1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include <linux/hwmon-sysfs.h> 7 #include <linux/hwmon.h> 8 #include <linux/types.h> 9 #include <linux/units.h> 10 11 #include <drm/drm_managed.h> 12 #include "regs/xe_gt_regs.h" 13 #include "regs/xe_mchbar_regs.h" 14 #include "regs/xe_pcode_regs.h" 15 #include "xe_device.h" 16 #include "xe_hwmon.h" 17 #include "xe_mmio.h" 18 #include "xe_pcode.h" 19 #include "xe_pcode_api.h" 20 #include "xe_sriov.h" 21 #include "xe_pm.h" 22 23 enum xe_hwmon_reg { 24 REG_TEMP, 25 REG_PKG_RAPL_LIMIT, 26 REG_PKG_POWER_SKU, 27 REG_PKG_POWER_SKU_UNIT, 28 REG_GT_PERF_STATUS, 29 REG_PKG_ENERGY_STATUS, 30 }; 31 32 enum xe_hwmon_reg_operation { 33 REG_READ32, 34 REG_RMW32, 35 REG_READ64, 36 }; 37 38 enum xe_hwmon_channel { 39 CHANNEL_CARD, 40 CHANNEL_PKG, 41 CHANNEL_VRAM, 42 CHANNEL_MAX, 43 }; 44 45 /* 46 * SF_* - scale factors for particular quantities according to hwmon spec. 47 */ 48 #define SF_POWER 1000000 /* microwatts */ 49 #define SF_CURR 1000 /* milliamperes */ 50 #define SF_VOLTAGE 1000 /* millivolts */ 51 #define SF_ENERGY 1000000 /* microjoules */ 52 #define SF_TIME 1000 /* milliseconds */ 53 54 /** 55 * struct xe_hwmon_energy_info - to accumulate energy 56 */ 57 struct xe_hwmon_energy_info { 58 /** @reg_val_prev: previous energy reg val */ 59 u32 reg_val_prev; 60 /** @accum_energy: accumulated energy */ 61 long accum_energy; 62 }; 63 64 /** 65 * struct xe_hwmon - xe hwmon data structure 66 */ 67 struct xe_hwmon { 68 /** @hwmon_dev: hwmon device for xe */ 69 struct device *hwmon_dev; 70 /** @xe: Xe device */ 71 struct xe_device *xe; 72 /** @hwmon_lock: lock for rw attributes*/ 73 struct mutex hwmon_lock; 74 /** @scl_shift_power: pkg power unit */ 75 int scl_shift_power; 76 /** @scl_shift_energy: pkg energy unit */ 77 int scl_shift_energy; 78 /** @scl_shift_time: pkg time unit */ 79 int scl_shift_time; 80 /** @ei: Energy info for energyN_input */ 81 struct xe_hwmon_energy_info ei[CHANNEL_MAX]; 82 }; 83 84 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg, 85 int channel) 86 { 87 struct xe_device *xe = hwmon->xe; 88 89 switch (hwmon_reg) { 90 case REG_TEMP: 91 if (xe->info.platform == XE_BATTLEMAGE) { 92 if (channel == CHANNEL_PKG) 93 return BMG_PACKAGE_TEMPERATURE; 94 else if (channel == CHANNEL_VRAM) 95 return BMG_VRAM_TEMPERATURE; 96 } else if (xe->info.platform == XE_DG2) { 97 if (channel == CHANNEL_PKG) 98 return PCU_CR_PACKAGE_TEMPERATURE; 99 else if (channel == CHANNEL_VRAM) 100 return BMG_VRAM_TEMPERATURE; 101 } 102 break; 103 case REG_PKG_RAPL_LIMIT: 104 if (xe->info.platform == XE_BATTLEMAGE) { 105 if (channel == CHANNEL_PKG) 106 return BMG_PACKAGE_RAPL_LIMIT; 107 else 108 return BMG_PLATFORM_POWER_LIMIT; 109 } else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) { 110 return PVC_GT0_PACKAGE_RAPL_LIMIT; 111 } else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) { 112 return PCU_CR_PACKAGE_RAPL_LIMIT; 113 } 114 break; 115 case REG_PKG_POWER_SKU: 116 if (xe->info.platform == XE_BATTLEMAGE) 117 return BMG_PACKAGE_POWER_SKU; 118 else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) 119 return PVC_GT0_PACKAGE_POWER_SKU; 120 else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) 121 return PCU_CR_PACKAGE_POWER_SKU; 122 break; 123 case REG_PKG_POWER_SKU_UNIT: 124 if (xe->info.platform == XE_BATTLEMAGE) 125 return BMG_PACKAGE_POWER_SKU_UNIT; 126 else if (xe->info.platform == XE_PVC) 127 return PVC_GT0_PACKAGE_POWER_SKU_UNIT; 128 else if (xe->info.platform == XE_DG2) 129 return PCU_CR_PACKAGE_POWER_SKU_UNIT; 130 break; 131 case REG_GT_PERF_STATUS: 132 if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG) 133 return GT_PERF_STATUS; 134 break; 135 case REG_PKG_ENERGY_STATUS: 136 if (xe->info.platform == XE_BATTLEMAGE) { 137 if (channel == CHANNEL_PKG) 138 return BMG_PACKAGE_ENERGY_STATUS; 139 else 140 return BMG_PLATFORM_ENERGY_STATUS; 141 } else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) { 142 return PVC_GT0_PLATFORM_ENERGY_STATUS; 143 } else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) { 144 return PCU_CR_PACKAGE_ENERGY_STATUS; 145 } 146 break; 147 default: 148 drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg); 149 break; 150 } 151 152 return XE_REG(0); 153 } 154 155 #define PL1_DISABLE 0 156 157 /* 158 * HW allows arbitrary PL1 limits to be set but silently clamps these values to 159 * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the 160 * same pattern for sysfs, allow arbitrary PL1 limits to be set but display 161 * clamped values when read. 162 */ 163 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, int channel, long *value) 164 { 165 u64 reg_val, min, max; 166 struct xe_device *xe = hwmon->xe; 167 struct xe_reg rapl_limit, pkg_power_sku; 168 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 169 170 rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel); 171 pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel); 172 173 /* 174 * Valid check of REG_PKG_RAPL_LIMIT is already done in xe_hwmon_power_is_visible. 175 * So not checking it again here. 176 */ 177 if (!xe_reg_is_valid(pkg_power_sku)) { 178 drm_warn(&xe->drm, "pkg_power_sku invalid\n"); 179 *value = 0; 180 return; 181 } 182 183 mutex_lock(&hwmon->hwmon_lock); 184 185 reg_val = xe_mmio_read32(mmio, rapl_limit); 186 /* Check if PL1 limit is disabled */ 187 if (!(reg_val & PKG_PWR_LIM_1_EN)) { 188 *value = PL1_DISABLE; 189 goto unlock; 190 } 191 192 reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val); 193 *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); 194 195 reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku); 196 min = REG_FIELD_GET(PKG_MIN_PWR, reg_val); 197 min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power); 198 max = REG_FIELD_GET(PKG_MAX_PWR, reg_val); 199 max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power); 200 201 if (min && max) 202 *value = clamp_t(u64, *value, min, max); 203 unlock: 204 mutex_unlock(&hwmon->hwmon_lock); 205 } 206 207 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, int channel, long value) 208 { 209 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 210 int ret = 0; 211 u64 reg_val; 212 struct xe_reg rapl_limit; 213 214 rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel); 215 216 mutex_lock(&hwmon->hwmon_lock); 217 218 /* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */ 219 if (value == PL1_DISABLE) { 220 reg_val = xe_mmio_rmw32(mmio, rapl_limit, PKG_PWR_LIM_1_EN, 0); 221 reg_val = xe_mmio_read32(mmio, rapl_limit); 222 if (reg_val & PKG_PWR_LIM_1_EN) { 223 drm_warn(&hwmon->xe->drm, "PL1 disable is not supported!\n"); 224 ret = -EOPNOTSUPP; 225 } 226 goto unlock; 227 } 228 229 /* Computation in 64-bits to avoid overflow. Round to nearest. */ 230 reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER); 231 reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val); 232 reg_val = xe_mmio_rmw32(mmio, rapl_limit, PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val); 233 234 unlock: 235 mutex_unlock(&hwmon->hwmon_lock); 236 return ret; 237 } 238 239 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, int channel, long *value) 240 { 241 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 242 struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel); 243 u64 reg_val; 244 245 /* 246 * This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check 247 * for this register can be skipped. 248 * See xe_hwmon_power_is_visible. 249 */ 250 reg_val = xe_mmio_read32(mmio, reg); 251 reg_val = REG_FIELD_GET(PKG_TDP, reg_val); 252 *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); 253 } 254 255 /* 256 * xe_hwmon_energy_get - Obtain energy value 257 * 258 * The underlying energy hardware register is 32-bits and is subject to 259 * overflow. How long before overflow? For example, with an example 260 * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and 261 * a power draw of 1000 watts, the 32-bit counter will overflow in 262 * approximately 4.36 minutes. 263 * 264 * Examples: 265 * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days 266 * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes 267 * 268 * The function significantly increases overflow duration (from 4.36 269 * minutes) by accumulating the energy register into a 'long' as allowed by 270 * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()), 271 * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and 272 * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before 273 * energyN_input overflows. This at 1000 W is an overflow duration of 278 years. 274 */ 275 static void 276 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy) 277 { 278 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 279 struct xe_hwmon_energy_info *ei = &hwmon->ei[channel]; 280 u64 reg_val; 281 282 reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS, 283 channel)); 284 285 if (reg_val >= ei->reg_val_prev) 286 ei->accum_energy += reg_val - ei->reg_val_prev; 287 else 288 ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val; 289 290 ei->reg_val_prev = reg_val; 291 292 *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY, 293 hwmon->scl_shift_energy); 294 } 295 296 static ssize_t 297 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr, 298 char *buf) 299 { 300 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 301 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 302 u32 x, y, x_w = 2; /* 2 bits */ 303 u64 r, tau4, out; 304 int sensor_index = to_sensor_dev_attr(attr)->index; 305 306 xe_pm_runtime_get(hwmon->xe); 307 308 mutex_lock(&hwmon->hwmon_lock); 309 310 r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index)); 311 312 mutex_unlock(&hwmon->hwmon_lock); 313 314 xe_pm_runtime_put(hwmon->xe); 315 316 x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r); 317 y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r); 318 319 /* 320 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17) 321 * = (4 | x) << (y - 2) 322 * 323 * Here (y - 2) ensures a 1.x fixed point representation of 1.x 324 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75 325 * 326 * As y can be < 2, we compute tau4 = (4 | x) << y 327 * and then add 2 when doing the final right shift to account for units 328 */ 329 tau4 = (u64)((1 << x_w) | x) << y; 330 331 /* val in hwmon interface units (millisec) */ 332 out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); 333 334 return sysfs_emit(buf, "%llu\n", out); 335 } 336 337 static ssize_t 338 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr, 339 const char *buf, size_t count) 340 { 341 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 342 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 343 u32 x, y, rxy, x_w = 2; /* 2 bits */ 344 u64 tau4, r, max_win; 345 unsigned long val; 346 int ret; 347 int sensor_index = to_sensor_dev_attr(attr)->index; 348 349 ret = kstrtoul(buf, 0, &val); 350 if (ret) 351 return ret; 352 353 /* 354 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12. 355 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds. 356 * 357 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register. 358 * However, it is observed that existing discrete GPUs does not provide correct 359 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs 360 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU. 361 */ 362 #define PKG_MAX_WIN_DEFAULT 0x12ull 363 364 /* 365 * val must be < max in hwmon interface units. The steps below are 366 * explained in xe_hwmon_power_max_interval_show() 367 */ 368 r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT); 369 x = REG_FIELD_GET(PKG_MAX_WIN_X, r); 370 y = REG_FIELD_GET(PKG_MAX_WIN_Y, r); 371 tau4 = (u64)((1 << x_w) | x) << y; 372 max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); 373 374 if (val > max_win) 375 return -EINVAL; 376 377 /* val in hw units */ 378 val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME); 379 380 /* 381 * Convert val to 1.x * power(2,y) 382 * y = ilog2(val) 383 * x = (val - (1 << y)) >> (y - 2) 384 */ 385 if (!val) { 386 y = 0; 387 x = 0; 388 } else { 389 y = ilog2(val); 390 x = (val - (1ul << y)) << x_w >> y; 391 } 392 393 rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y); 394 395 xe_pm_runtime_get(hwmon->xe); 396 397 mutex_lock(&hwmon->hwmon_lock); 398 399 r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index), 400 PKG_PWR_LIM_1_TIME, rxy); 401 402 mutex_unlock(&hwmon->hwmon_lock); 403 404 xe_pm_runtime_put(hwmon->xe); 405 406 return count; 407 } 408 409 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664, 410 xe_hwmon_power_max_interval_show, 411 xe_hwmon_power_max_interval_store, CHANNEL_CARD); 412 413 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664, 414 xe_hwmon_power_max_interval_show, 415 xe_hwmon_power_max_interval_store, CHANNEL_PKG); 416 417 static struct attribute *hwmon_attributes[] = { 418 &sensor_dev_attr_power1_max_interval.dev_attr.attr, 419 &sensor_dev_attr_power2_max_interval.dev_attr.attr, 420 NULL 421 }; 422 423 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj, 424 struct attribute *attr, int index) 425 { 426 struct device *dev = kobj_to_dev(kobj); 427 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 428 int ret = 0; 429 430 xe_pm_runtime_get(hwmon->xe); 431 432 ret = xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, index)) ? attr->mode : 0; 433 434 xe_pm_runtime_put(hwmon->xe); 435 436 return ret; 437 } 438 439 static const struct attribute_group hwmon_attrgroup = { 440 .attrs = hwmon_attributes, 441 .is_visible = xe_hwmon_attributes_visible, 442 }; 443 444 static const struct attribute_group *hwmon_groups[] = { 445 &hwmon_attrgroup, 446 NULL 447 }; 448 449 static const struct hwmon_channel_info * const hwmon_info[] = { 450 HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, 451 HWMON_T_INPUT | HWMON_T_LABEL), 452 HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL, 453 HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT | HWMON_P_LABEL), 454 HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL), 455 HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL), 456 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL), 457 NULL 458 }; 459 460 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */ 461 static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval) 462 { 463 struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe); 464 465 /* Avoid Illegal Subcommand error */ 466 if (hwmon->xe->info.platform == XE_DG2) 467 return -ENXIO; 468 469 return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP, 470 POWER_SETUP_SUBCOMMAND_READ_I1, 0), 471 uval, NULL); 472 } 473 474 static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval) 475 { 476 struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe); 477 478 return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP, 479 POWER_SETUP_SUBCOMMAND_WRITE_I1, 0), 480 (uval & POWER_SETUP_I1_DATA_MASK)); 481 } 482 483 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel, 484 long *value, u32 scale_factor) 485 { 486 int ret; 487 u32 uval; 488 489 mutex_lock(&hwmon->hwmon_lock); 490 491 ret = xe_hwmon_pcode_read_i1(hwmon, &uval); 492 if (ret) 493 goto unlock; 494 495 *value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), 496 scale_factor, POWER_SETUP_I1_SHIFT); 497 unlock: 498 mutex_unlock(&hwmon->hwmon_lock); 499 return ret; 500 } 501 502 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel, 503 long value, u32 scale_factor) 504 { 505 int ret; 506 u32 uval; 507 508 mutex_lock(&hwmon->hwmon_lock); 509 510 uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor); 511 ret = xe_hwmon_pcode_write_i1(hwmon, uval); 512 513 mutex_unlock(&hwmon->hwmon_lock); 514 return ret; 515 } 516 517 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value) 518 { 519 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 520 u64 reg_val; 521 522 reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel)); 523 /* HW register value in units of 2.5 millivolt */ 524 *value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE); 525 } 526 527 static umode_t 528 xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel) 529 { 530 switch (attr) { 531 case hwmon_temp_input: 532 case hwmon_temp_label: 533 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0; 534 default: 535 return 0; 536 } 537 } 538 539 static int 540 xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val) 541 { 542 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 543 u64 reg_val; 544 545 switch (attr) { 546 case hwmon_temp_input: 547 reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel)); 548 549 /* HW register value is in degrees Celsius, convert to millidegrees. */ 550 *val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE; 551 return 0; 552 default: 553 return -EOPNOTSUPP; 554 } 555 } 556 557 static umode_t 558 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel) 559 { 560 u32 uval; 561 562 switch (attr) { 563 case hwmon_power_max: 564 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, 565 channel)) ? 0664 : 0; 566 case hwmon_power_rated_max: 567 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, 568 channel)) ? 0444 : 0; 569 case hwmon_power_crit: 570 if (channel == CHANNEL_PKG) 571 return (xe_hwmon_pcode_read_i1(hwmon, &uval) || 572 !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; 573 break; 574 case hwmon_power_label: 575 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 576 channel)) ? 0444 : 0; 577 default: 578 return 0; 579 } 580 return 0; 581 } 582 583 static int 584 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val) 585 { 586 switch (attr) { 587 case hwmon_power_max: 588 xe_hwmon_power_max_read(hwmon, channel, val); 589 return 0; 590 case hwmon_power_rated_max: 591 xe_hwmon_power_rated_max_read(hwmon, channel, val); 592 return 0; 593 case hwmon_power_crit: 594 return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER); 595 default: 596 return -EOPNOTSUPP; 597 } 598 } 599 600 static int 601 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val) 602 { 603 switch (attr) { 604 case hwmon_power_max: 605 return xe_hwmon_power_max_write(hwmon, channel, val); 606 case hwmon_power_crit: 607 return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER); 608 default: 609 return -EOPNOTSUPP; 610 } 611 } 612 613 static umode_t 614 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel) 615 { 616 u32 uval; 617 618 /* hwmon sysfs attribute of current available only for package */ 619 if (channel != CHANNEL_PKG) 620 return 0; 621 622 switch (attr) { 623 case hwmon_curr_crit: 624 return (xe_hwmon_pcode_read_i1(hwmon, &uval) || 625 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; 626 case hwmon_curr_label: 627 return (xe_hwmon_pcode_read_i1(hwmon, &uval) || 628 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444; 629 break; 630 default: 631 return 0; 632 } 633 return 0; 634 } 635 636 static int 637 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val) 638 { 639 switch (attr) { 640 case hwmon_curr_crit: 641 return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR); 642 default: 643 return -EOPNOTSUPP; 644 } 645 } 646 647 static int 648 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val) 649 { 650 switch (attr) { 651 case hwmon_curr_crit: 652 return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR); 653 default: 654 return -EOPNOTSUPP; 655 } 656 } 657 658 static umode_t 659 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel) 660 { 661 switch (attr) { 662 case hwmon_in_input: 663 case hwmon_in_label: 664 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, 665 channel)) ? 0444 : 0; 666 default: 667 return 0; 668 } 669 } 670 671 static int 672 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val) 673 { 674 switch (attr) { 675 case hwmon_in_input: 676 xe_hwmon_get_voltage(hwmon, channel, val); 677 return 0; 678 default: 679 return -EOPNOTSUPP; 680 } 681 } 682 683 static umode_t 684 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel) 685 { 686 switch (attr) { 687 case hwmon_energy_input: 688 case hwmon_energy_label: 689 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS, 690 channel)) ? 0444 : 0; 691 default: 692 return 0; 693 } 694 } 695 696 static int 697 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val) 698 { 699 switch (attr) { 700 case hwmon_energy_input: 701 xe_hwmon_energy_get(hwmon, channel, val); 702 return 0; 703 default: 704 return -EOPNOTSUPP; 705 } 706 } 707 708 static umode_t 709 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type, 710 u32 attr, int channel) 711 { 712 struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata; 713 int ret; 714 715 xe_pm_runtime_get(hwmon->xe); 716 717 switch (type) { 718 case hwmon_temp: 719 ret = xe_hwmon_temp_is_visible(hwmon, attr, channel); 720 break; 721 case hwmon_power: 722 ret = xe_hwmon_power_is_visible(hwmon, attr, channel); 723 break; 724 case hwmon_curr: 725 ret = xe_hwmon_curr_is_visible(hwmon, attr, channel); 726 break; 727 case hwmon_in: 728 ret = xe_hwmon_in_is_visible(hwmon, attr, channel); 729 break; 730 case hwmon_energy: 731 ret = xe_hwmon_energy_is_visible(hwmon, attr, channel); 732 break; 733 default: 734 ret = 0; 735 break; 736 } 737 738 xe_pm_runtime_put(hwmon->xe); 739 740 return ret; 741 } 742 743 static int 744 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, 745 int channel, long *val) 746 { 747 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 748 int ret; 749 750 xe_pm_runtime_get(hwmon->xe); 751 752 switch (type) { 753 case hwmon_temp: 754 ret = xe_hwmon_temp_read(hwmon, attr, channel, val); 755 break; 756 case hwmon_power: 757 ret = xe_hwmon_power_read(hwmon, attr, channel, val); 758 break; 759 case hwmon_curr: 760 ret = xe_hwmon_curr_read(hwmon, attr, channel, val); 761 break; 762 case hwmon_in: 763 ret = xe_hwmon_in_read(hwmon, attr, channel, val); 764 break; 765 case hwmon_energy: 766 ret = xe_hwmon_energy_read(hwmon, attr, channel, val); 767 break; 768 default: 769 ret = -EOPNOTSUPP; 770 break; 771 } 772 773 xe_pm_runtime_put(hwmon->xe); 774 775 return ret; 776 } 777 778 static int 779 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, 780 int channel, long val) 781 { 782 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 783 int ret; 784 785 xe_pm_runtime_get(hwmon->xe); 786 787 switch (type) { 788 case hwmon_power: 789 ret = xe_hwmon_power_write(hwmon, attr, channel, val); 790 break; 791 case hwmon_curr: 792 ret = xe_hwmon_curr_write(hwmon, attr, channel, val); 793 break; 794 default: 795 ret = -EOPNOTSUPP; 796 break; 797 } 798 799 xe_pm_runtime_put(hwmon->xe); 800 801 return ret; 802 } 803 804 static int xe_hwmon_read_label(struct device *dev, 805 enum hwmon_sensor_types type, 806 u32 attr, int channel, const char **str) 807 { 808 switch (type) { 809 case hwmon_temp: 810 if (channel == CHANNEL_PKG) 811 *str = "pkg"; 812 else if (channel == CHANNEL_VRAM) 813 *str = "vram"; 814 return 0; 815 case hwmon_power: 816 case hwmon_energy: 817 case hwmon_curr: 818 case hwmon_in: 819 if (channel == CHANNEL_CARD) 820 *str = "card"; 821 else if (channel == CHANNEL_PKG) 822 *str = "pkg"; 823 return 0; 824 default: 825 return -EOPNOTSUPP; 826 } 827 } 828 829 static const struct hwmon_ops hwmon_ops = { 830 .is_visible = xe_hwmon_is_visible, 831 .read = xe_hwmon_read, 832 .write = xe_hwmon_write, 833 .read_string = xe_hwmon_read_label, 834 }; 835 836 static const struct hwmon_chip_info hwmon_chip_info = { 837 .ops = &hwmon_ops, 838 .info = hwmon_info, 839 }; 840 841 static void 842 xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon) 843 { 844 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe); 845 long energy; 846 u64 val_sku_unit = 0; 847 int channel; 848 struct xe_reg pkg_power_sku_unit; 849 850 /* 851 * The contents of register PKG_POWER_SKU_UNIT do not change, 852 * so read it once and store the shift values. 853 */ 854 pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0); 855 if (xe_reg_is_valid(pkg_power_sku_unit)) { 856 val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit); 857 hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit); 858 hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit); 859 hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit); 860 } 861 862 /* 863 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the 864 * first value of the energy register read 865 */ 866 for (channel = 0; channel < CHANNEL_MAX; channel++) 867 if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel)) 868 xe_hwmon_energy_get(hwmon, channel, &energy); 869 } 870 871 static void xe_hwmon_mutex_destroy(void *arg) 872 { 873 struct xe_hwmon *hwmon = arg; 874 875 mutex_destroy(&hwmon->hwmon_lock); 876 } 877 878 int xe_hwmon_register(struct xe_device *xe) 879 { 880 struct device *dev = xe->drm.dev; 881 struct xe_hwmon *hwmon; 882 int ret; 883 884 /* hwmon is available only for dGfx */ 885 if (!IS_DGFX(xe)) 886 return 0; 887 888 /* hwmon is not available on VFs */ 889 if (IS_SRIOV_VF(xe)) 890 return 0; 891 892 hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL); 893 if (!hwmon) 894 return -ENOMEM; 895 896 mutex_init(&hwmon->hwmon_lock); 897 ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon); 898 if (ret) 899 return ret; 900 901 /* There's only one instance of hwmon per device */ 902 hwmon->xe = xe; 903 xe->hwmon = hwmon; 904 905 xe_hwmon_get_preregistration_info(hwmon); 906 907 drm_dbg(&xe->drm, "Register xe hwmon interface\n"); 908 909 /* hwmon_dev points to device hwmon<i> */ 910 hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon, 911 &hwmon_chip_info, 912 hwmon_groups); 913 if (IS_ERR(hwmon->hwmon_dev)) { 914 drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev); 915 xe->hwmon = NULL; 916 return PTR_ERR(hwmon->hwmon_dev); 917 } 918 919 return 0; 920 } 921 922