xref: /linux/drivers/gpu/drm/xe/xe_hmm.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2024 Intel Corporation
4  */
5 
6 #include <linux/scatterlist.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/memremap.h>
10 #include <linux/swap.h>
11 #include <linux/hmm.h>
12 #include <linux/mm.h>
13 #include "xe_hmm.h"
14 #include "xe_vm.h"
15 #include "xe_bo.h"
16 
17 static u64 xe_npages_in_range(unsigned long start, unsigned long end)
18 {
19 	return (end - start) >> PAGE_SHIFT;
20 }
21 
22 /*
23  * xe_mark_range_accessed() - mark a range is accessed, so core mm
24  * have such information for memory eviction or write back to
25  * hard disk
26  *
27  * @range: the range to mark
28  * @write: if write to this range, we mark pages in this range
29  * as dirty
30  */
31 static void xe_mark_range_accessed(struct hmm_range *range, bool write)
32 {
33 	struct page *page;
34 	u64 i, npages;
35 
36 	npages = xe_npages_in_range(range->start, range->end);
37 	for (i = 0; i < npages; i++) {
38 		page = hmm_pfn_to_page(range->hmm_pfns[i]);
39 		if (write)
40 			set_page_dirty_lock(page);
41 
42 		mark_page_accessed(page);
43 	}
44 }
45 
46 /*
47  * xe_build_sg() - build a scatter gather table for all the physical pages/pfn
48  * in a hmm_range. dma-map pages if necessary. dma-address is save in sg table
49  * and will be used to program GPU page table later.
50  *
51  * @xe: the xe device who will access the dma-address in sg table
52  * @range: the hmm range that we build the sg table from. range->hmm_pfns[]
53  * has the pfn numbers of pages that back up this hmm address range.
54  * @st: pointer to the sg table.
55  * @write: whether we write to this range. This decides dma map direction
56  * for system pages. If write we map it bi-diretional; otherwise
57  * DMA_TO_DEVICE
58  *
59  * All the contiguous pfns will be collapsed into one entry in
60  * the scatter gather table. This is for the purpose of efficiently
61  * programming GPU page table.
62  *
63  * The dma_address in the sg table will later be used by GPU to
64  * access memory. So if the memory is system memory, we need to
65  * do a dma-mapping so it can be accessed by GPU/DMA.
66  *
67  * FIXME: This function currently only support pages in system
68  * memory. If the memory is GPU local memory (of the GPU who
69  * is going to access memory), we need gpu dpa (device physical
70  * address), and there is no need of dma-mapping. This is TBD.
71  *
72  * FIXME: dma-mapping for peer gpu device to access remote gpu's
73  * memory. Add this when you support p2p
74  *
75  * This function allocates the storage of the sg table. It is
76  * caller's responsibility to free it calling sg_free_table.
77  *
78  * Returns 0 if successful; -ENOMEM if fails to allocate memory
79  */
80 static int xe_build_sg(struct xe_device *xe, struct hmm_range *range,
81 		       struct sg_table *st, bool write)
82 {
83 	struct device *dev = xe->drm.dev;
84 	struct page **pages;
85 	u64 i, npages;
86 	int ret;
87 
88 	npages = xe_npages_in_range(range->start, range->end);
89 	pages = kvmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
90 	if (!pages)
91 		return -ENOMEM;
92 
93 	for (i = 0; i < npages; i++) {
94 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
95 		xe_assert(xe, !is_device_private_page(pages[i]));
96 	}
97 
98 	ret = sg_alloc_table_from_pages_segment(st, pages, npages, 0, npages << PAGE_SHIFT,
99 						xe_sg_segment_size(dev), GFP_KERNEL);
100 	if (ret)
101 		goto free_pages;
102 
103 	ret = dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE,
104 			      DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING);
105 	if (ret) {
106 		sg_free_table(st);
107 		st = NULL;
108 	}
109 
110 free_pages:
111 	kvfree(pages);
112 	return ret;
113 }
114 
115 /*
116  * xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr
117  *
118  * @uvma: the userptr vma which hold the scatter gather table
119  *
120  * With function xe_userptr_populate_range, we allocate storage of
121  * the userptr sg table. This is a helper function to free this
122  * sg table, and dma unmap the address in the table.
123  */
124 void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma)
125 {
126 	struct xe_userptr *userptr = &uvma->userptr;
127 	struct xe_vma *vma = &uvma->vma;
128 	bool write = !xe_vma_read_only(vma);
129 	struct xe_vm *vm = xe_vma_vm(vma);
130 	struct xe_device *xe = vm->xe;
131 	struct device *dev = xe->drm.dev;
132 
133 	xe_assert(xe, userptr->sg);
134 	dma_unmap_sgtable(dev, userptr->sg,
135 			  write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0);
136 
137 	sg_free_table(userptr->sg);
138 	userptr->sg = NULL;
139 }
140 
141 /**
142  * xe_hmm_userptr_populate_range() - Populate physical pages of a virtual
143  * address range
144  *
145  * @uvma: userptr vma which has information of the range to populate.
146  * @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller.
147  *
148  * This function populate the physical pages of a virtual
149  * address range. The populated physical pages is saved in
150  * userptr's sg table. It is similar to get_user_pages but call
151  * hmm_range_fault.
152  *
153  * This function also read mmu notifier sequence # (
154  * mmu_interval_read_begin), for the purpose of later
155  * comparison (through mmu_interval_read_retry).
156  *
157  * This must be called with mmap read or write lock held.
158  *
159  * This function allocates the storage of the userptr sg table.
160  * It is caller's responsibility to free it calling sg_free_table.
161  *
162  * returns: 0 for succuss; negative error no on failure
163  */
164 int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma,
165 				  bool is_mm_mmap_locked)
166 {
167 	unsigned long timeout =
168 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
169 	unsigned long *pfns, flags = HMM_PFN_REQ_FAULT;
170 	struct xe_userptr *userptr;
171 	struct xe_vma *vma = &uvma->vma;
172 	u64 userptr_start = xe_vma_userptr(vma);
173 	u64 userptr_end = userptr_start + xe_vma_size(vma);
174 	struct xe_vm *vm = xe_vma_vm(vma);
175 	struct hmm_range hmm_range;
176 	bool write = !xe_vma_read_only(vma);
177 	unsigned long notifier_seq;
178 	u64 npages;
179 	int ret;
180 
181 	userptr = &uvma->userptr;
182 
183 	if (is_mm_mmap_locked)
184 		mmap_assert_locked(userptr->notifier.mm);
185 
186 	if (vma->gpuva.flags & XE_VMA_DESTROYED)
187 		return 0;
188 
189 	notifier_seq = mmu_interval_read_begin(&userptr->notifier);
190 	if (notifier_seq == userptr->notifier_seq)
191 		return 0;
192 
193 	if (userptr->sg)
194 		xe_hmm_userptr_free_sg(uvma);
195 
196 	npages = xe_npages_in_range(userptr_start, userptr_end);
197 	pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
198 	if (unlikely(!pfns))
199 		return -ENOMEM;
200 
201 	if (write)
202 		flags |= HMM_PFN_REQ_WRITE;
203 
204 	if (!mmget_not_zero(userptr->notifier.mm)) {
205 		ret = -EFAULT;
206 		goto free_pfns;
207 	}
208 
209 	hmm_range.default_flags = flags;
210 	hmm_range.hmm_pfns = pfns;
211 	hmm_range.notifier = &userptr->notifier;
212 	hmm_range.start = userptr_start;
213 	hmm_range.end = userptr_end;
214 	hmm_range.dev_private_owner = vm->xe;
215 
216 	while (true) {
217 		hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier);
218 
219 		if (!is_mm_mmap_locked)
220 			mmap_read_lock(userptr->notifier.mm);
221 
222 		ret = hmm_range_fault(&hmm_range);
223 
224 		if (!is_mm_mmap_locked)
225 			mmap_read_unlock(userptr->notifier.mm);
226 
227 		if (ret == -EBUSY) {
228 			if (time_after(jiffies, timeout))
229 				break;
230 
231 			continue;
232 		}
233 		break;
234 	}
235 
236 	mmput(userptr->notifier.mm);
237 
238 	if (ret)
239 		goto free_pfns;
240 
241 	ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt, write);
242 	if (ret)
243 		goto free_pfns;
244 
245 	xe_mark_range_accessed(&hmm_range, write);
246 	userptr->sg = &userptr->sgt;
247 	userptr->notifier_seq = hmm_range.notifier_seq;
248 
249 free_pfns:
250 	kvfree(pfns);
251 	return ret;
252 }
253 
254