xref: /linux/drivers/gpu/drm/xe/xe_hwmon.c (revision cd80e7ee47d2fd5c97563c003ff31ce8240ca2d8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/hwmon.h>
8 #include <linux/types.h>
9 
10 #include <drm/drm_managed.h>
11 #include "regs/xe_gt_regs.h"
12 #include "regs/xe_mchbar_regs.h"
13 #include "regs/xe_pcode_regs.h"
14 #include "xe_device.h"
15 #include "xe_gt.h"
16 #include "xe_hwmon.h"
17 #include "xe_mmio.h"
18 #include "xe_pcode.h"
19 #include "xe_pcode_api.h"
20 #include "xe_sriov.h"
21 #include "xe_pm.h"
22 
23 enum xe_hwmon_reg {
24 	REG_PKG_RAPL_LIMIT,
25 	REG_PKG_POWER_SKU,
26 	REG_PKG_POWER_SKU_UNIT,
27 	REG_GT_PERF_STATUS,
28 	REG_PKG_ENERGY_STATUS,
29 };
30 
31 enum xe_hwmon_reg_operation {
32 	REG_READ32,
33 	REG_RMW32,
34 	REG_READ64,
35 };
36 
37 enum xe_hwmon_channel {
38 	CHANNEL_CARD,
39 	CHANNEL_PKG,
40 	CHANNEL_MAX,
41 };
42 
43 /*
44  * SF_* - scale factors for particular quantities according to hwmon spec.
45  */
46 #define SF_POWER	1000000		/* microwatts */
47 #define SF_CURR		1000		/* milliamperes */
48 #define SF_VOLTAGE	1000		/* millivolts */
49 #define SF_ENERGY	1000000		/* microjoules */
50 #define SF_TIME		1000		/* milliseconds */
51 
52 /**
53  * struct xe_hwmon_energy_info - to accumulate energy
54  */
55 struct xe_hwmon_energy_info {
56 	/** @reg_val_prev: previous energy reg val */
57 	u32 reg_val_prev;
58 	/** @accum_energy: accumulated energy */
59 	long accum_energy;
60 };
61 
62 /**
63  * struct xe_hwmon - xe hwmon data structure
64  */
65 struct xe_hwmon {
66 	/** @hwmon_dev: hwmon device for xe */
67 	struct device *hwmon_dev;
68 	/** @gt: primary gt */
69 	struct xe_gt *gt;
70 	/** @hwmon_lock: lock for rw attributes*/
71 	struct mutex hwmon_lock;
72 	/** @scl_shift_power: pkg power unit */
73 	int scl_shift_power;
74 	/** @scl_shift_energy: pkg energy unit */
75 	int scl_shift_energy;
76 	/** @scl_shift_time: pkg time unit */
77 	int scl_shift_time;
78 	/** @ei: Energy info for energyN_input */
79 	struct xe_hwmon_energy_info ei[CHANNEL_MAX];
80 };
81 
82 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
83 				      int channel)
84 {
85 	struct xe_device *xe = gt_to_xe(hwmon->gt);
86 
87 	switch (hwmon_reg) {
88 	case REG_PKG_RAPL_LIMIT:
89 		if (xe->info.platform == XE_BATTLEMAGE) {
90 			if (channel == CHANNEL_PKG)
91 				return BMG_PACKAGE_RAPL_LIMIT;
92 			else
93 				return BMG_PLATFORM_POWER_LIMIT;
94 		} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
95 			return PVC_GT0_PACKAGE_RAPL_LIMIT;
96 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
97 			return PCU_CR_PACKAGE_RAPL_LIMIT;
98 		}
99 		break;
100 	case REG_PKG_POWER_SKU:
101 		if (xe->info.platform == XE_BATTLEMAGE)
102 			return BMG_PACKAGE_POWER_SKU;
103 		else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
104 			return PVC_GT0_PACKAGE_POWER_SKU;
105 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
106 			return PCU_CR_PACKAGE_POWER_SKU;
107 		break;
108 	case REG_PKG_POWER_SKU_UNIT:
109 		if (xe->info.platform == XE_BATTLEMAGE)
110 			return BMG_PACKAGE_POWER_SKU_UNIT;
111 		else if (xe->info.platform == XE_PVC)
112 			return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
113 		else if (xe->info.platform == XE_DG2)
114 			return PCU_CR_PACKAGE_POWER_SKU_UNIT;
115 		break;
116 	case REG_GT_PERF_STATUS:
117 		if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
118 			return GT_PERF_STATUS;
119 		break;
120 	case REG_PKG_ENERGY_STATUS:
121 		if (xe->info.platform == XE_BATTLEMAGE) {
122 			if (channel == CHANNEL_PKG)
123 				return BMG_PACKAGE_ENERGY_STATUS;
124 			else
125 				return BMG_PLATFORM_ENERGY_STATUS;
126 		} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
127 			return PVC_GT0_PLATFORM_ENERGY_STATUS;
128 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
129 			return PCU_CR_PACKAGE_ENERGY_STATUS;
130 		}
131 		break;
132 	default:
133 		drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
134 		break;
135 	}
136 
137 	return XE_REG(0);
138 }
139 
140 static void xe_hwmon_process_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
141 				 enum xe_hwmon_reg_operation operation, u64 *value,
142 				 u32 clr, u32 set, int channel)
143 {
144 	struct xe_reg reg;
145 
146 	reg = xe_hwmon_get_reg(hwmon, hwmon_reg, channel);
147 
148 	if (!xe_reg_is_valid(reg))
149 		return;
150 
151 	switch (operation) {
152 	case REG_READ32:
153 		*value = xe_mmio_read32(hwmon->gt, reg);
154 		break;
155 	case REG_RMW32:
156 		*value = xe_mmio_rmw32(hwmon->gt, reg, clr, set);
157 		break;
158 	case REG_READ64:
159 		*value = xe_mmio_read64_2x32(hwmon->gt, reg);
160 		break;
161 	default:
162 		drm_warn(&gt_to_xe(hwmon->gt)->drm, "Invalid xe hwmon reg operation: %d\n",
163 			 operation);
164 		break;
165 	}
166 }
167 
168 #define PL1_DISABLE 0
169 
170 /*
171  * HW allows arbitrary PL1 limits to be set but silently clamps these values to
172  * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
173  * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
174  * clamped values when read.
175  */
176 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, int channel, long *value)
177 {
178 	u64 reg_val, min, max;
179 
180 	mutex_lock(&hwmon->hwmon_lock);
181 
182 	xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, &reg_val, 0, 0, channel);
183 	/* Check if PL1 limit is disabled */
184 	if (!(reg_val & PKG_PWR_LIM_1_EN)) {
185 		*value = PL1_DISABLE;
186 		goto unlock;
187 	}
188 
189 	reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val);
190 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
191 
192 	xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ64, &reg_val, 0, 0, channel);
193 	min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
194 	min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
195 	max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
196 	max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
197 
198 	if (min && max)
199 		*value = clamp_t(u64, *value, min, max);
200 unlock:
201 	mutex_unlock(&hwmon->hwmon_lock);
202 }
203 
204 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, int channel, long value)
205 {
206 	int ret = 0;
207 	u64 reg_val;
208 
209 	mutex_lock(&hwmon->hwmon_lock);
210 
211 	/* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */
212 	if (value == PL1_DISABLE) {
213 		xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, &reg_val,
214 				     PKG_PWR_LIM_1_EN, 0, channel);
215 		xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, &reg_val,
216 				     PKG_PWR_LIM_1_EN, 0, channel);
217 
218 		if (reg_val & PKG_PWR_LIM_1_EN) {
219 			ret = -EOPNOTSUPP;
220 			goto unlock;
221 		}
222 	}
223 
224 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
225 	reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
226 	reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val);
227 
228 	xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, &reg_val,
229 			     PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val, channel);
230 unlock:
231 	mutex_unlock(&hwmon->hwmon_lock);
232 	return ret;
233 }
234 
235 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, int channel, long *value)
236 {
237 	u64 reg_val;
238 
239 	xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ32, &reg_val, 0, 0, channel);
240 	reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
241 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
242 }
243 
244 /*
245  * xe_hwmon_energy_get - Obtain energy value
246  *
247  * The underlying energy hardware register is 32-bits and is subject to
248  * overflow. How long before overflow? For example, with an example
249  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
250  * a power draw of 1000 watts, the 32-bit counter will overflow in
251  * approximately 4.36 minutes.
252  *
253  * Examples:
254  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
255  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
256  *
257  * The function significantly increases overflow duration (from 4.36
258  * minutes) by accumulating the energy register into a 'long' as allowed by
259  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
260  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
261  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
262  * energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
263  */
264 static void
265 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
266 {
267 	struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
268 	u64 reg_val;
269 
270 	xe_hwmon_process_reg(hwmon, REG_PKG_ENERGY_STATUS, REG_READ32,
271 			     &reg_val, 0, 0, channel);
272 
273 	if (reg_val >= ei->reg_val_prev)
274 		ei->accum_energy += reg_val - ei->reg_val_prev;
275 	else
276 		ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
277 
278 	ei->reg_val_prev = reg_val;
279 
280 	*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
281 				  hwmon->scl_shift_energy);
282 }
283 
284 static ssize_t
285 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
286 				 char *buf)
287 {
288 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
289 	u32 x, y, x_w = 2; /* 2 bits */
290 	u64 r, tau4, out;
291 	int sensor_index = to_sensor_dev_attr(attr)->index;
292 
293 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
294 
295 	mutex_lock(&hwmon->hwmon_lock);
296 
297 	xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT,
298 			     REG_READ32, &r, 0, 0, sensor_index);
299 
300 	mutex_unlock(&hwmon->hwmon_lock);
301 
302 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
303 
304 	x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
305 	y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
306 
307 	/*
308 	 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
309 	 *     = (4 | x) << (y - 2)
310 	 *
311 	 * Here (y - 2) ensures a 1.x fixed point representation of 1.x
312 	 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
313 	 *
314 	 * As y can be < 2, we compute tau4 = (4 | x) << y
315 	 * and then add 2 when doing the final right shift to account for units
316 	 */
317 	tau4 = (u64)((1 << x_w) | x) << y;
318 
319 	/* val in hwmon interface units (millisec) */
320 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
321 
322 	return sysfs_emit(buf, "%llu\n", out);
323 }
324 
325 static ssize_t
326 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
327 				  const char *buf, size_t count)
328 {
329 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
330 	u32 x, y, rxy, x_w = 2; /* 2 bits */
331 	u64 tau4, r, max_win;
332 	unsigned long val;
333 	int ret;
334 	int sensor_index = to_sensor_dev_attr(attr)->index;
335 
336 	ret = kstrtoul(buf, 0, &val);
337 	if (ret)
338 		return ret;
339 
340 	/*
341 	 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12.
342 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
343 	 *
344 	 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
345 	 * However, it is observed that existing discrete GPUs does not provide correct
346 	 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
347 	 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
348 	 */
349 #define PKG_MAX_WIN_DEFAULT 0x12ull
350 
351 	/*
352 	 * val must be < max in hwmon interface units. The steps below are
353 	 * explained in xe_hwmon_power_max_interval_show()
354 	 */
355 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
356 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
357 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
358 	tau4 = (u64)((1 << x_w) | x) << y;
359 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
360 
361 	if (val > max_win)
362 		return -EINVAL;
363 
364 	/* val in hw units */
365 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
366 
367 	/*
368 	 * Convert val to 1.x * power(2,y)
369 	 * y = ilog2(val)
370 	 * x = (val - (1 << y)) >> (y - 2)
371 	 */
372 	if (!val) {
373 		y = 0;
374 		x = 0;
375 	} else {
376 		y = ilog2(val);
377 		x = (val - (1ul << y)) << x_w >> y;
378 	}
379 
380 	rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
381 
382 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
383 
384 	mutex_lock(&hwmon->hwmon_lock);
385 
386 	xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, (u64 *)&r,
387 			     PKG_PWR_LIM_1_TIME, rxy, sensor_index);
388 
389 	mutex_unlock(&hwmon->hwmon_lock);
390 
391 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
392 
393 	return count;
394 }
395 
396 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
397 			  xe_hwmon_power_max_interval_show,
398 			  xe_hwmon_power_max_interval_store, CHANNEL_CARD);
399 
400 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
401 			  xe_hwmon_power_max_interval_show,
402 			  xe_hwmon_power_max_interval_store, CHANNEL_PKG);
403 
404 static struct attribute *hwmon_attributes[] = {
405 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
406 	&sensor_dev_attr_power2_max_interval.dev_attr.attr,
407 	NULL
408 };
409 
410 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
411 					   struct attribute *attr, int index)
412 {
413 	struct device *dev = kobj_to_dev(kobj);
414 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
415 	int ret = 0;
416 
417 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
418 
419 	ret = xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, index)) ? attr->mode : 0;
420 
421 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
422 
423 	return ret;
424 }
425 
426 static const struct attribute_group hwmon_attrgroup = {
427 	.attrs = hwmon_attributes,
428 	.is_visible = xe_hwmon_attributes_visible,
429 };
430 
431 static const struct attribute_group *hwmon_groups[] = {
432 	&hwmon_attrgroup,
433 	NULL
434 };
435 
436 static const struct hwmon_channel_info * const hwmon_info[] = {
437 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL,
438 			   HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT | HWMON_P_LABEL),
439 	HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
440 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
441 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
442 	NULL
443 };
444 
445 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
446 static int xe_hwmon_pcode_read_i1(struct xe_gt *gt, u32 *uval)
447 {
448 	/* Avoid Illegal Subcommand error */
449 	if (gt_to_xe(gt)->info.platform == XE_DG2)
450 		return -ENXIO;
451 
452 	return xe_pcode_read(gt, PCODE_MBOX(PCODE_POWER_SETUP,
453 			     POWER_SETUP_SUBCOMMAND_READ_I1, 0),
454 			     uval, NULL);
455 }
456 
457 static int xe_hwmon_pcode_write_i1(struct xe_gt *gt, u32 uval)
458 {
459 	return xe_pcode_write(gt, PCODE_MBOX(PCODE_POWER_SETUP,
460 			      POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
461 			      uval);
462 }
463 
464 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
465 					 long *value, u32 scale_factor)
466 {
467 	int ret;
468 	u32 uval;
469 
470 	mutex_lock(&hwmon->hwmon_lock);
471 
472 	ret = xe_hwmon_pcode_read_i1(hwmon->gt, &uval);
473 	if (ret)
474 		goto unlock;
475 
476 	*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
477 				 scale_factor, POWER_SETUP_I1_SHIFT);
478 unlock:
479 	mutex_unlock(&hwmon->hwmon_lock);
480 	return ret;
481 }
482 
483 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
484 					  long value, u32 scale_factor)
485 {
486 	int ret;
487 	u32 uval;
488 
489 	mutex_lock(&hwmon->hwmon_lock);
490 
491 	uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
492 	ret = xe_hwmon_pcode_write_i1(hwmon->gt, uval);
493 
494 	mutex_unlock(&hwmon->hwmon_lock);
495 	return ret;
496 }
497 
498 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
499 {
500 	u64 reg_val;
501 
502 	xe_hwmon_process_reg(hwmon, REG_GT_PERF_STATUS,
503 			     REG_READ32, &reg_val, 0, 0, channel);
504 	/* HW register value in units of 2.5 millivolt */
505 	*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
506 }
507 
508 static umode_t
509 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
510 {
511 	u32 uval;
512 
513 	switch (attr) {
514 	case hwmon_power_max:
515 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT,
516 				       channel)) ? 0664 : 0;
517 	case hwmon_power_rated_max:
518 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU,
519 				       channel)) ? 0444 : 0;
520 	case hwmon_power_crit:
521 		if (channel == CHANNEL_PKG)
522 			return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
523 				!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
524 		break;
525 	case hwmon_power_label:
526 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT,
527 				       channel)) ? 0444 : 0;
528 	default:
529 		return 0;
530 	}
531 	return 0;
532 }
533 
534 static int
535 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
536 {
537 	switch (attr) {
538 	case hwmon_power_max:
539 		xe_hwmon_power_max_read(hwmon, channel, val);
540 		return 0;
541 	case hwmon_power_rated_max:
542 		xe_hwmon_power_rated_max_read(hwmon, channel, val);
543 		return 0;
544 	case hwmon_power_crit:
545 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
546 	default:
547 		return -EOPNOTSUPP;
548 	}
549 }
550 
551 static int
552 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
553 {
554 	switch (attr) {
555 	case hwmon_power_max:
556 		return xe_hwmon_power_max_write(hwmon, channel, val);
557 	case hwmon_power_crit:
558 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
559 	default:
560 		return -EOPNOTSUPP;
561 	}
562 }
563 
564 static umode_t
565 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
566 {
567 	u32 uval;
568 
569 	/* hwmon sysfs attribute of current available only for package */
570 	if (channel != CHANNEL_PKG)
571 		return 0;
572 
573 	switch (attr) {
574 	case hwmon_curr_crit:
575 			return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
576 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
577 	case hwmon_curr_label:
578 			return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
579 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
580 		break;
581 	default:
582 		return 0;
583 	}
584 	return 0;
585 }
586 
587 static int
588 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
589 {
590 	switch (attr) {
591 	case hwmon_curr_crit:
592 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
593 	default:
594 		return -EOPNOTSUPP;
595 	}
596 }
597 
598 static int
599 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
600 {
601 	switch (attr) {
602 	case hwmon_curr_crit:
603 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
604 	default:
605 		return -EOPNOTSUPP;
606 	}
607 }
608 
609 static umode_t
610 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
611 {
612 	switch (attr) {
613 	case hwmon_in_input:
614 	case hwmon_in_label:
615 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
616 				       channel)) ? 0444 : 0;
617 	default:
618 		return 0;
619 	}
620 }
621 
622 static int
623 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
624 {
625 	switch (attr) {
626 	case hwmon_in_input:
627 		xe_hwmon_get_voltage(hwmon, channel, val);
628 		return 0;
629 	default:
630 		return -EOPNOTSUPP;
631 	}
632 }
633 
634 static umode_t
635 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
636 {
637 	switch (attr) {
638 	case hwmon_energy_input:
639 	case hwmon_energy_label:
640 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
641 				       channel)) ? 0444 : 0;
642 	default:
643 		return 0;
644 	}
645 }
646 
647 static int
648 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
649 {
650 	switch (attr) {
651 	case hwmon_energy_input:
652 		xe_hwmon_energy_get(hwmon, channel, val);
653 		return 0;
654 	default:
655 		return -EOPNOTSUPP;
656 	}
657 }
658 
659 static umode_t
660 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
661 		    u32 attr, int channel)
662 {
663 	struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
664 	int ret;
665 
666 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
667 
668 	switch (type) {
669 	case hwmon_power:
670 		ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
671 		break;
672 	case hwmon_curr:
673 		ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
674 		break;
675 	case hwmon_in:
676 		ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
677 		break;
678 	case hwmon_energy:
679 		ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
680 		break;
681 	default:
682 		ret = 0;
683 		break;
684 	}
685 
686 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
687 
688 	return ret;
689 }
690 
691 static int
692 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
693 	      int channel, long *val)
694 {
695 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
696 	int ret;
697 
698 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
699 
700 	switch (type) {
701 	case hwmon_power:
702 		ret = xe_hwmon_power_read(hwmon, attr, channel, val);
703 		break;
704 	case hwmon_curr:
705 		ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
706 		break;
707 	case hwmon_in:
708 		ret = xe_hwmon_in_read(hwmon, attr, channel, val);
709 		break;
710 	case hwmon_energy:
711 		ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
712 		break;
713 	default:
714 		ret = -EOPNOTSUPP;
715 		break;
716 	}
717 
718 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
719 
720 	return ret;
721 }
722 
723 static int
724 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
725 	       int channel, long val)
726 {
727 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
728 	int ret;
729 
730 	xe_pm_runtime_get(gt_to_xe(hwmon->gt));
731 
732 	switch (type) {
733 	case hwmon_power:
734 		ret = xe_hwmon_power_write(hwmon, attr, channel, val);
735 		break;
736 	case hwmon_curr:
737 		ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
738 		break;
739 	default:
740 		ret = -EOPNOTSUPP;
741 		break;
742 	}
743 
744 	xe_pm_runtime_put(gt_to_xe(hwmon->gt));
745 
746 	return ret;
747 }
748 
749 static int xe_hwmon_read_label(struct device *dev,
750 			       enum hwmon_sensor_types type,
751 			       u32 attr, int channel, const char **str)
752 {
753 	switch (type) {
754 	case hwmon_power:
755 	case hwmon_energy:
756 	case hwmon_curr:
757 	case hwmon_in:
758 		if (channel == CHANNEL_CARD)
759 			*str = "card";
760 		else if (channel == CHANNEL_PKG)
761 			*str = "pkg";
762 		return 0;
763 	default:
764 		return -EOPNOTSUPP;
765 	}
766 }
767 
768 static const struct hwmon_ops hwmon_ops = {
769 	.is_visible = xe_hwmon_is_visible,
770 	.read = xe_hwmon_read,
771 	.write = xe_hwmon_write,
772 	.read_string = xe_hwmon_read_label,
773 };
774 
775 static const struct hwmon_chip_info hwmon_chip_info = {
776 	.ops = &hwmon_ops,
777 	.info = hwmon_info,
778 };
779 
780 static void
781 xe_hwmon_get_preregistration_info(struct xe_device *xe)
782 {
783 	struct xe_hwmon *hwmon = xe->hwmon;
784 	long energy;
785 	u64 val_sku_unit = 0;
786 	int channel;
787 
788 	/*
789 	 * The contents of register PKG_POWER_SKU_UNIT do not change,
790 	 * so read it once and store the shift values.
791 	 */
792 	if (xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0))) {
793 		xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU_UNIT,
794 				     REG_READ32, &val_sku_unit, 0, 0, 0);
795 		hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
796 		hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
797 		hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
798 	}
799 
800 	/*
801 	 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
802 	 * first value of the energy register read
803 	 */
804 	for (channel = 0; channel < CHANNEL_MAX; channel++)
805 		if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
806 			xe_hwmon_energy_get(hwmon, channel, &energy);
807 }
808 
809 static void xe_hwmon_mutex_destroy(void *arg)
810 {
811 	struct xe_hwmon *hwmon = arg;
812 
813 	mutex_destroy(&hwmon->hwmon_lock);
814 }
815 
816 void xe_hwmon_register(struct xe_device *xe)
817 {
818 	struct device *dev = xe->drm.dev;
819 	struct xe_hwmon *hwmon;
820 
821 	/* hwmon is available only for dGfx */
822 	if (!IS_DGFX(xe))
823 		return;
824 
825 	/* hwmon is not available on VFs */
826 	if (IS_SRIOV_VF(xe))
827 		return;
828 
829 	hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
830 	if (!hwmon)
831 		return;
832 
833 	xe->hwmon = hwmon;
834 
835 	mutex_init(&hwmon->hwmon_lock);
836 	if (devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon))
837 		return;
838 
839 	/* primary GT to access device level properties */
840 	hwmon->gt = xe->tiles[0].primary_gt;
841 
842 	xe_hwmon_get_preregistration_info(xe);
843 
844 	drm_dbg(&xe->drm, "Register xe hwmon interface\n");
845 
846 	/*  hwmon_dev points to device hwmon<i> */
847 	hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
848 								&hwmon_chip_info,
849 								hwmon_groups);
850 
851 	if (IS_ERR(hwmon->hwmon_dev)) {
852 		drm_warn(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
853 		xe->hwmon = NULL;
854 		return;
855 	}
856 }
857 
858