1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include <linux/hwmon-sysfs.h> 7 #include <linux/hwmon.h> 8 #include <linux/types.h> 9 10 #include <drm/drm_managed.h> 11 #include "regs/xe_gt_regs.h" 12 #include "regs/xe_mchbar_regs.h" 13 #include "regs/xe_pcode_regs.h" 14 #include "xe_device.h" 15 #include "xe_gt.h" 16 #include "xe_hwmon.h" 17 #include "xe_mmio.h" 18 #include "xe_pcode.h" 19 #include "xe_pcode_api.h" 20 #include "xe_sriov.h" 21 22 enum xe_hwmon_reg { 23 REG_PKG_RAPL_LIMIT, 24 REG_PKG_POWER_SKU, 25 REG_PKG_POWER_SKU_UNIT, 26 REG_GT_PERF_STATUS, 27 REG_PKG_ENERGY_STATUS, 28 }; 29 30 enum xe_hwmon_reg_operation { 31 REG_READ32, 32 REG_RMW32, 33 REG_READ64, 34 }; 35 36 /* 37 * SF_* - scale factors for particular quantities according to hwmon spec. 38 */ 39 #define SF_POWER 1000000 /* microwatts */ 40 #define SF_CURR 1000 /* milliamperes */ 41 #define SF_VOLTAGE 1000 /* millivolts */ 42 #define SF_ENERGY 1000000 /* microjoules */ 43 #define SF_TIME 1000 /* milliseconds */ 44 45 /** 46 * struct xe_hwmon_energy_info - to accumulate energy 47 */ 48 struct xe_hwmon_energy_info { 49 /** @reg_val_prev: previous energy reg val */ 50 u32 reg_val_prev; 51 /** @accum_energy: accumulated energy */ 52 long accum_energy; 53 }; 54 55 /** 56 * struct xe_hwmon - xe hwmon data structure 57 */ 58 struct xe_hwmon { 59 /** @hwmon_dev: hwmon device for xe */ 60 struct device *hwmon_dev; 61 /** @gt: primary gt */ 62 struct xe_gt *gt; 63 /** @hwmon_lock: lock for rw attributes*/ 64 struct mutex hwmon_lock; 65 /** @scl_shift_power: pkg power unit */ 66 int scl_shift_power; 67 /** @scl_shift_energy: pkg energy unit */ 68 int scl_shift_energy; 69 /** @scl_shift_time: pkg time unit */ 70 int scl_shift_time; 71 /** @ei: Energy info for energy1_input */ 72 struct xe_hwmon_energy_info ei; 73 }; 74 75 static u32 xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg) 76 { 77 struct xe_device *xe = gt_to_xe(hwmon->gt); 78 struct xe_reg reg = XE_REG(0); 79 80 switch (hwmon_reg) { 81 case REG_PKG_RAPL_LIMIT: 82 if (xe->info.platform == XE_PVC) 83 reg = PVC_GT0_PACKAGE_RAPL_LIMIT; 84 else if (xe->info.platform == XE_DG2) 85 reg = PCU_CR_PACKAGE_RAPL_LIMIT; 86 break; 87 case REG_PKG_POWER_SKU: 88 if (xe->info.platform == XE_PVC) 89 reg = PVC_GT0_PACKAGE_POWER_SKU; 90 else if (xe->info.platform == XE_DG2) 91 reg = PCU_CR_PACKAGE_POWER_SKU; 92 break; 93 case REG_PKG_POWER_SKU_UNIT: 94 if (xe->info.platform == XE_PVC) 95 reg = PVC_GT0_PACKAGE_POWER_SKU_UNIT; 96 else if (xe->info.platform == XE_DG2) 97 reg = PCU_CR_PACKAGE_POWER_SKU_UNIT; 98 break; 99 case REG_GT_PERF_STATUS: 100 if (xe->info.platform == XE_DG2) 101 reg = GT_PERF_STATUS; 102 break; 103 case REG_PKG_ENERGY_STATUS: 104 if (xe->info.platform == XE_PVC) 105 reg = PVC_GT0_PLATFORM_ENERGY_STATUS; 106 else if (xe->info.platform == XE_DG2) 107 reg = PCU_CR_PACKAGE_ENERGY_STATUS; 108 break; 109 default: 110 drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg); 111 break; 112 } 113 114 return reg.raw; 115 } 116 117 static void xe_hwmon_process_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg, 118 enum xe_hwmon_reg_operation operation, u64 *value, 119 u32 clr, u32 set) 120 { 121 struct xe_reg reg; 122 123 reg.raw = xe_hwmon_get_reg(hwmon, hwmon_reg); 124 125 if (!reg.raw) 126 return; 127 128 switch (operation) { 129 case REG_READ32: 130 *value = xe_mmio_read32(hwmon->gt, reg); 131 break; 132 case REG_RMW32: 133 *value = xe_mmio_rmw32(hwmon->gt, reg, clr, set); 134 break; 135 case REG_READ64: 136 *value = xe_mmio_read64_2x32(hwmon->gt, reg); 137 break; 138 default: 139 drm_warn(>_to_xe(hwmon->gt)->drm, "Invalid xe hwmon reg operation: %d\n", 140 operation); 141 break; 142 } 143 } 144 145 #define PL1_DISABLE 0 146 147 /* 148 * HW allows arbitrary PL1 limits to be set but silently clamps these values to 149 * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the 150 * same pattern for sysfs, allow arbitrary PL1 limits to be set but display 151 * clamped values when read. 152 */ 153 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, long *value) 154 { 155 u64 reg_val, min, max; 156 157 mutex_lock(&hwmon->hwmon_lock); 158 159 xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val, 0, 0); 160 /* Check if PL1 limit is disabled */ 161 if (!(reg_val & PKG_PWR_LIM_1_EN)) { 162 *value = PL1_DISABLE; 163 goto unlock; 164 } 165 166 reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val); 167 *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); 168 169 xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ64, ®_val, 0, 0); 170 min = REG_FIELD_GET(PKG_MIN_PWR, reg_val); 171 min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power); 172 max = REG_FIELD_GET(PKG_MAX_PWR, reg_val); 173 max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power); 174 175 if (min && max) 176 *value = clamp_t(u64, *value, min, max); 177 unlock: 178 mutex_unlock(&hwmon->hwmon_lock); 179 } 180 181 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, long value) 182 { 183 int ret = 0; 184 u64 reg_val; 185 186 mutex_lock(&hwmon->hwmon_lock); 187 188 /* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */ 189 if (value == PL1_DISABLE) { 190 xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val, 191 PKG_PWR_LIM_1_EN, 0); 192 xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val, 193 PKG_PWR_LIM_1_EN, 0); 194 195 if (reg_val & PKG_PWR_LIM_1_EN) { 196 ret = -EOPNOTSUPP; 197 goto unlock; 198 } 199 } 200 201 /* Computation in 64-bits to avoid overflow. Round to nearest. */ 202 reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER); 203 reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val); 204 205 xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val, 206 PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val); 207 unlock: 208 mutex_unlock(&hwmon->hwmon_lock); 209 return ret; 210 } 211 212 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, long *value) 213 { 214 u64 reg_val; 215 216 xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ32, ®_val, 0, 0); 217 reg_val = REG_FIELD_GET(PKG_TDP, reg_val); 218 *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); 219 } 220 221 /* 222 * xe_hwmon_energy_get - Obtain energy value 223 * 224 * The underlying energy hardware register is 32-bits and is subject to 225 * overflow. How long before overflow? For example, with an example 226 * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and 227 * a power draw of 1000 watts, the 32-bit counter will overflow in 228 * approximately 4.36 minutes. 229 * 230 * Examples: 231 * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days 232 * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes 233 * 234 * The function significantly increases overflow duration (from 4.36 235 * minutes) by accumulating the energy register into a 'long' as allowed by 236 * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()), 237 * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and 238 * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before 239 * energy1_input overflows. This at 1000 W is an overflow duration of 278 years. 240 */ 241 static void 242 xe_hwmon_energy_get(struct xe_hwmon *hwmon, long *energy) 243 { 244 struct xe_hwmon_energy_info *ei = &hwmon->ei; 245 u64 reg_val; 246 247 xe_hwmon_process_reg(hwmon, REG_PKG_ENERGY_STATUS, REG_READ32, 248 ®_val, 0, 0); 249 250 if (reg_val >= ei->reg_val_prev) 251 ei->accum_energy += reg_val - ei->reg_val_prev; 252 else 253 ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val; 254 255 ei->reg_val_prev = reg_val; 256 257 *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY, 258 hwmon->scl_shift_energy); 259 } 260 261 static ssize_t 262 xe_hwmon_power1_max_interval_show(struct device *dev, struct device_attribute *attr, 263 char *buf) 264 { 265 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 266 u32 x, y, x_w = 2; /* 2 bits */ 267 u64 r, tau4, out; 268 269 xe_device_mem_access_get(gt_to_xe(hwmon->gt)); 270 271 mutex_lock(&hwmon->hwmon_lock); 272 273 xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, 274 REG_READ32, &r, 0, 0); 275 276 mutex_unlock(&hwmon->hwmon_lock); 277 278 xe_device_mem_access_put(gt_to_xe(hwmon->gt)); 279 280 x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r); 281 y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r); 282 283 /* 284 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17) 285 * = (4 | x) << (y - 2) 286 * 287 * Here (y - 2) ensures a 1.x fixed point representation of 1.x 288 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75 289 * 290 * As y can be < 2, we compute tau4 = (4 | x) << y 291 * and then add 2 when doing the final right shift to account for units 292 */ 293 tau4 = (u64)((1 << x_w) | x) << y; 294 295 /* val in hwmon interface units (millisec) */ 296 out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); 297 298 return sysfs_emit(buf, "%llu\n", out); 299 } 300 301 static ssize_t 302 xe_hwmon_power1_max_interval_store(struct device *dev, struct device_attribute *attr, 303 const char *buf, size_t count) 304 { 305 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 306 u32 x, y, rxy, x_w = 2; /* 2 bits */ 307 u64 tau4, r, max_win; 308 unsigned long val; 309 int ret; 310 311 ret = kstrtoul(buf, 0, &val); 312 if (ret) 313 return ret; 314 315 /* 316 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12. 317 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds. 318 * 319 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register. 320 * However, it is observed that existing discrete GPUs does not provide correct 321 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs 322 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU. 323 */ 324 #define PKG_MAX_WIN_DEFAULT 0x12ull 325 326 /* 327 * val must be < max in hwmon interface units. The steps below are 328 * explained in xe_hwmon_power1_max_interval_show() 329 */ 330 r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT); 331 x = REG_FIELD_GET(PKG_MAX_WIN_X, r); 332 y = REG_FIELD_GET(PKG_MAX_WIN_Y, r); 333 tau4 = (u64)((1 << x_w) | x) << y; 334 max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); 335 336 if (val > max_win) 337 return -EINVAL; 338 339 /* val in hw units */ 340 val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME); 341 342 /* 343 * Convert val to 1.x * power(2,y) 344 * y = ilog2(val) 345 * x = (val - (1 << y)) >> (y - 2) 346 */ 347 if (!val) { 348 y = 0; 349 x = 0; 350 } else { 351 y = ilog2(val); 352 x = (val - (1ul << y)) << x_w >> y; 353 } 354 355 rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y); 356 357 xe_device_mem_access_get(gt_to_xe(hwmon->gt)); 358 359 mutex_lock(&hwmon->hwmon_lock); 360 361 xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, (u64 *)&r, 362 PKG_PWR_LIM_1_TIME, rxy); 363 364 mutex_unlock(&hwmon->hwmon_lock); 365 366 xe_device_mem_access_put(gt_to_xe(hwmon->gt)); 367 368 return count; 369 } 370 371 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664, 372 xe_hwmon_power1_max_interval_show, 373 xe_hwmon_power1_max_interval_store, 0); 374 375 static struct attribute *hwmon_attributes[] = { 376 &sensor_dev_attr_power1_max_interval.dev_attr.attr, 377 NULL 378 }; 379 380 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj, 381 struct attribute *attr, int index) 382 { 383 struct device *dev = kobj_to_dev(kobj); 384 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 385 int ret = 0; 386 387 xe_device_mem_access_get(gt_to_xe(hwmon->gt)); 388 389 if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr) 390 ret = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? attr->mode : 0; 391 392 xe_device_mem_access_put(gt_to_xe(hwmon->gt)); 393 394 return ret; 395 } 396 397 static const struct attribute_group hwmon_attrgroup = { 398 .attrs = hwmon_attributes, 399 .is_visible = xe_hwmon_attributes_visible, 400 }; 401 402 static const struct attribute_group *hwmon_groups[] = { 403 &hwmon_attrgroup, 404 NULL 405 }; 406 407 static const struct hwmon_channel_info * const hwmon_info[] = { 408 HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT), 409 HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT), 410 HWMON_CHANNEL_INFO(in, HWMON_I_INPUT), 411 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT), 412 NULL 413 }; 414 415 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */ 416 static int xe_hwmon_pcode_read_i1(struct xe_gt *gt, u32 *uval) 417 { 418 /* Avoid Illegal Subcommand error */ 419 if (gt_to_xe(gt)->info.platform == XE_DG2) 420 return -ENXIO; 421 422 return xe_pcode_read(gt, PCODE_MBOX(PCODE_POWER_SETUP, 423 POWER_SETUP_SUBCOMMAND_READ_I1, 0), 424 uval, NULL); 425 } 426 427 static int xe_hwmon_pcode_write_i1(struct xe_gt *gt, u32 uval) 428 { 429 return xe_pcode_write(gt, PCODE_MBOX(PCODE_POWER_SETUP, 430 POWER_SETUP_SUBCOMMAND_WRITE_I1, 0), 431 uval); 432 } 433 434 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, long *value, u32 scale_factor) 435 { 436 int ret; 437 u32 uval; 438 439 mutex_lock(&hwmon->hwmon_lock); 440 441 ret = xe_hwmon_pcode_read_i1(hwmon->gt, &uval); 442 if (ret) 443 goto unlock; 444 445 *value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), 446 scale_factor, POWER_SETUP_I1_SHIFT); 447 unlock: 448 mutex_unlock(&hwmon->hwmon_lock); 449 return ret; 450 } 451 452 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, long value, u32 scale_factor) 453 { 454 int ret; 455 u32 uval; 456 457 mutex_lock(&hwmon->hwmon_lock); 458 459 uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor); 460 ret = xe_hwmon_pcode_write_i1(hwmon->gt, uval); 461 462 mutex_unlock(&hwmon->hwmon_lock); 463 return ret; 464 } 465 466 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, long *value) 467 { 468 u64 reg_val; 469 470 xe_hwmon_process_reg(hwmon, REG_GT_PERF_STATUS, 471 REG_READ32, ®_val, 0, 0); 472 /* HW register value in units of 2.5 millivolt */ 473 *value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE); 474 } 475 476 static umode_t 477 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int chan) 478 { 479 u32 uval; 480 481 switch (attr) { 482 case hwmon_power_max: 483 return xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? 0664 : 0; 484 case hwmon_power_rated_max: 485 return xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU) ? 0444 : 0; 486 case hwmon_power_crit: 487 return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) || 488 !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; 489 default: 490 return 0; 491 } 492 } 493 494 static int 495 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int chan, long *val) 496 { 497 switch (attr) { 498 case hwmon_power_max: 499 xe_hwmon_power_max_read(hwmon, val); 500 return 0; 501 case hwmon_power_rated_max: 502 xe_hwmon_power_rated_max_read(hwmon, val); 503 return 0; 504 case hwmon_power_crit: 505 return xe_hwmon_power_curr_crit_read(hwmon, val, SF_POWER); 506 default: 507 return -EOPNOTSUPP; 508 } 509 } 510 511 static int 512 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int chan, long val) 513 { 514 switch (attr) { 515 case hwmon_power_max: 516 return xe_hwmon_power_max_write(hwmon, val); 517 case hwmon_power_crit: 518 return xe_hwmon_power_curr_crit_write(hwmon, val, SF_POWER); 519 default: 520 return -EOPNOTSUPP; 521 } 522 } 523 524 static umode_t 525 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr) 526 { 527 u32 uval; 528 529 switch (attr) { 530 case hwmon_curr_crit: 531 return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) || 532 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; 533 default: 534 return 0; 535 } 536 } 537 538 static int 539 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, long *val) 540 { 541 switch (attr) { 542 case hwmon_curr_crit: 543 return xe_hwmon_power_curr_crit_read(hwmon, val, SF_CURR); 544 default: 545 return -EOPNOTSUPP; 546 } 547 } 548 549 static int 550 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, long val) 551 { 552 switch (attr) { 553 case hwmon_curr_crit: 554 return xe_hwmon_power_curr_crit_write(hwmon, val, SF_CURR); 555 default: 556 return -EOPNOTSUPP; 557 } 558 } 559 560 static umode_t 561 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr) 562 { 563 switch (attr) { 564 case hwmon_in_input: 565 return xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS) ? 0444 : 0; 566 default: 567 return 0; 568 } 569 } 570 571 static int 572 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, long *val) 573 { 574 switch (attr) { 575 case hwmon_in_input: 576 xe_hwmon_get_voltage(hwmon, val); 577 return 0; 578 default: 579 return -EOPNOTSUPP; 580 } 581 } 582 583 static umode_t 584 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr) 585 { 586 switch (attr) { 587 case hwmon_energy_input: 588 return xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS) ? 0444 : 0; 589 default: 590 return 0; 591 } 592 } 593 594 static int 595 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, long *val) 596 { 597 switch (attr) { 598 case hwmon_energy_input: 599 xe_hwmon_energy_get(hwmon, val); 600 return 0; 601 default: 602 return -EOPNOTSUPP; 603 } 604 } 605 606 static umode_t 607 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type, 608 u32 attr, int channel) 609 { 610 struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata; 611 int ret; 612 613 xe_device_mem_access_get(gt_to_xe(hwmon->gt)); 614 615 switch (type) { 616 case hwmon_power: 617 ret = xe_hwmon_power_is_visible(hwmon, attr, channel); 618 break; 619 case hwmon_curr: 620 ret = xe_hwmon_curr_is_visible(hwmon, attr); 621 break; 622 case hwmon_in: 623 ret = xe_hwmon_in_is_visible(hwmon, attr); 624 break; 625 case hwmon_energy: 626 ret = xe_hwmon_energy_is_visible(hwmon, attr); 627 break; 628 default: 629 ret = 0; 630 break; 631 } 632 633 xe_device_mem_access_put(gt_to_xe(hwmon->gt)); 634 635 return ret; 636 } 637 638 static int 639 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, 640 int channel, long *val) 641 { 642 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 643 int ret; 644 645 xe_device_mem_access_get(gt_to_xe(hwmon->gt)); 646 647 switch (type) { 648 case hwmon_power: 649 ret = xe_hwmon_power_read(hwmon, attr, channel, val); 650 break; 651 case hwmon_curr: 652 ret = xe_hwmon_curr_read(hwmon, attr, val); 653 break; 654 case hwmon_in: 655 ret = xe_hwmon_in_read(hwmon, attr, val); 656 break; 657 case hwmon_energy: 658 ret = xe_hwmon_energy_read(hwmon, attr, val); 659 break; 660 default: 661 ret = -EOPNOTSUPP; 662 break; 663 } 664 665 xe_device_mem_access_put(gt_to_xe(hwmon->gt)); 666 667 return ret; 668 } 669 670 static int 671 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, 672 int channel, long val) 673 { 674 struct xe_hwmon *hwmon = dev_get_drvdata(dev); 675 int ret; 676 677 xe_device_mem_access_get(gt_to_xe(hwmon->gt)); 678 679 switch (type) { 680 case hwmon_power: 681 ret = xe_hwmon_power_write(hwmon, attr, channel, val); 682 break; 683 case hwmon_curr: 684 ret = xe_hwmon_curr_write(hwmon, attr, val); 685 break; 686 default: 687 ret = -EOPNOTSUPP; 688 break; 689 } 690 691 xe_device_mem_access_put(gt_to_xe(hwmon->gt)); 692 693 return ret; 694 } 695 696 static const struct hwmon_ops hwmon_ops = { 697 .is_visible = xe_hwmon_is_visible, 698 .read = xe_hwmon_read, 699 .write = xe_hwmon_write, 700 }; 701 702 static const struct hwmon_chip_info hwmon_chip_info = { 703 .ops = &hwmon_ops, 704 .info = hwmon_info, 705 }; 706 707 static void 708 xe_hwmon_get_preregistration_info(struct xe_device *xe) 709 { 710 struct xe_hwmon *hwmon = xe->hwmon; 711 long energy; 712 u64 val_sku_unit = 0; 713 714 /* 715 * The contents of register PKG_POWER_SKU_UNIT do not change, 716 * so read it once and store the shift values. 717 */ 718 if (xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT)) { 719 xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 720 REG_READ32, &val_sku_unit, 0, 0); 721 hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit); 722 hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit); 723 hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit); 724 } 725 726 /* 727 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the 728 * first value of the energy register read 729 */ 730 if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, 0)) 731 xe_hwmon_energy_get(hwmon, &energy); 732 } 733 734 static void xe_hwmon_mutex_destroy(void *arg) 735 { 736 struct xe_hwmon *hwmon = arg; 737 738 mutex_destroy(&hwmon->hwmon_lock); 739 } 740 741 void xe_hwmon_register(struct xe_device *xe) 742 { 743 struct device *dev = xe->drm.dev; 744 struct xe_hwmon *hwmon; 745 746 /* hwmon is available only for dGfx */ 747 if (!IS_DGFX(xe)) 748 return; 749 750 /* hwmon is not available on VFs */ 751 if (IS_SRIOV_VF(xe)) 752 return; 753 754 hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL); 755 if (!hwmon) 756 return; 757 758 xe->hwmon = hwmon; 759 760 mutex_init(&hwmon->hwmon_lock); 761 if (devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon)) 762 return; 763 764 /* primary GT to access device level properties */ 765 hwmon->gt = xe->tiles[0].primary_gt; 766 767 xe_hwmon_get_preregistration_info(xe); 768 769 drm_dbg(&xe->drm, "Register xe hwmon interface\n"); 770 771 /* hwmon_dev points to device hwmon<i> */ 772 hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon, 773 &hwmon_chip_info, 774 hwmon_groups); 775 776 if (IS_ERR(hwmon->hwmon_dev)) { 777 drm_warn(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev); 778 xe->hwmon = NULL; 779 return; 780 } 781 } 782 783