xref: /linux/drivers/gpu/drm/xe/xe_irq.c (revision 44343e8b250abb2f6bfd615493ca07a7f11f3cc2)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_irq.h"
7 
8 #include <linux/sched/clock.h>
9 
10 #include <drm/drm_managed.h>
11 
12 #include "display/xe_display.h"
13 #include "regs/xe_guc_regs.h"
14 #include "regs/xe_irq_regs.h"
15 #include "xe_device.h"
16 #include "xe_drv.h"
17 #include "xe_gsc_proxy.h"
18 #include "xe_gt.h"
19 #include "xe_guc.h"
20 #include "xe_hw_engine.h"
21 #include "xe_hw_error.h"
22 #include "xe_i2c.h"
23 #include "xe_memirq.h"
24 #include "xe_mmio.h"
25 #include "xe_pxp.h"
26 #include "xe_sriov.h"
27 #include "xe_tile.h"
28 
29 /*
30  * Interrupt registers for a unit are always consecutive and ordered
31  * ISR, IMR, IIR, IER.
32  */
33 #define IMR(offset)				XE_REG(offset + 0x4)
34 #define IIR(offset)				XE_REG(offset + 0x8)
35 #define IER(offset)				XE_REG(offset + 0xc)
36 
37 static int xe_irq_msix_init(struct xe_device *xe);
38 static void xe_irq_msix_free(struct xe_device *xe);
39 static int xe_irq_msix_request_irqs(struct xe_device *xe);
40 static void xe_irq_msix_synchronize_irq(struct xe_device *xe);
41 
42 static void assert_iir_is_zero(struct xe_mmio *mmio, struct xe_reg reg)
43 {
44 	u32 val = xe_mmio_read32(mmio, reg);
45 
46 	if (val == 0)
47 		return;
48 
49 	drm_WARN(&mmio->tile->xe->drm, 1,
50 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
51 		 reg.addr, val);
52 	xe_mmio_write32(mmio, reg, 0xffffffff);
53 	xe_mmio_read32(mmio, reg);
54 	xe_mmio_write32(mmio, reg, 0xffffffff);
55 	xe_mmio_read32(mmio, reg);
56 }
57 
58 /*
59  * Unmask and enable the specified interrupts.  Does not check current state,
60  * so any bits not specified here will become masked and disabled.
61  */
62 static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits)
63 {
64 	struct xe_mmio *mmio = &tile->mmio;
65 
66 	/*
67 	 * If we're just enabling an interrupt now, it shouldn't already
68 	 * be raised in the IIR.
69 	 */
70 	assert_iir_is_zero(mmio, IIR(irqregs));
71 
72 	xe_mmio_write32(mmio, IER(irqregs), bits);
73 	xe_mmio_write32(mmio, IMR(irqregs), ~bits);
74 
75 	/* Posting read */
76 	xe_mmio_read32(mmio, IMR(irqregs));
77 }
78 
79 /* Mask and disable all interrupts. */
80 static void mask_and_disable(struct xe_tile *tile, u32 irqregs)
81 {
82 	struct xe_mmio *mmio = &tile->mmio;
83 
84 	xe_mmio_write32(mmio, IMR(irqregs), ~0);
85 	/* Posting read */
86 	xe_mmio_read32(mmio, IMR(irqregs));
87 
88 	xe_mmio_write32(mmio, IER(irqregs), 0);
89 
90 	/* IIR can theoretically queue up two events. Be paranoid. */
91 	xe_mmio_write32(mmio, IIR(irqregs), ~0);
92 	xe_mmio_read32(mmio, IIR(irqregs));
93 	xe_mmio_write32(mmio, IIR(irqregs), ~0);
94 	xe_mmio_read32(mmio, IIR(irqregs));
95 }
96 
97 static u32 xelp_intr_disable(struct xe_device *xe)
98 {
99 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
100 
101 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0);
102 
103 	/*
104 	 * Now with master disabled, get a sample of level indications
105 	 * for this interrupt. Indications will be cleared on related acks.
106 	 * New indications can and will light up during processing,
107 	 * and will generate new interrupt after enabling master.
108 	 */
109 	return xe_mmio_read32(mmio, GFX_MSTR_IRQ);
110 }
111 
112 static u32
113 gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl)
114 {
115 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
116 	u32 iir;
117 
118 	if (!(master_ctl & GU_MISC_IRQ))
119 		return 0;
120 
121 	iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET));
122 	if (likely(iir))
123 		xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir);
124 
125 	return iir;
126 }
127 
128 static inline void xelp_intr_enable(struct xe_device *xe, bool stall)
129 {
130 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
131 
132 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ);
133 	if (stall)
134 		xe_mmio_read32(mmio, GFX_MSTR_IRQ);
135 }
136 
137 /* Enable/unmask the HWE interrupts for a specific GT's engines. */
138 void xe_irq_enable_hwe(struct xe_gt *gt)
139 {
140 	struct xe_device *xe = gt_to_xe(gt);
141 	struct xe_mmio *mmio = &gt->mmio;
142 	u32 ccs_mask, bcs_mask;
143 	u32 irqs, dmask, smask;
144 	u32 gsc_mask = 0;
145 	u32 heci_mask = 0;
146 
147 	if (xe_device_uses_memirq(xe))
148 		return;
149 
150 	if (xe_device_uc_enabled(xe)) {
151 		irqs = GT_RENDER_USER_INTERRUPT |
152 			GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
153 	} else {
154 		irqs = GT_RENDER_USER_INTERRUPT |
155 		       GT_CS_MASTER_ERROR_INTERRUPT |
156 		       GT_CONTEXT_SWITCH_INTERRUPT |
157 		       GT_WAIT_SEMAPHORE_INTERRUPT;
158 	}
159 
160 	ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE);
161 	bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY);
162 
163 	dmask = irqs << 16 | irqs;
164 	smask = irqs << 16;
165 
166 	if (xe_gt_is_main_type(gt)) {
167 		/* Enable interrupts for each engine class */
168 		xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, dmask);
169 		if (ccs_mask)
170 			xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, smask);
171 
172 		/* Unmask interrupts for each engine instance */
173 		xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~smask);
174 		xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~smask);
175 		if (bcs_mask & (BIT(1)|BIT(2)))
176 			xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask);
177 		if (bcs_mask & (BIT(3)|BIT(4)))
178 			xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask);
179 		if (bcs_mask & (BIT(5)|BIT(6)))
180 			xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask);
181 		if (bcs_mask & (BIT(7)|BIT(8)))
182 			xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask);
183 		if (ccs_mask & (BIT(0)|BIT(1)))
184 			xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~dmask);
185 		if (ccs_mask & (BIT(2)|BIT(3)))
186 			xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~dmask);
187 	}
188 
189 	if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) {
190 		/* Enable interrupts for each engine class */
191 		xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, dmask);
192 
193 		/* Unmask interrupts for each engine instance */
194 		xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~dmask);
195 		xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~dmask);
196 		xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~dmask);
197 
198 		/*
199 		 * the heci2 interrupt is enabled via the same register as the
200 		 * GSCCS interrupts, but it has its own mask register.
201 		 */
202 		if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) {
203 			gsc_mask = irqs | GSC_ER_COMPLETE;
204 			heci_mask = GSC_IRQ_INTF(1);
205 		} else if (xe->info.has_heci_gscfi) {
206 			gsc_mask = GSC_IRQ_INTF(1);
207 		}
208 
209 		if (gsc_mask) {
210 			xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask);
211 			xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~gsc_mask);
212 		}
213 		if (heci_mask)
214 			xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16));
215 
216 		if (xe_pxp_is_supported(xe)) {
217 			u32 kcr_mask = KCR_PXP_STATE_TERMINATED_INTERRUPT |
218 				       KCR_APP_TERMINATED_PER_FW_REQ_INTERRUPT |
219 				       KCR_PXP_STATE_RESET_COMPLETE_INTERRUPT;
220 
221 			xe_mmio_write32(mmio, CRYPTO_RSVD_INTR_ENABLE, kcr_mask << 16);
222 			xe_mmio_write32(mmio, CRYPTO_RSVD_INTR_MASK, ~(kcr_mask << 16));
223 		}
224 	}
225 }
226 
227 static u32
228 gt_engine_identity(struct xe_device *xe,
229 		   struct xe_mmio *mmio,
230 		   const unsigned int bank,
231 		   const unsigned int bit)
232 {
233 	u32 timeout_ts;
234 	u32 ident;
235 
236 	lockdep_assert_held(&xe->irq.lock);
237 
238 	xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit));
239 
240 	/*
241 	 * NB: Specs do not specify how long to spin wait,
242 	 * so we do ~100us as an educated guess.
243 	 */
244 	timeout_ts = (local_clock() >> 10) + 100;
245 	do {
246 		ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank));
247 	} while (!(ident & INTR_DATA_VALID) &&
248 		 !time_after32(local_clock() >> 10, timeout_ts));
249 
250 	if (unlikely(!(ident & INTR_DATA_VALID))) {
251 		drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
252 			bank, bit, ident);
253 		return 0;
254 	}
255 
256 	xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident);
257 
258 	return ident;
259 }
260 
261 #define   OTHER_MEDIA_GUC_INSTANCE           16
262 
263 static void
264 gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir)
265 {
266 	if (instance == OTHER_GUC_INSTANCE && xe_gt_is_main_type(gt))
267 		return xe_guc_irq_handler(&gt->uc.guc, iir);
268 	if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt))
269 		return xe_guc_irq_handler(&gt->uc.guc, iir);
270 	if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt))
271 		return xe_gsc_proxy_irq_handler(&gt->uc.gsc, iir);
272 
273 	if (instance != OTHER_GUC_INSTANCE &&
274 	    instance != OTHER_MEDIA_GUC_INSTANCE) {
275 		WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
276 			  instance, iir);
277 	}
278 }
279 
280 static struct xe_gt *pick_engine_gt(struct xe_tile *tile,
281 				    enum xe_engine_class class,
282 				    unsigned int instance)
283 {
284 	struct xe_device *xe = tile_to_xe(tile);
285 
286 	if (MEDIA_VER(xe) < 13)
287 		return tile->primary_gt;
288 
289 	switch (class) {
290 	case XE_ENGINE_CLASS_VIDEO_DECODE:
291 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
292 		return tile->media_gt;
293 	case XE_ENGINE_CLASS_OTHER:
294 		switch (instance) {
295 		case OTHER_MEDIA_GUC_INSTANCE:
296 		case OTHER_GSC_INSTANCE:
297 		case OTHER_GSC_HECI2_INSTANCE:
298 			return tile->media_gt;
299 		default:
300 			break;
301 		}
302 		fallthrough;
303 	default:
304 		return tile->primary_gt;
305 	}
306 }
307 
308 static void gt_irq_handler(struct xe_tile *tile,
309 			   u32 master_ctl, unsigned long *intr_dw,
310 			   u32 *identity)
311 {
312 	struct xe_device *xe = tile_to_xe(tile);
313 	struct xe_mmio *mmio = &tile->mmio;
314 	unsigned int bank, bit;
315 	u16 instance, intr_vec;
316 	enum xe_engine_class class;
317 	struct xe_hw_engine *hwe;
318 
319 	spin_lock(&xe->irq.lock);
320 
321 	for (bank = 0; bank < 2; bank++) {
322 		if (!(master_ctl & GT_DW_IRQ(bank)))
323 			continue;
324 
325 		intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank));
326 		for_each_set_bit(bit, intr_dw + bank, 32)
327 			identity[bit] = gt_engine_identity(xe, mmio, bank, bit);
328 		xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]);
329 
330 		for_each_set_bit(bit, intr_dw + bank, 32) {
331 			struct xe_gt *engine_gt;
332 
333 			class = INTR_ENGINE_CLASS(identity[bit]);
334 			instance = INTR_ENGINE_INSTANCE(identity[bit]);
335 			intr_vec = INTR_ENGINE_INTR(identity[bit]);
336 
337 			engine_gt = pick_engine_gt(tile, class, instance);
338 
339 			hwe = xe_gt_hw_engine(engine_gt, class, instance, false);
340 			if (hwe) {
341 				xe_hw_engine_handle_irq(hwe, intr_vec);
342 				continue;
343 			}
344 
345 			if (class == XE_ENGINE_CLASS_OTHER) {
346 				/*
347 				 * HECI GSCFI interrupts come from outside of GT.
348 				 * KCR irqs come from inside GT but are handled
349 				 * by the global PXP subsystem.
350 				 */
351 				if (xe->info.has_heci_gscfi && instance == OTHER_GSC_INSTANCE)
352 					xe_heci_gsc_irq_handler(xe, intr_vec);
353 				else if (instance == OTHER_KCR_INSTANCE)
354 					xe_pxp_irq_handler(xe, intr_vec);
355 				else
356 					gt_other_irq_handler(engine_gt, instance, intr_vec);
357 			}
358 		}
359 	}
360 
361 	spin_unlock(&xe->irq.lock);
362 }
363 
364 /*
365  * Top-level interrupt handler for Xe_LP platforms (which did not have
366  * a "master tile" interrupt register.
367  */
368 static irqreturn_t xelp_irq_handler(int irq, void *arg)
369 {
370 	struct xe_device *xe = arg;
371 	struct xe_tile *tile = xe_device_get_root_tile(xe);
372 	u32 master_ctl, gu_misc_iir;
373 	unsigned long intr_dw[2];
374 	u32 identity[32];
375 
376 	if (!atomic_read(&xe->irq.enabled))
377 		return IRQ_NONE;
378 
379 	master_ctl = xelp_intr_disable(xe);
380 	if (!master_ctl) {
381 		xelp_intr_enable(xe, false);
382 		return IRQ_NONE;
383 	}
384 
385 	gt_irq_handler(tile, master_ctl, intr_dw, identity);
386 
387 	xe_display_irq_handler(xe, master_ctl);
388 
389 	gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
390 
391 	xelp_intr_enable(xe, false);
392 
393 	xe_display_irq_enable(xe, gu_misc_iir);
394 
395 	return IRQ_HANDLED;
396 }
397 
398 static u32 dg1_intr_disable(struct xe_device *xe)
399 {
400 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
401 	u32 val;
402 
403 	/* First disable interrupts */
404 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0);
405 
406 	/* Get the indication levels and ack the master unit */
407 	val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
408 	if (unlikely(!val))
409 		return 0;
410 
411 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val);
412 
413 	return val;
414 }
415 
416 static void dg1_intr_enable(struct xe_device *xe, bool stall)
417 {
418 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
419 
420 	xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
421 	if (stall)
422 		xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
423 }
424 
425 /*
426  * Top-level interrupt handler for Xe_LP+ and beyond.  These platforms have
427  * a "master tile" interrupt register which must be consulted before the
428  * "graphics master" interrupt register.
429  */
430 static irqreturn_t dg1_irq_handler(int irq, void *arg)
431 {
432 	struct xe_device *xe = arg;
433 	struct xe_tile *tile;
434 	u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0;
435 	unsigned long intr_dw[2];
436 	u32 identity[32];
437 	u8 id;
438 
439 	/* TODO: This really shouldn't be copied+pasted */
440 
441 	if (!atomic_read(&xe->irq.enabled))
442 		return IRQ_NONE;
443 
444 	master_tile_ctl = dg1_intr_disable(xe);
445 	if (!master_tile_ctl) {
446 		dg1_intr_enable(xe, false);
447 		return IRQ_NONE;
448 	}
449 
450 	for_each_tile(tile, xe, id) {
451 		struct xe_mmio *mmio = &tile->mmio;
452 
453 		if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0)
454 			continue;
455 
456 		master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ);
457 
458 		/*
459 		 * We might be in irq handler just when PCIe DPC is initiated
460 		 * and all MMIO reads will be returned with all 1's. Ignore this
461 		 * irq as device is inaccessible.
462 		 */
463 		if (master_ctl == REG_GENMASK(31, 0)) {
464 			drm_dbg(&tile_to_xe(tile)->drm,
465 				"Ignore this IRQ as device might be in DPC containment.\n");
466 			return IRQ_HANDLED;
467 		}
468 
469 		xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl);
470 
471 		gt_irq_handler(tile, master_ctl, intr_dw, identity);
472 		xe_hw_error_irq_handler(tile, master_ctl);
473 
474 		/*
475 		 * Display interrupts (including display backlight operations
476 		 * that get reported as Gunit GSE) would only be hooked up to
477 		 * the primary tile.
478 		 */
479 		if (id == 0) {
480 			if (xe->info.has_heci_cscfi)
481 				xe_heci_csc_irq_handler(xe, master_ctl);
482 			xe_display_irq_handler(xe, master_ctl);
483 			xe_i2c_irq_handler(xe, master_ctl);
484 			gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
485 		}
486 	}
487 
488 	dg1_intr_enable(xe, false);
489 	xe_display_irq_enable(xe, gu_misc_iir);
490 
491 	return IRQ_HANDLED;
492 }
493 
494 static void gt_irq_reset(struct xe_tile *tile)
495 {
496 	struct xe_mmio *mmio = &tile->mmio;
497 
498 	u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
499 						   XE_ENGINE_CLASS_COMPUTE);
500 	u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
501 						   XE_ENGINE_CLASS_COPY);
502 
503 	/* Disable RCS, BCS, VCS and VECS class engines. */
504 	xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0);
505 	xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0);
506 	if (ccs_mask)
507 		xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0);
508 
509 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
510 	xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK,	~0);
511 	xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK,	~0);
512 	if (bcs_mask & (BIT(1)|BIT(2)))
513 		xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0);
514 	if (bcs_mask & (BIT(3)|BIT(4)))
515 		xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0);
516 	if (bcs_mask & (BIT(5)|BIT(6)))
517 		xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0);
518 	if (bcs_mask & (BIT(7)|BIT(8)))
519 		xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0);
520 	xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK,	~0);
521 	xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK,	~0);
522 	xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK,	~0);
523 	if (ccs_mask & (BIT(0)|BIT(1)))
524 		xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0);
525 	if (ccs_mask & (BIT(2)|BIT(3)))
526 		xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~0);
527 
528 	if ((tile->media_gt &&
529 	     xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) ||
530 	    tile_to_xe(tile)->info.has_heci_gscfi) {
531 		xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0);
532 		xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0);
533 		xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0);
534 		xe_mmio_write32(mmio, CRYPTO_RSVD_INTR_ENABLE, 0);
535 		xe_mmio_write32(mmio, CRYPTO_RSVD_INTR_MASK, ~0);
536 	}
537 
538 	xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0);
539 	xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK,  ~0);
540 	xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE,	 0);
541 	xe_mmio_write32(mmio, GUC_SG_INTR_MASK,		~0);
542 }
543 
544 static void xelp_irq_reset(struct xe_tile *tile)
545 {
546 	xelp_intr_disable(tile_to_xe(tile));
547 
548 	gt_irq_reset(tile);
549 
550 	if (IS_SRIOV_VF(tile_to_xe(tile)))
551 		return;
552 
553 	mask_and_disable(tile, PCU_IRQ_OFFSET);
554 }
555 
556 static void dg1_irq_reset(struct xe_tile *tile)
557 {
558 	if (xe_tile_is_root(tile))
559 		dg1_intr_disable(tile_to_xe(tile));
560 
561 	gt_irq_reset(tile);
562 
563 	if (IS_SRIOV_VF(tile_to_xe(tile)))
564 		return;
565 
566 	mask_and_disable(tile, PCU_IRQ_OFFSET);
567 }
568 
569 static void dg1_irq_reset_mstr(struct xe_tile *tile)
570 {
571 	struct xe_mmio *mmio = &tile->mmio;
572 
573 	xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0);
574 }
575 
576 static void vf_irq_reset(struct xe_device *xe)
577 {
578 	struct xe_tile *tile;
579 	unsigned int id;
580 
581 	xe_assert(xe, IS_SRIOV_VF(xe));
582 
583 	if (GRAPHICS_VERx100(xe) < 1210)
584 		xelp_intr_disable(xe);
585 	else
586 		xe_assert(xe, xe_device_has_memirq(xe));
587 
588 	for_each_tile(tile, xe, id) {
589 		if (xe_device_has_memirq(xe))
590 			xe_memirq_reset(&tile->memirq);
591 		else
592 			gt_irq_reset(tile);
593 	}
594 }
595 
596 static void xe_irq_reset(struct xe_device *xe)
597 {
598 	struct xe_tile *tile;
599 	u8 id;
600 
601 	if (IS_SRIOV_VF(xe))
602 		return vf_irq_reset(xe);
603 
604 	if (xe_device_uses_memirq(xe)) {
605 		for_each_tile(tile, xe, id)
606 			xe_memirq_reset(&tile->memirq);
607 	}
608 
609 	for_each_tile(tile, xe, id) {
610 		if (GRAPHICS_VERx100(xe) >= 1210)
611 			dg1_irq_reset(tile);
612 		else
613 			xelp_irq_reset(tile);
614 	}
615 
616 	tile = xe_device_get_root_tile(xe);
617 	mask_and_disable(tile, GU_MISC_IRQ_OFFSET);
618 	xe_display_irq_reset(xe);
619 
620 	/*
621 	 * The tile's top-level status register should be the last one
622 	 * to be reset to avoid possible bit re-latching from lower
623 	 * level interrupts.
624 	 */
625 	if (GRAPHICS_VERx100(xe) >= 1210) {
626 		for_each_tile(tile, xe, id)
627 			dg1_irq_reset_mstr(tile);
628 	}
629 }
630 
631 static void vf_irq_postinstall(struct xe_device *xe)
632 {
633 	struct xe_tile *tile;
634 	unsigned int id;
635 
636 	for_each_tile(tile, xe, id)
637 		if (xe_device_has_memirq(xe))
638 			xe_memirq_postinstall(&tile->memirq);
639 
640 	if (GRAPHICS_VERx100(xe) < 1210)
641 		xelp_intr_enable(xe, true);
642 	else
643 		xe_assert(xe, xe_device_has_memirq(xe));
644 }
645 
646 static void xe_irq_postinstall(struct xe_device *xe)
647 {
648 	if (IS_SRIOV_VF(xe))
649 		return vf_irq_postinstall(xe);
650 
651 	if (xe_device_uses_memirq(xe)) {
652 		struct xe_tile *tile;
653 		unsigned int id;
654 
655 		for_each_tile(tile, xe, id)
656 			xe_memirq_postinstall(&tile->memirq);
657 	}
658 
659 	xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe));
660 
661 	/*
662 	 * ASLE backlight operations are reported via GUnit GSE interrupts
663 	 * on the root tile.
664 	 */
665 	unmask_and_enable(xe_device_get_root_tile(xe),
666 			  GU_MISC_IRQ_OFFSET, GU_MISC_GSE);
667 
668 	/* Enable top-level interrupts */
669 	if (GRAPHICS_VERx100(xe) >= 1210)
670 		dg1_intr_enable(xe, true);
671 	else
672 		xelp_intr_enable(xe, true);
673 }
674 
675 static irqreturn_t vf_mem_irq_handler(int irq, void *arg)
676 {
677 	struct xe_device *xe = arg;
678 	struct xe_tile *tile;
679 	unsigned int id;
680 
681 	if (!atomic_read(&xe->irq.enabled))
682 		return IRQ_NONE;
683 
684 	for_each_tile(tile, xe, id)
685 		xe_memirq_handler(&tile->memirq);
686 
687 	return IRQ_HANDLED;
688 }
689 
690 static irq_handler_t xe_irq_handler(struct xe_device *xe)
691 {
692 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
693 		return vf_mem_irq_handler;
694 
695 	if (GRAPHICS_VERx100(xe) >= 1210)
696 		return dg1_irq_handler;
697 	else
698 		return xelp_irq_handler;
699 }
700 
701 static int xe_irq_msi_request_irqs(struct xe_device *xe)
702 {
703 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
704 	irq_handler_t irq_handler;
705 	int irq, err;
706 
707 	irq_handler = xe_irq_handler(xe);
708 	if (!irq_handler) {
709 		drm_err(&xe->drm, "No supported interrupt handler");
710 		return -EINVAL;
711 	}
712 
713 	irq = pci_irq_vector(pdev, 0);
714 	err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe);
715 	if (err < 0) {
716 		drm_err(&xe->drm, "Failed to request MSI IRQ %d\n", err);
717 		return err;
718 	}
719 
720 	return 0;
721 }
722 
723 static void xe_irq_msi_free(struct xe_device *xe)
724 {
725 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
726 	int irq;
727 
728 	irq = pci_irq_vector(pdev, 0);
729 	free_irq(irq, xe);
730 }
731 
732 static void irq_uninstall(void *arg)
733 {
734 	struct xe_device *xe = arg;
735 
736 	if (!atomic_xchg(&xe->irq.enabled, 0))
737 		return;
738 
739 	xe_irq_reset(xe);
740 
741 	if (xe_device_has_msix(xe))
742 		xe_irq_msix_free(xe);
743 	else
744 		xe_irq_msi_free(xe);
745 }
746 
747 int xe_irq_init(struct xe_device *xe)
748 {
749 	spin_lock_init(&xe->irq.lock);
750 
751 	return xe_irq_msix_init(xe);
752 }
753 
754 int xe_irq_install(struct xe_device *xe)
755 {
756 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
757 	unsigned int irq_flags = PCI_IRQ_MSI;
758 	int nvec = 1;
759 	int err;
760 
761 	xe_hw_error_init(xe);
762 
763 	xe_irq_reset(xe);
764 
765 	if (xe_device_has_msix(xe)) {
766 		nvec = xe->irq.msix.nvec;
767 		irq_flags = PCI_IRQ_MSIX;
768 	}
769 
770 	err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags);
771 	if (err < 0) {
772 		drm_err(&xe->drm, "Failed to allocate IRQ vectors: %d\n", err);
773 		return err;
774 	}
775 
776 	err = xe_device_has_msix(xe) ? xe_irq_msix_request_irqs(xe) :
777 					xe_irq_msi_request_irqs(xe);
778 	if (err)
779 		return err;
780 
781 	atomic_set(&xe->irq.enabled, 1);
782 
783 	xe_irq_postinstall(xe);
784 
785 	return devm_add_action_or_reset(xe->drm.dev, irq_uninstall, xe);
786 }
787 
788 static void xe_irq_msi_synchronize_irq(struct xe_device *xe)
789 {
790 	synchronize_irq(to_pci_dev(xe->drm.dev)->irq);
791 }
792 
793 void xe_irq_suspend(struct xe_device *xe)
794 {
795 	atomic_set(&xe->irq.enabled, 0); /* no new irqs */
796 
797 	/* flush irqs */
798 	if (xe_device_has_msix(xe))
799 		xe_irq_msix_synchronize_irq(xe);
800 	else
801 		xe_irq_msi_synchronize_irq(xe);
802 	xe_irq_reset(xe); /* turn irqs off */
803 }
804 
805 void xe_irq_resume(struct xe_device *xe)
806 {
807 	struct xe_gt *gt;
808 	int id;
809 
810 	/*
811 	 * lock not needed:
812 	 * 1. no irq will arrive before the postinstall
813 	 * 2. display is not yet resumed
814 	 */
815 	atomic_set(&xe->irq.enabled, 1);
816 	xe_irq_reset(xe);
817 	xe_irq_postinstall(xe); /* turn irqs on */
818 
819 	for_each_gt(gt, xe, id)
820 		xe_irq_enable_hwe(gt);
821 }
822 
823 /* MSI-X related definitions and functions below. */
824 
825 enum xe_irq_msix_static {
826 	GUC2HOST_MSIX = 0,
827 	DEFAULT_MSIX = XE_IRQ_DEFAULT_MSIX,
828 	/* Must be last */
829 	NUM_OF_STATIC_MSIX,
830 };
831 
832 static int xe_irq_msix_init(struct xe_device *xe)
833 {
834 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
835 	int nvec = pci_msix_vec_count(pdev);
836 
837 	if (nvec == -EINVAL)
838 		return 0;  /* MSI */
839 
840 	if (nvec < 0) {
841 		drm_err(&xe->drm, "Failed getting MSI-X vectors count: %d\n", nvec);
842 		return nvec;
843 	}
844 
845 	xe->irq.msix.nvec = nvec;
846 	xa_init_flags(&xe->irq.msix.indexes, XA_FLAGS_ALLOC);
847 	return 0;
848 }
849 
850 static irqreturn_t guc2host_irq_handler(int irq, void *arg)
851 {
852 	struct xe_device *xe = arg;
853 	struct xe_tile *tile;
854 	u8 id;
855 
856 	if (!atomic_read(&xe->irq.enabled))
857 		return IRQ_NONE;
858 
859 	for_each_tile(tile, xe, id)
860 		xe_guc_irq_handler(&tile->primary_gt->uc.guc,
861 				   GUC_INTR_GUC2HOST);
862 
863 	return IRQ_HANDLED;
864 }
865 
866 static irqreturn_t xe_irq_msix_default_hwe_handler(int irq, void *arg)
867 {
868 	unsigned int tile_id, gt_id;
869 	struct xe_device *xe = arg;
870 	struct xe_memirq *memirq;
871 	struct xe_hw_engine *hwe;
872 	enum xe_hw_engine_id id;
873 	struct xe_tile *tile;
874 	struct xe_gt *gt;
875 
876 	if (!atomic_read(&xe->irq.enabled))
877 		return IRQ_NONE;
878 
879 	for_each_tile(tile, xe, tile_id) {
880 		memirq = &tile->memirq;
881 		if (!memirq->bo)
882 			continue;
883 
884 		for_each_gt(gt, xe, gt_id) {
885 			if (gt->tile != tile)
886 				continue;
887 
888 			for_each_hw_engine(hwe, gt, id)
889 				xe_memirq_hwe_handler(memirq, hwe);
890 		}
891 	}
892 
893 	return IRQ_HANDLED;
894 }
895 
896 static int xe_irq_msix_alloc_vector(struct xe_device *xe, void *irq_buf,
897 				    bool dynamic_msix, u16 *msix)
898 {
899 	struct xa_limit limit;
900 	int ret;
901 	u32 id;
902 
903 	limit = (dynamic_msix) ? XA_LIMIT(NUM_OF_STATIC_MSIX, xe->irq.msix.nvec - 1) :
904 				 XA_LIMIT(*msix, *msix);
905 	ret = xa_alloc(&xe->irq.msix.indexes, &id, irq_buf, limit, GFP_KERNEL);
906 	if (ret)
907 		return ret;
908 
909 	if (dynamic_msix)
910 		*msix = id;
911 
912 	return 0;
913 }
914 
915 static void xe_irq_msix_release_vector(struct xe_device *xe, u16 msix)
916 {
917 	xa_erase(&xe->irq.msix.indexes, msix);
918 }
919 
920 static int xe_irq_msix_request_irq_internal(struct xe_device *xe, irq_handler_t handler,
921 					    void *irq_buf, const char *name, u16 msix)
922 {
923 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
924 	int ret, irq;
925 
926 	irq = pci_irq_vector(pdev, msix);
927 	if (irq < 0)
928 		return irq;
929 
930 	ret = request_irq(irq, handler, IRQF_SHARED, name, irq_buf);
931 	if (ret < 0)
932 		return ret;
933 
934 	return 0;
935 }
936 
937 int xe_irq_msix_request_irq(struct xe_device *xe, irq_handler_t handler, void *irq_buf,
938 			    const char *name, bool dynamic_msix, u16 *msix)
939 {
940 	int ret;
941 
942 	ret = xe_irq_msix_alloc_vector(xe, irq_buf, dynamic_msix, msix);
943 	if (ret)
944 		return ret;
945 
946 	ret = xe_irq_msix_request_irq_internal(xe, handler, irq_buf, name, *msix);
947 	if (ret) {
948 		drm_err(&xe->drm, "Failed to request IRQ for MSI-X %u\n", *msix);
949 		xe_irq_msix_release_vector(xe, *msix);
950 		return ret;
951 	}
952 
953 	return 0;
954 }
955 
956 void xe_irq_msix_free_irq(struct xe_device *xe, u16 msix)
957 {
958 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
959 	int irq;
960 	void *irq_buf;
961 
962 	irq_buf = xa_load(&xe->irq.msix.indexes, msix);
963 	if (!irq_buf)
964 		return;
965 
966 	irq = pci_irq_vector(pdev, msix);
967 	if (irq < 0) {
968 		drm_err(&xe->drm, "MSI-X %u can't be released, there is no matching IRQ\n", msix);
969 		return;
970 	}
971 
972 	free_irq(irq, irq_buf);
973 	xe_irq_msix_release_vector(xe, msix);
974 }
975 
976 int xe_irq_msix_request_irqs(struct xe_device *xe)
977 {
978 	int err;
979 	u16 msix;
980 
981 	msix = GUC2HOST_MSIX;
982 	err = xe_irq_msix_request_irq(xe, guc2host_irq_handler, xe,
983 				      DRIVER_NAME "-guc2host", false, &msix);
984 	if (err)
985 		return err;
986 
987 	msix = DEFAULT_MSIX;
988 	err = xe_irq_msix_request_irq(xe, xe_irq_msix_default_hwe_handler, xe,
989 				      DRIVER_NAME "-default-msix", false, &msix);
990 	if (err) {
991 		xe_irq_msix_free_irq(xe, GUC2HOST_MSIX);
992 		return err;
993 	}
994 
995 	return 0;
996 }
997 
998 void xe_irq_msix_free(struct xe_device *xe)
999 {
1000 	unsigned long msix;
1001 	u32 *dummy;
1002 
1003 	xa_for_each(&xe->irq.msix.indexes, msix, dummy)
1004 		xe_irq_msix_free_irq(xe, msix);
1005 	xa_destroy(&xe->irq.msix.indexes);
1006 }
1007 
1008 void xe_irq_msix_synchronize_irq(struct xe_device *xe)
1009 {
1010 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
1011 	unsigned long msix;
1012 	u32 *dummy;
1013 
1014 	xa_for_each(&xe->irq.msix.indexes, msix, dummy)
1015 		synchronize_irq(pci_irq_vector(pdev, msix));
1016 }
1017