register 0x%x is not zero: 0x%08x\n", 41 reg.addr, val); 42 xe_mmio_write32(mmio, reg, 0xffffffff); 43 xe_mmio_read32(mmio, reg); 44 xe_mmio_write32(mmio, reg, 0xffffffff); 45 xe_mmio_read32(mmio, reg); 46 } 47 48 /* 49 * Unmask and enable the specified interrupts. Does not check current state, 50 * so any bits not specified here will become masked and disabled. 51 */ 52 static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits) 53 { 54 struct xe_mmio *mmio = &tile->mmio; 55 56 /* 57 * If we're just enabling an interrupt now, it shouldn't already 58 * be raised in the IIR. 59 */ 60 assert_iir_is_zero(mmio, IIR(irqregs)); 61 62 xe_mmio_write32(mmio, IER(irqregs), bits); 63 xe_mmio_write32(mmio, IMR(irqregs), ~bits); 64 65 /* Posting read */ 66 xe_mmio_read32(mmio, IMR(irqregs)); 67 } 68 69 /* Mask and disable all interrupts. */ 70 static void mask_and_disable(struct xe_tile *tile, u32 irqregs) 71 { 72 struct xe_mmio *mmio = &tile->mmio; 73 74 xe_mmio_write32(mmio, IMR(irqregs), ~0); 75 /* Posting read */ 76 xe_mmio_read32(mmio, IMR(irqregs)); 77 78 xe_mmio_write32(mmio, IER(irqregs), 0); 79 80 /* IIR can theoretically queue up two events. Be paranoid. */ 81 xe_mmio_write32(mmio, IIR(irqregs), ~0); 82 xe_mmio_read32(mmio, IIR(irqregs)); 83 xe_mmio_write32(mmio, IIR(irqregs), ~0); 84 xe_mmio_read32(mmio, IIR(irqregs)); 85 } 86 87 static u32 xelp_intr_disable(struct xe_device *xe) 88 { 89 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 90 91 xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0); 92 93 /* 94 * Now with master disabled, get a sample of level indications 95 * for this interrupt. Indications will be cleared on related acks. 96 * New indications can and will light up during processing, 97 * and will generate new interrupt after enabling master. 98 */ 99 return xe_mmio_read32(mmio, GFX_MSTR_IRQ); 100 } 101 102 static u32 103 gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl) 104 { 105 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 106 u32 iir; 107 108 if (!(master_ctl & GU_MISC_IRQ)) 109 return 0; 110 111 iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET)); 112 if (likely(iir)) 113 xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir); 114 115 return iir; 116 } 117 118 static inline void xelp_intr_enable(struct xe_device *xe, bool stall) 119 { 120 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 121 122 xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ); 123 if (stall) 124 xe_mmio_read32(mmio, GFX_MSTR_IRQ); 125 } 126 127 /* Enable/unmask the HWE interrupts for a specific GT's engines. */ 128 void xe_irq_enable_hwe(struct xe_gt *gt) 129 { 130 struct xe_device *xe = gt_to_xe(gt); 131 struct xe_mmio *mmio = >->mmio; 132 u32 ccs_mask, bcs_mask; 133 u32 irqs, dmask, smask; 134 u32 gsc_mask = 0; 135 u32 heci_mask = 0; 136 137 if (xe_device_uses_memirq(xe)) 138 return; 139 140 if (xe_device_uc_enabled(xe)) { 141 irqs = GT_RENDER_USER_INTERRUPT | 142 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT; 143 } else { 144 irqs = GT_RENDER_USER_INTERRUPT | 145 GT_CS_MASTER_ERROR_INTERRUPT | 146 GT_CONTEXT_SWITCH_INTERRUPT | 147 GT_WAIT_SEMAPHORE_INTERRUPT; 148 } 149 150 ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE); 151 bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY); 152 153 dmask = irqs << 16 | irqs; 154 smask = irqs << 16; 155 156 if (!xe_gt_is_media_type(gt)) { 157 /* Enable interrupts for each engine class */ 158 xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, dmask); 159 if (ccs_mask) 160 xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, smask); 161 162 /* Unmask interrupts for each engine instance */ 163 xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~smask); 164 xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~smask); 165 if (bcs_mask & (BIT(1)|BIT(2))) 166 xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask); 167 if (bcs_mask & (BIT(3)|BIT(4))) 168 xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask); 169 if (bcs_mask & (BIT(5)|BIT(6))) 170 xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask); 171 if (bcs_mask & (BIT(7)|BIT(8))) 172 xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask); 173 if (ccs_mask & (BIT(0)|BIT(1))) 174 xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~dmask); 175 if (ccs_mask & (BIT(2)|BIT(3))) 176 xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~dmask); 177 } 178 179 if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) { 180 /* Enable interrupts for each engine class */ 181 xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, dmask); 182 183 /* Unmask interrupts for each engine instance */ 184 xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~dmask); 185 xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~dmask); 186 xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~dmask); 187 188 /* 189 * the heci2 interrupt is enabled via the same register as the 190 * GSCCS interrupts, but it has its own mask register. 191 */ 192 if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) { 193 gsc_mask = irqs | GSC_ER_COMPLETE; 194 heci_mask = GSC_IRQ_INTF(1); 195 } else if (HAS_HECI_GSCFI(xe)) { 196 gsc_mask = GSC_IRQ_INTF(1); 197 } 198 199 if (gsc_mask) { 200 xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask); 201 xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~gsc_mask); 202 } 203 if (heci_mask) 204 xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16)); 205 } 206 } 207 208 static u32 209 gt_engine_identity(struct xe_device *xe, 210 struct xe_mmio *mmio, 211 const unsigned int bank, 212 const unsigned int bit) 213 { 214 u32 timeout_ts; 215 u32 ident; 216 217 lockdep_assert_held(&xe->irq.lock); 218 219 xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit)); 220 221 /* 222 * NB: Specs do not specify how long to spin wait, 223 * so we do ~100us as an educated guess. 224 */ 225 timeout_ts = (local_clock() >> 10) + 100; 226 do { 227 ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank)); 228 } while (!(ident & INTR_DATA_VALID) && 229 !time_after32(local_clock() >> 10, timeout_ts)); 230 231 if (unlikely(!(ident & INTR_DATA_VALID))) { 232 drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", 233 bank, bit, ident); 234 return 0; 235 } 236 237 xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident); 238 239 return ident; 240 } 241 242 #define OTHER_MEDIA_GUC_INSTANCE 16 243 244 static void 245 gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir) 246 { 247 if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt)) 248 return xe_guc_irq_handler(>->uc.guc, iir); 249 if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt)) 250 return xe_guc_irq_handler(>->uc.guc, iir); 251 if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt)) 252 return xe_gsc_proxy_irq_handler(>->uc.gsc, iir); 253 254 if (instance != OTHER_GUC_INSTANCE && 255 instance != OTHER_MEDIA_GUC_INSTANCE) { 256 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", 257 instance, iir); 258 } 259 } 260 261 static struct xe_gt *pick_engine_gt(struct xe_tile *tile, 262 enum xe_engine_class class, 263 unsigned int instance) 264 { 265 struct xe_device *xe = tile_to_xe(tile); 266 267 if (MEDIA_VER(xe) < 13) 268 return tile->primary_gt; 269 270 switch (class) { 271 case XE_ENGINE_CLASS_VIDEO_DECODE: 272 case XE_ENGINE_CLASS_VIDEO_ENHANCE: 273 return tile->media_gt; 274 case XE_ENGINE_CLASS_OTHER: 275 switch (instance) { 276 case OTHER_MEDIA_GUC_INSTANCE: 277 case OTHER_GSC_INSTANCE: 278 case OTHER_GSC_HECI2_INSTANCE: 279 return tile->media_gt; 280 default: 281 break; 282 } 283 fallthrough; 284 default: 285 return tile->primary_gt; 286 } 287 } 288 289 static void gt_irq_handler(struct xe_tile *tile, 290 u32 master_ctl, unsigned long *intr_dw, 291 u32 *identity) 292 { 293 struct xe_device *xe = tile_to_xe(tile); 294 struct xe_mmio *mmio = &tile->mmio; 295 unsigned int bank, bit; 296 u16 instance, intr_vec; 297 enum xe_engine_class class; 298 struct xe_hw_engine *hwe; 299 300 spin_lock(&xe->irq.lock); 301 302 for (bank = 0; bank < 2; bank++) { 303 if (!(master_ctl & GT_DW_IRQ(bank))) 304 continue; 305 306 intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank)); 307 for_each_set_bit(bit, intr_dw + bank, 32) 308 identity[bit] = gt_engine_identity(xe, mmio, bank, bit); 309 xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]); 310 311 for_each_set_bit(bit, intr_dw + bank, 32) { 312 struct xe_gt *engine_gt; 313 314 class = INTR_ENGINE_CLASS(identity[bit]); 315 instance = INTR_ENGINE_INSTANCE(identity[bit]); 316 intr_vec = INTR_ENGINE_INTR(identity[bit]); 317 318 engine_gt = pick_engine_gt(tile, class, instance); 319 320 hwe = xe_gt_hw_engine(engine_gt, class, instance, false); 321 if (hwe) { 322 xe_hw_engine_handle_irq(hwe, intr_vec); 323 continue; 324 } 325 326 if (class == XE_ENGINE_CLASS_OTHER) { 327 /* HECI GSCFI interrupts come from outside of GT */ 328 if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE) 329 xe_heci_gsc_irq_handler(xe, intr_vec); 330 else 331 gt_other_irq_handler(engine_gt, instance, intr_vec); 332 } 333 } 334 } 335 336 spin_unlock(&xe->irq.lock); 337 } 338 339 /* 340 * Top-level interrupt handler for Xe_LP platforms (which did not have 341 * a "master tile" interrupt register. 342 */ 343 static irqreturn_t xelp_irq_handler(int irq, void *arg) 344 { 345 struct xe_device *xe = arg; 346 struct xe_tile *tile = xe_device_get_root_tile(xe); 347 u32 master_ctl, gu_misc_iir; 348 unsigned long intr_dw[2]; 349 u32 identity[32]; 350 351 spin_lock(&xe->irq.lock); 352 if (!xe->irq.enabled) { 353 spin_unlock(&xe->irq.lock); 354 return IRQ_NONE; 355 } 356 spin_unlock(&xe->irq.lock); 357 358 master_ctl = xelp_intr_disable(xe); 359 if (!master_ctl) { 360 xelp_intr_enable(xe, false); 361 return IRQ_NONE; 362 } 363 364 gt_irq_handler(tile, master_ctl, intr_dw, identity); 365 366 xe_display_irq_handler(xe, master_ctl); 367 368 gu_misc_iir = gu_misc_irq_ack(xe, master_ctl); 369 370 xelp_intr_enable(xe, false); 371 372 xe_display_irq_enable(xe, gu_misc_iir); 373 374 return IRQ_HANDLED; 375 } 376 377 static u32 dg1_intr_disable(struct xe_device *xe) 378 { 379 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 380 u32 val; 381 382 /* First disable interrupts */ 383 xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0); 384 385 /* Get the indication levels and ack the master unit */ 386 val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR); 387 if (unlikely(!val)) 388 return 0; 389 390 xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val); 391 392 return val; 393 } 394 395 static void dg1_intr_enable(struct xe_device *xe, bool stall) 396 { 397 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 398 399 xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ); 400 if (stall) 401 xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR); 402 } 403 404 /* 405 * Top-level interrupt handler for Xe_LP+ and beyond. These platforms have 406 * a "master tile" interrupt register which must be consulted before the 407 * "graphics master" interrupt register. 408 */ 409 static irqreturn_t dg1_irq_handler(int irq, void *arg) 410 { 411 struct xe_device *xe = arg; 412 struct xe_tile *tile; 413 u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0; 414 unsigned long intr_dw[2]; 415 u32 identity[32]; 416 u8 id; 417 418 /* TODO: This really shouldn't be copied+pasted */ 419 420 spin_lock(&xe->irq.lock); 421 if (!xe->irq.enabled) { 422 spin_unlock(&xe->irq.lock); 423 return IRQ_NONE; 424 } 425 spin_unlock(&xe->irq.lock); 426 427 master_tile_ctl = dg1_intr_disable(xe); 428 if (!master_tile_ctl) { 429 dg1_intr_enable(xe, false); 430 return IRQ_NONE; 431 } 432 433 for_each_tile(tile, xe, id) { 434 struct xe_mmio *mmio = &tile->mmio; 435 436 if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0) 437 continue; 438 439 master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ); 440 441 /* 442 * We might be in irq handler just when PCIe DPC is initiated 443 * and all MMIO reads will be returned with all 1's. Ignore this 444 * irq as device is inaccessible. 445 */ 446 if (master_ctl == REG_GENMASK(31, 0)) { 447 drm_dbg(&tile_to_xe(tile)->drm, 448 "Ignore this IRQ as device might be in DPC containment.\n"); 449 return IRQ_HANDLED; 450 } 451 452 xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl); 453 454 gt_irq_handler(tile, master_ctl, intr_dw, identity); 455 456 /* 457 * Display interrupts (including display backlight operations 458 * that get reported as Gunit GSE) would only be hooked up to 459 * the primary tile. 460 */ 461 if (id == 0) { 462 if (HAS_HECI_CSCFI(xe)) 463 xe_heci_csc_irq_handler(xe, master_ctl); 464 xe_display_irq_handler(xe, master_ctl); 465 gu_misc_iir = gu_misc_irq_ack(xe, master_ctl); 466 } 467 } 468 469 dg1_intr_enable(xe, false); 470 xe_display_irq_enable(xe, gu_misc_iir); 471 472 return IRQ_HANDLED; 473 } 474 475 static void gt_irq_reset(struct xe_tile *tile) 476 { 477 struct xe_mmio *mmio = &tile->mmio; 478 479 u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt, 480 XE_ENGINE_CLASS_COMPUTE); 481 u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt, 482 XE_ENGINE_CLASS_COPY); 483 484 /* Disable RCS, BCS, VCS and VECS class engines. */ 485 xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0); 486 xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0); 487 if (ccs_mask) 488 xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0); 489 490 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ 491 xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~0); 492 xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~0); 493 if (bcs_mask & (BIT(1)|BIT(2))) 494 xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0); 495 if (bcs_mask & (BIT(3)|BIT(4))) 496 xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0); 497 if (bcs_mask & (BIT(5)|BIT(6))) 498 xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0); 499 if (bcs_mask & (BIT(7)|BIT(8))) 500 xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0); 501 xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~0); 502 xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~0); 503 xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~0); 504 if (ccs_mask & (BIT(0)|BIT(1))) 505 xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0); 506 if (ccs_mask & (BIT(2)|BIT(3))) 507 xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~0); 508 509 if ((tile->media_gt && 510 xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) || 511 HAS_HECI_GSCFI(tile_to_xe(tile))) { 512 xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0); 513 xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0); 514 xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0); 515 } 516 517 xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0); 518 xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK, ~0); 519 xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE, 0); 520 xe_mmio_write32(mmio, GUC_SG_INTR_MASK, ~0); 521 } 522 523 static void xelp_irq_reset(struct xe_tile *tile) 524 { 525 xelp_intr_disable(tile_to_xe(tile)); 526 527 gt_irq_reset(tile); 528 529 if (IS_SRIOV_VF(tile_to_xe(tile))) 530 return; 531 532 mask_and_disable(tile, PCU_IRQ_OFFSET); 533 } 534 535 static void dg1_irq_reset(struct xe_tile *tile) 536 { 537 if (tile->id == 0) 538 dg1_intr_disable(tile_to_xe(tile)); 539 540 gt_irq_reset(tile); 541 542 if (IS_SRIOV_VF(tile_to_xe(tile))) 543 return; 544 545 mask_and_disable(tile, PCU_IRQ_OFFSET); 546 } 547 548 static void dg1_irq_reset_mstr(struct xe_tile *tile) 549 { 550 struct xe_mmio *mmio = &tile->mmio; 551 552 xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0); 553 } 554 555 static void vf_irq_reset(struct xe_device *xe) 556 { 557 struct xe_tile *tile; 558 unsigned int id; 559 560 xe_assert(xe, IS_SRIOV_VF(xe)); 561 562 if (GRAPHICS_VERx100(xe) < 1210) 563 xelp_intr_disable(xe); 564 else 565 xe_assert(xe, xe_device_has_memirq(xe)); 566 567 for_each_tile(tile, xe, id) { 568 if (xe_device_has_memirq(xe)) 569 xe_memirq_reset(&tile->memirq); 570 else 571 gt_irq_reset(tile); 572 } 573 } 574 575 static void xe_irq_reset(struct xe_device *xe) 576 { 577 struct xe_tile *tile; 578 u8 id; 579 580 if (IS_SRIOV_VF(xe)) 581 return vf_irq_reset(xe); 582 583 for_each_tile(tile, xe, id) { 584 if (GRAPHICS_VERx100(xe) >= 1210) 585 dg1_irq_reset(tile); 586 else 587 xelp_irq_reset(tile); 588 } 589 590 tile = xe_device_get_root_tile(xe); 591 mask_and_disable(tile, GU_MISC_IRQ_OFFSET); 592 xe_display_irq_reset(xe); 593 594 /* 595 * The tile's top-level status register should be the last one 596 * to be reset to avoid possible bit re-latching from lower 597 * level interrupts. 598 */ 599 if (GRAPHICS_VERx100(xe) >= 1210) { 600 for_each_tile(tile, xe, id) 601 dg1_irq_reset_mstr(tile); 602 } 603 } 604 605 static void vf_irq_postinstall(struct xe_device *xe) 606 { 607 struct xe_tile *tile; 608 unsigned int id; 609 610 for_each_tile(tile, xe, id) 611 if (xe_device_has_memirq(xe)) 612 xe_memirq_postinstall(&tile->memirq); 613 614 if (GRAPHICS_VERx100(xe) < 1210) 615 xelp_intr_enable(xe, true); 616 else 617 xe_assert(xe, xe_device_has_memirq(xe)); 618 } 619 620 static void xe_irq_postinstall(struct xe_device *xe) 621 { 622 if (IS_SRIOV_VF(xe)) 623 return vf_irq_postinstall(xe); 624 625 xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe)); 626 627 /* 628 * ASLE backlight operations are reported via GUnit GSE interrupts 629 * on the root tile. 630 */ 631 unmask_and_enable(xe_device_get_root_tile(xe), 632 GU_MISC_IRQ_OFFSET, GU_MISC_GSE); 633 634 /* Enable top-level interrupts */ 635 if (GRAPHICS_VERx100(xe) >= 1210) 636 dg1_intr_enable(xe, true); 637 else 638 xelp_intr_enable(xe, true); 639 } 640 641 static irqreturn_t vf_mem_irq_handler(int irq, void *arg) 642 { 643 struct xe_device *xe = arg; 644 struct xe_tile *tile; 645 unsigned int id; 646 647 spin_lock(&xe->irq.lock); 648 if (!xe->irq.enabled) { 649 spin_unlock(&xe->irq.lock); 650 return IRQ_NONE; 651 } 652 spin_unlock(&xe->irq.lock); 653 654 for_each_tile(tile, xe, id) 655 xe_memirq_handler(&tile->memirq); 656 657 return IRQ_HANDLED; 658 } 659 660 static irq_handler_t xe_irq_handler(struct xe_device *xe) 661 { 662 if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) 663 return vf_mem_irq_handler; 664 665 if (GRAPHICS_VERx100(xe) >= 1210) 666 return dg1_irq_handler; 667 else 668 return xelp_irq_handler; 669 } 670 671 static void irq_uninstall(void *arg) 672 { 673 struct xe_device *xe = arg; 674 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 675 int irq; 676 677 if (!xe->irq.enabled) 678 return; 679 680 xe->irq.enabled = false; 681 xe_irq_reset(xe); 682 683 irq = pci_irq_vector(pdev, 0); 684 free_irq(irq, xe); 685 } 686 687 int xe_irq_install(struct xe_device *xe) 688 { 689 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 690 unsigned int irq_flags = PCI_IRQ_MSIX; 691 irq_handler_t irq_handler; 692 int err, irq, nvec; 693 694 irq_handler = xe_irq_handler(xe); 695 if (!irq_handler) { 696 drm_err(&xe->drm, "No supported interrupt handler"); 697 return -EINVAL; 698 } 699 700 xe_irq_reset(xe); 701 702 nvec = pci_msix_vec_count(pdev); 703 if (nvec <= 0) { 704 if (nvec == -EINVAL) { 705 /* MSIX capability is not supported in the device, using MSI */ 706 irq_flags = PCI_IRQ_MSI; 707 nvec = 1; 708 } else { 709 drm_err(&xe->drm, "MSIX: Failed getting count\n"); 710 return nvec; 711 } 712 } 713 714 err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags); 715 if (err < 0) { 716 drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err); 717 return err; 718 } 719 720 irq = pci_irq_vector(pdev, 0); 721 err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe); 722 if (err < 0) { 723 drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err); 724 return err; 725 } 726 727 xe->irq.enabled = true; 728 729 xe_irq_postinstall(xe); 730 731 err = devm_add_action_or_reset(xe->drm.dev, irq_uninstall, xe); 732 if (err) 733 goto free_irq_handler; 734 735 return 0; 736 737 free_irq_handler: 738 free_irq(irq, xe); 739 740 return err; 741 } 742 743 void xe_irq_suspend(struct xe_device *xe) 744 { 745 int irq = to_pci_dev(xe->drm.dev)->irq; 746 747 spin_lock_irq(&xe->irq.lock); 748 xe->irq.enabled = false; /* no new irqs */ 749 spin_unlock_irq(&xe->irq.lock); 750 751 synchronize_irq(irq); /* flush irqs */ 752 xe_irq_reset(xe); /* turn irqs off */ 753 } 754 755 void xe_irq_resume(struct xe_device *xe) 756 { 757 struct xe_gt *gt; 758 int id; 759 760 /* 761 * lock not needed: 762 * 1. no irq will arrive before the postinstall 763 * 2. display is not yet resumed 764 */ 765 xe->irq.enabled = true; 766 xe_irq_reset(xe); 767 xe_irq_postinstall(xe); /* turn irqs on */ 768 769 for_each_gt(gt, xe, id) 770 xe_irq_enable_hwe(gt); 771 } 772