xref: /linux/drivers/gpu/drm/xe/xe_hwmon.c (revision e846be0fba85603d2ad6fc8db6810958d7b6bed1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/hwmon.h>
8 #include <linux/types.h>
9 
10 #include <drm/drm_managed.h>
11 #include "regs/xe_gt_regs.h"
12 #include "regs/xe_mchbar_regs.h"
13 #include "regs/xe_pcode_regs.h"
14 #include "xe_device.h"
15 #include "xe_gt.h"
16 #include "xe_hwmon.h"
17 #include "xe_mmio.h"
18 #include "xe_pcode.h"
19 #include "xe_pcode_api.h"
20 #include "xe_sriov.h"
21 #include "xe_pm.h"
22 
23 enum xe_hwmon_reg {
24 	REG_PKG_RAPL_LIMIT,
25 	REG_PKG_POWER_SKU,
26 	REG_PKG_POWER_SKU_UNIT,
27 	REG_GT_PERF_STATUS,
28 	REG_PKG_ENERGY_STATUS,
29 };
30 
31 enum xe_hwmon_reg_operation {
32 	REG_READ32,
33 	REG_RMW32,
34 	REG_READ64,
35 };
36 
37 enum xe_hwmon_channel {
38 	CHANNEL_CARD,
39 	CHANNEL_PKG,
40 	CHANNEL_MAX,
41 };
42 
43 /*
44  * SF_* - scale factors for particular quantities according to hwmon spec.
45  */
46 #define SF_POWER	1000000		/* microwatts */
47 #define SF_CURR		1000		/* milliamperes */
48 #define SF_VOLTAGE	1000		/* millivolts */
49 #define SF_ENERGY	1000000		/* microjoules */
50 #define SF_TIME		1000		/* milliseconds */
51 
52 /**
53  * struct xe_hwmon_energy_info - to accumulate energy
54  */
55 struct xe_hwmon_energy_info {
56 	/** @reg_val_prev: previous energy reg val */
57 	u32 reg_val_prev;
58 	/** @accum_energy: accumulated energy */
59 	long accum_energy;
60 };
61 
62 /**
63  * struct xe_hwmon - xe hwmon data structure
64  */
65 struct xe_hwmon {
66 	/** @hwmon_dev: hwmon device for xe */
67 	struct device *hwmon_dev;
68 	/** @gt: primary gt */
69 	struct xe_gt *gt;
70 	/** @hwmon_lock: lock for rw attributes*/
71 	struct mutex hwmon_lock;
72 	/** @scl_shift_power: pkg power unit */
73 	int scl_shift_power;
74 	/** @scl_shift_energy: pkg energy unit */
75 	int scl_shift_energy;
76 	/** @scl_shift_time: pkg time unit */
77 	int scl_shift_time;
78 	/** @ei: Energy info for energyN_input */
79 	struct xe_hwmon_energy_info ei[CHANNEL_MAX];
80 };
81 
82 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
83 				      int channel)
84 {
85 	struct xe_device *xe = gt_to_xe(hwmon->gt);
86 
87 	switch (hwmon_reg) {
88 	case REG_PKG_RAPL_LIMIT:
89 		if (xe->info.platform == XE_BATTLEMAGE) {
90 			if (channel == CHANNEL_PKG)
91 				return BMG_PACKAGE_RAPL_LIMIT;
92 			else
93 				return BMG_PLATFORM_POWER_LIMIT;
94 		} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
95 			return PVC_GT0_PACKAGE_RAPL_LIMIT;
96 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
97 			return PCU_CR_PACKAGE_RAPL_LIMIT;
98 		}
99 		break;
100 	case REG_PKG_POWER_SKU:
101 		if (xe->info.platform == XE_BATTLEMAGE)
102 			return BMG_PACKAGE_POWER_SKU;
103 		else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
104 			return PVC_GT0_PACKAGE_POWER_SKU;
105 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
106 			return PCU_CR_PACKAGE_POWER_SKU;
107 		break;
108 	case REG_PKG_POWER_SKU_UNIT:
109 		if (xe->info.platform == XE_BATTLEMAGE)
110 			return BMG_PACKAGE_POWER_SKU_UNIT;
111 		else if (xe->info.platform == XE_PVC)
112 			return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
113 		else if (xe->info.platform == XE_DG2)
114 			return PCU_CR_PACKAGE_POWER_SKU_UNIT;
115 		break;
116 	case REG_GT_PERF_STATUS:
117 		if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
118 			return GT_PERF_STATUS;
119 		break;
120 	case REG_PKG_ENERGY_STATUS:
121 		if (xe->info.platform == XE_BATTLEMAGE) {
122 			if (channel == CHANNEL_PKG)
123 				return BMG_PACKAGE_ENERGY_STATUS;
124 			else
125 				return BMG_PLATFORM_ENERGY_STATUS;
126 		} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
127 			return PVC_GT0_PLATFORM_ENERGY_STATUS;
128 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
129 			return PCU_CR_PACKAGE_ENERGY_STATUS;
130 		}
131 		break;
132 	default:
133 		drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
134 		break;
135 	}
136 
137 	return XE_REG(0);
138 }
139 
140 #define PL1_DISABLE 0
141 
142 /*
143  * HW allows arbitrary PL1 limits to be set but silently clamps these values to
144  * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
145  * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
146  * clamped values when read.
147  */
148 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, int channel, long *value)
149 {
150 	u64 reg_val, min, max;
151 	struct xe_device *xe = gt_to_xe(hwmon->gt);
152 	struct xe_reg rapl_limit, pkg_power_sku;
153 
154 	rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
155 	pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
156 
157 	/*
158 	 * Valid check of REG_PKG_RAPL_LIMIT is already done in xe_hwmon_power_is_visible.
159 	 * So not checking it again here.
160 	 */
161 	if (!xe_reg_is_valid(pkg_power_sku)) {
162 		drm_warn(&xe->drm, "pkg_power_sku invalid\n");
163 		*value = 0;
164 		return;
165 	}
166 
167 	mutex_lock(&hwmon->hwmon_lock);
168 
169 	reg_val = xe_mmio_read32(hwmon->gt, rapl_limit);
170 	/* Check if PL1 limit is disabled */
171 	if (!(reg_val & PKG_PWR_LIM_1_EN)) {
172 		*value = PL1_DISABLE;
173 		goto unlock;
174 	}
175 
176 	reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val);
177 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
178 
179 	reg_val = xe_mmio_read64_2x32(hwmon->gt, pkg_power_sku);
180 	min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
181 	min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
182 	max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
183 	max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
184 
185 	if (min && max)
186 		*value = clamp_t(u64, *value, min, max);
187 unlock:
188 	mutex_unlock(&hwmon->hwmon_lock);
189 }
190 
191 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, int channel, long value)
192 {
193 	int ret = 0;
194 	u64 reg_val;
195 	struct xe_reg rapl_limit;
196 
197 	rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
198 
199 	mutex_lock(&hwmon->hwmon_lock);
200 
201 	/* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */
202 	if (value == PL1_DISABLE) {
203 		reg_val = xe_mmio_rmw32(hwmon->gt, rapl_limit, PKG_PWR_LIM_1_EN, 0);
204 		reg_val = xe_mmio_read32(hwmon->gt, rapl_limit);
205 		if (reg_val & PKG_PWR_LIM_1_EN) {
206 			drm_warn(&gt_to_xe(hwmon->gt)->drm, "PL1 disable is not supported!\n");
207 			ret = -EOPNOTSUPP;
208 		}
209 		goto unlock;
210 	}
211 
212 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
213 	reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
214 	reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val);
215 	reg_val = xe_mmio_rmw32(hwmon->gt, rapl_limit, PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val);
216 
217 unlock:
218 	mutex_unlock(&hwmon->hwmon_lock);
219 	return ret;
220 }
221 
222 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, int channel, long *value)
223 {
224 	struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
225 	u64 reg_val;
226 
227 	/*
228 	 * This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
229 	 * for this register can be skipped.
230 	 * See xe_hwmon_power_is_visible.
231 	 */
232 	reg_val = xe_mmio_read32(hwmon->gt, reg);
233 	reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
234 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
235 }
236 
237 /*
238  * xe_hwmon_energy_get - Obtain energy value
239  *
240  * The underlying energy hardware register is 32-bits and is subject to
241  * overflow. How long before overflow? For example, with an example
242  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
243  * a power draw of 1000 watts, the 32-bit counter will overflow in
244  * approximately 4.36 minutes.
245  *
246  * Examples:
247  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
248  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
249  *
250  * The function significantly increases overflow duration (from 4.36
251  * minutes) by accumulating the energy register into a 'long' as allowed by
252  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
253  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
254  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
255  * energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
256  */
257 static void
258 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
259 {
260 	struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
261 	u64 reg_val;
262 
263 	reg_val = xe_mmio_read32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
264 							     channel));
265 
266 	if (reg_val >= ei->reg_val_prev)
267 		ei->accum_energy += reg_val - ei->reg_val_prev;
268 	else
269 		ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
270 
271 	ei->reg_val_prev = reg_val;
272 
273 	*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
274 				  hwmon->scl_shift_energy);
275 }
276 
277 static ssize_t
278 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
279 				 char *buf)
280 {
281 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
282 	u32 x, y, x_w = 2; /* 2 bits */
283 	u64 r, tau4, out;
284 	int sensor_index = to_sensor_dev_attr(attr)->index;
285 
286 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
287 
288 	mutex_lock(&hwmon->hwmon_lock);
289 
290 	r = xe_mmio_read32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index));
291 
292 	mutex_unlock(&hwmon->hwmon_lock);
293 
294 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
295 
296 	x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
297 	y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
298 
299 	/*
300 	 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
301 	 *     = (4 | x) << (y - 2)
302 	 *
303 	 * Here (y - 2) ensures a 1.x fixed point representation of 1.x
304 	 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
305 	 *
306 	 * As y can be < 2, we compute tau4 = (4 | x) << y
307 	 * and then add 2 when doing the final right shift to account for units
308 	 */
309 	tau4 = (u64)((1 << x_w) | x) << y;
310 
311 	/* val in hwmon interface units (millisec) */
312 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
313 
314 	return sysfs_emit(buf, "%llu\n", out);
315 }
316 
317 static ssize_t
318 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
319 				  const char *buf, size_t count)
320 {
321 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
322 	u32 x, y, rxy, x_w = 2; /* 2 bits */
323 	u64 tau4, r, max_win;
324 	unsigned long val;
325 	int ret;
326 	int sensor_index = to_sensor_dev_attr(attr)->index;
327 
328 	ret = kstrtoul(buf, 0, &val);
329 	if (ret)
330 		return ret;
331 
332 	/*
333 	 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12.
334 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
335 	 *
336 	 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
337 	 * However, it is observed that existing discrete GPUs does not provide correct
338 	 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
339 	 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
340 	 */
341 #define PKG_MAX_WIN_DEFAULT 0x12ull
342 
343 	/*
344 	 * val must be < max in hwmon interface units. The steps below are
345 	 * explained in xe_hwmon_power_max_interval_show()
346 	 */
347 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
348 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
349 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
350 	tau4 = (u64)((1 << x_w) | x) << y;
351 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
352 
353 	if (val > max_win)
354 		return -EINVAL;
355 
356 	/* val in hw units */
357 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
358 
359 	/*
360 	 * Convert val to 1.x * power(2,y)
361 	 * y = ilog2(val)
362 	 * x = (val - (1 << y)) >> (y - 2)
363 	 */
364 	if (!val) {
365 		y = 0;
366 		x = 0;
367 	} else {
368 		y = ilog2(val);
369 		x = (val - (1ul << y)) << x_w >> y;
370 	}
371 
372 	rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
373 
374 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
375 
376 	mutex_lock(&hwmon->hwmon_lock);
377 
378 	r = xe_mmio_rmw32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index),
379 			  PKG_PWR_LIM_1_TIME, rxy);
380 
381 	mutex_unlock(&hwmon->hwmon_lock);
382 
383 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
384 
385 	return count;
386 }
387 
388 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
389 			  xe_hwmon_power_max_interval_show,
390 			  xe_hwmon_power_max_interval_store, CHANNEL_CARD);
391 
392 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
393 			  xe_hwmon_power_max_interval_show,
394 			  xe_hwmon_power_max_interval_store, CHANNEL_PKG);
395 
396 static struct attribute *hwmon_attributes[] = {
397 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
398 	&sensor_dev_attr_power2_max_interval.dev_attr.attr,
399 	NULL
400 };
401 
402 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
403 					   struct attribute *attr, int index)
404 {
405 	struct device *dev = kobj_to_dev(kobj);
406 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
407 	int ret = 0;
408 
409 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
410 
411 	ret = xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, index)) ? attr->mode : 0;
412 
413 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
414 
415 	return ret;
416 }
417 
418 static const struct attribute_group hwmon_attrgroup = {
419 	.attrs = hwmon_attributes,
420 	.is_visible = xe_hwmon_attributes_visible,
421 };
422 
423 static const struct attribute_group *hwmon_groups[] = {
424 	&hwmon_attrgroup,
425 	NULL
426 };
427 
428 static const struct hwmon_channel_info * const hwmon_info[] = {
429 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL,
430 			   HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT | HWMON_P_LABEL),
431 	HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
432 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
433 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
434 	NULL
435 };
436 
437 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
438 static int xe_hwmon_pcode_read_i1(struct xe_gt *gt, u32 *uval)
439 {
440 	/* Avoid Illegal Subcommand error */
441 	if (gt_to_xe(gt)->info.platform == XE_DG2)
442 		return -ENXIO;
443 
444 	return xe_pcode_read(gt, PCODE_MBOX(PCODE_POWER_SETUP,
445 			     POWER_SETUP_SUBCOMMAND_READ_I1, 0),
446 			     uval, NULL);
447 }
448 
449 static int xe_hwmon_pcode_write_i1(struct xe_gt *gt, u32 uval)
450 {
451 	return xe_pcode_write(gt, PCODE_MBOX(PCODE_POWER_SETUP,
452 			      POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
453 			      uval);
454 }
455 
456 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
457 					 long *value, u32 scale_factor)
458 {
459 	int ret;
460 	u32 uval;
461 
462 	mutex_lock(&hwmon->hwmon_lock);
463 
464 	ret = xe_hwmon_pcode_read_i1(hwmon->gt, &uval);
465 	if (ret)
466 		goto unlock;
467 
468 	*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
469 				 scale_factor, POWER_SETUP_I1_SHIFT);
470 unlock:
471 	mutex_unlock(&hwmon->hwmon_lock);
472 	return ret;
473 }
474 
475 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
476 					  long value, u32 scale_factor)
477 {
478 	int ret;
479 	u32 uval;
480 
481 	mutex_lock(&hwmon->hwmon_lock);
482 
483 	uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
484 	ret = xe_hwmon_pcode_write_i1(hwmon->gt, uval);
485 
486 	mutex_unlock(&hwmon->hwmon_lock);
487 	return ret;
488 }
489 
490 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
491 {
492 	u64 reg_val;
493 
494 	reg_val = xe_mmio_read32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
495 	/* HW register value in units of 2.5 millivolt */
496 	*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
497 }
498 
499 static umode_t
500 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
501 {
502 	u32 uval;
503 
504 	switch (attr) {
505 	case hwmon_power_max:
506 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT,
507 				       channel)) ? 0664 : 0;
508 	case hwmon_power_rated_max:
509 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU,
510 				       channel)) ? 0444 : 0;
511 	case hwmon_power_crit:
512 		if (channel == CHANNEL_PKG)
513 			return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
514 				!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
515 		break;
516 	case hwmon_power_label:
517 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT,
518 				       channel)) ? 0444 : 0;
519 	default:
520 		return 0;
521 	}
522 	return 0;
523 }
524 
525 static int
526 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
527 {
528 	switch (attr) {
529 	case hwmon_power_max:
530 		xe_hwmon_power_max_read(hwmon, channel, val);
531 		return 0;
532 	case hwmon_power_rated_max:
533 		xe_hwmon_power_rated_max_read(hwmon, channel, val);
534 		return 0;
535 	case hwmon_power_crit:
536 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
537 	default:
538 		return -EOPNOTSUPP;
539 	}
540 }
541 
542 static int
543 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
544 {
545 	switch (attr) {
546 	case hwmon_power_max:
547 		return xe_hwmon_power_max_write(hwmon, channel, val);
548 	case hwmon_power_crit:
549 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
550 	default:
551 		return -EOPNOTSUPP;
552 	}
553 }
554 
555 static umode_t
556 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
557 {
558 	u32 uval;
559 
560 	/* hwmon sysfs attribute of current available only for package */
561 	if (channel != CHANNEL_PKG)
562 		return 0;
563 
564 	switch (attr) {
565 	case hwmon_curr_crit:
566 			return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
567 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
568 	case hwmon_curr_label:
569 			return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
570 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
571 		break;
572 	default:
573 		return 0;
574 	}
575 	return 0;
576 }
577 
578 static int
579 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
580 {
581 	switch (attr) {
582 	case hwmon_curr_crit:
583 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
584 	default:
585 		return -EOPNOTSUPP;
586 	}
587 }
588 
589 static int
590 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
591 {
592 	switch (attr) {
593 	case hwmon_curr_crit:
594 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
595 	default:
596 		return -EOPNOTSUPP;
597 	}
598 }
599 
600 static umode_t
601 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
602 {
603 	switch (attr) {
604 	case hwmon_in_input:
605 	case hwmon_in_label:
606 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
607 				       channel)) ? 0444 : 0;
608 	default:
609 		return 0;
610 	}
611 }
612 
613 static int
614 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
615 {
616 	switch (attr) {
617 	case hwmon_in_input:
618 		xe_hwmon_get_voltage(hwmon, channel, val);
619 		return 0;
620 	default:
621 		return -EOPNOTSUPP;
622 	}
623 }
624 
625 static umode_t
626 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
627 {
628 	switch (attr) {
629 	case hwmon_energy_input:
630 	case hwmon_energy_label:
631 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
632 				       channel)) ? 0444 : 0;
633 	default:
634 		return 0;
635 	}
636 }
637 
638 static int
639 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
640 {
641 	switch (attr) {
642 	case hwmon_energy_input:
643 		xe_hwmon_energy_get(hwmon, channel, val);
644 		return 0;
645 	default:
646 		return -EOPNOTSUPP;
647 	}
648 }
649 
650 static umode_t
651 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
652 		    u32 attr, int channel)
653 {
654 	struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
655 	int ret;
656 
657 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
658 
659 	switch (type) {
660 	case hwmon_power:
661 		ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
662 		break;
663 	case hwmon_curr:
664 		ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
665 		break;
666 	case hwmon_in:
667 		ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
668 		break;
669 	case hwmon_energy:
670 		ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
671 		break;
672 	default:
673 		ret = 0;
674 		break;
675 	}
676 
677 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
678 
679 	return ret;
680 }
681 
682 static int
683 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
684 	      int channel, long *val)
685 {
686 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
687 	int ret;
688 
689 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
690 
691 	switch (type) {
692 	case hwmon_power:
693 		ret = xe_hwmon_power_read(hwmon, attr, channel, val);
694 		break;
695 	case hwmon_curr:
696 		ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
697 		break;
698 	case hwmon_in:
699 		ret = xe_hwmon_in_read(hwmon, attr, channel, val);
700 		break;
701 	case hwmon_energy:
702 		ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
703 		break;
704 	default:
705 		ret = -EOPNOTSUPP;
706 		break;
707 	}
708 
709 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
710 
711 	return ret;
712 }
713 
714 static int
715 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
716 	       int channel, long val)
717 {
718 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
719 	int ret;
720 
721 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
722 
723 	switch (type) {
724 	case hwmon_power:
725 		ret = xe_hwmon_power_write(hwmon, attr, channel, val);
726 		break;
727 	case hwmon_curr:
728 		ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
729 		break;
730 	default:
731 		ret = -EOPNOTSUPP;
732 		break;
733 	}
734 
735 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
736 
737 	return ret;
738 }
739 
740 static int xe_hwmon_read_label(struct device *dev,
741 			       enum hwmon_sensor_types type,
742 			       u32 attr, int channel, const char **str)
743 {
744 	switch (type) {
745 	case hwmon_power:
746 	case hwmon_energy:
747 	case hwmon_curr:
748 	case hwmon_in:
749 		if (channel == CHANNEL_CARD)
750 			*str = "card";
751 		else if (channel == CHANNEL_PKG)
752 			*str = "pkg";
753 		return 0;
754 	default:
755 		return -EOPNOTSUPP;
756 	}
757 }
758 
759 static const struct hwmon_ops hwmon_ops = {
760 	.is_visible = xe_hwmon_is_visible,
761 	.read = xe_hwmon_read,
762 	.write = xe_hwmon_write,
763 	.read_string = xe_hwmon_read_label,
764 };
765 
766 static const struct hwmon_chip_info hwmon_chip_info = {
767 	.ops = &hwmon_ops,
768 	.info = hwmon_info,
769 };
770 
771 static void
772 xe_hwmon_get_preregistration_info(struct xe_device *xe)
773 {
774 	struct xe_hwmon *hwmon = xe->hwmon;
775 	long energy;
776 	u64 val_sku_unit = 0;
777 	int channel;
778 	struct xe_reg pkg_power_sku_unit;
779 
780 	/*
781 	 * The contents of register PKG_POWER_SKU_UNIT do not change,
782 	 * so read it once and store the shift values.
783 	 */
784 	pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
785 	if (xe_reg_is_valid(pkg_power_sku_unit)) {
786 		val_sku_unit = xe_mmio_read32(hwmon->gt, pkg_power_sku_unit);
787 		hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
788 		hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
789 		hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
790 	}
791 
792 	/*
793 	 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
794 	 * first value of the energy register read
795 	 */
796 	for (channel = 0; channel < CHANNEL_MAX; channel++)
797 		if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
798 			xe_hwmon_energy_get(hwmon, channel, &energy);
799 }
800 
801 static void xe_hwmon_mutex_destroy(void *arg)
802 {
803 	struct xe_hwmon *hwmon = arg;
804 
805 	mutex_destroy(&hwmon->hwmon_lock);
806 }
807 
808 void xe_hwmon_register(struct xe_device *xe)
809 {
810 	struct device *dev = xe->drm.dev;
811 	struct xe_hwmon *hwmon;
812 
813 	/* hwmon is available only for dGfx */
814 	if (!IS_DGFX(xe))
815 		return;
816 
817 	/* hwmon is not available on VFs */
818 	if (IS_SRIOV_VF(xe))
819 		return;
820 
821 	hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
822 	if (!hwmon)
823 		return;
824 
825 	xe->hwmon = hwmon;
826 
827 	mutex_init(&hwmon->hwmon_lock);
828 	if (devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon))
829 		return;
830 
831 	/* primary GT to access device level properties */
832 	hwmon->gt = xe->tiles[0].primary_gt;
833 
834 	xe_hwmon_get_preregistration_info(xe);
835 
836 	drm_dbg(&xe->drm, "Register xe hwmon interface\n");
837 
838 	/*  hwmon_dev points to device hwmon<i> */
839 	hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
840 								&hwmon_chip_info,
841 								hwmon_groups);
842 
843 	if (IS_ERR(hwmon->hwmon_dev)) {
844 		drm_warn(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
845 		xe->hwmon = NULL;
846 		return;
847 	}
848 }
849 
850