xref: /linux/drivers/gpu/drm/xe/xe_guc_submit.c (revision fcb3ad4366b9c810cbb9da34c076a9a52d8aa1e0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_submit.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "regs/xe_lrc_layout.h"
20 #include "xe_assert.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_exec_queue.h"
24 #include "xe_force_wake.h"
25 #include "xe_gpu_scheduler.h"
26 #include "xe_gt.h"
27 #include "xe_gt_clock.h"
28 #include "xe_gt_printk.h"
29 #include "xe_guc.h"
30 #include "xe_guc_ct.h"
31 #include "xe_guc_exec_queue_types.h"
32 #include "xe_guc_id_mgr.h"
33 #include "xe_guc_submit_types.h"
34 #include "xe_hw_engine.h"
35 #include "xe_hw_fence.h"
36 #include "xe_lrc.h"
37 #include "xe_macros.h"
38 #include "xe_map.h"
39 #include "xe_mocs.h"
40 #include "xe_pm.h"
41 #include "xe_ring_ops_types.h"
42 #include "xe_sched_job.h"
43 #include "xe_trace.h"
44 #include "xe_vm.h"
45 
46 static struct xe_guc *
47 exec_queue_to_guc(struct xe_exec_queue *q)
48 {
49 	return &q->gt->uc.guc;
50 }
51 
52 /*
53  * Helpers for engine state, using an atomic as some of the bits can transition
54  * as the same time (e.g. a suspend can be happning at the same time as schedule
55  * engine done being processed).
56  */
57 #define EXEC_QUEUE_STATE_REGISTERED		(1 << 0)
58 #define EXEC_QUEUE_STATE_ENABLED		(1 << 1)
59 #define EXEC_QUEUE_STATE_PENDING_ENABLE		(1 << 2)
60 #define EXEC_QUEUE_STATE_PENDING_DISABLE	(1 << 3)
61 #define EXEC_QUEUE_STATE_DESTROYED		(1 << 4)
62 #define EXEC_QUEUE_STATE_SUSPENDED		(1 << 5)
63 #define EXEC_QUEUE_STATE_RESET			(1 << 6)
64 #define EXEC_QUEUE_STATE_KILLED			(1 << 7)
65 #define EXEC_QUEUE_STATE_WEDGED			(1 << 8)
66 #define EXEC_QUEUE_STATE_BANNED			(1 << 9)
67 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT		(1 << 10)
68 #define EXEC_QUEUE_STATE_EXTRA_REF		(1 << 11)
69 
70 static bool exec_queue_registered(struct xe_exec_queue *q)
71 {
72 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
73 }
74 
75 static void set_exec_queue_registered(struct xe_exec_queue *q)
76 {
77 	atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
78 }
79 
80 static void clear_exec_queue_registered(struct xe_exec_queue *q)
81 {
82 	atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
83 }
84 
85 static bool exec_queue_enabled(struct xe_exec_queue *q)
86 {
87 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
88 }
89 
90 static void set_exec_queue_enabled(struct xe_exec_queue *q)
91 {
92 	atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
93 }
94 
95 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
96 {
97 	atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
98 }
99 
100 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
101 {
102 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
103 }
104 
105 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
106 {
107 	atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
108 }
109 
110 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
111 {
112 	atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
113 }
114 
115 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
116 {
117 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
118 }
119 
120 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
121 {
122 	atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
123 }
124 
125 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
126 {
127 	atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
128 }
129 
130 static bool exec_queue_destroyed(struct xe_exec_queue *q)
131 {
132 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
133 }
134 
135 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
136 {
137 	atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
138 }
139 
140 static bool exec_queue_banned(struct xe_exec_queue *q)
141 {
142 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
143 }
144 
145 static void set_exec_queue_banned(struct xe_exec_queue *q)
146 {
147 	atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
148 }
149 
150 static bool exec_queue_suspended(struct xe_exec_queue *q)
151 {
152 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
153 }
154 
155 static void set_exec_queue_suspended(struct xe_exec_queue *q)
156 {
157 	atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
158 }
159 
160 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
161 {
162 	atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
163 }
164 
165 static bool exec_queue_reset(struct xe_exec_queue *q)
166 {
167 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
168 }
169 
170 static void set_exec_queue_reset(struct xe_exec_queue *q)
171 {
172 	atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
173 }
174 
175 static bool exec_queue_killed(struct xe_exec_queue *q)
176 {
177 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
178 }
179 
180 static void set_exec_queue_killed(struct xe_exec_queue *q)
181 {
182 	atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
183 }
184 
185 static bool exec_queue_wedged(struct xe_exec_queue *q)
186 {
187 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
188 }
189 
190 static void set_exec_queue_wedged(struct xe_exec_queue *q)
191 {
192 	atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
193 }
194 
195 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
196 {
197 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
198 }
199 
200 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
201 {
202 	atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
203 }
204 
205 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
206 {
207 	atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
208 }
209 
210 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
211 {
212 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
213 }
214 
215 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
216 {
217 	atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
218 }
219 
220 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
221 {
222 	return (atomic_read(&q->guc->state) &
223 		(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
224 		 EXEC_QUEUE_STATE_BANNED));
225 }
226 
227 static void guc_submit_fini(struct drm_device *drm, void *arg)
228 {
229 	struct xe_guc *guc = arg;
230 
231 	xa_destroy(&guc->submission_state.exec_queue_lookup);
232 }
233 
234 static void guc_submit_wedged_fini(void *arg)
235 {
236 	struct xe_guc *guc = arg;
237 	struct xe_exec_queue *q;
238 	unsigned long index;
239 
240 	mutex_lock(&guc->submission_state.lock);
241 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
242 		if (exec_queue_wedged(q)) {
243 			mutex_unlock(&guc->submission_state.lock);
244 			xe_exec_queue_put(q);
245 			mutex_lock(&guc->submission_state.lock);
246 		}
247 	}
248 	mutex_unlock(&guc->submission_state.lock);
249 }
250 
251 static const struct xe_exec_queue_ops guc_exec_queue_ops;
252 
253 static void primelockdep(struct xe_guc *guc)
254 {
255 	if (!IS_ENABLED(CONFIG_LOCKDEP))
256 		return;
257 
258 	fs_reclaim_acquire(GFP_KERNEL);
259 
260 	mutex_lock(&guc->submission_state.lock);
261 	mutex_unlock(&guc->submission_state.lock);
262 
263 	fs_reclaim_release(GFP_KERNEL);
264 }
265 
266 /**
267  * xe_guc_submit_init() - Initialize GuC submission.
268  * @guc: the &xe_guc to initialize
269  * @num_ids: number of GuC context IDs to use
270  *
271  * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
272  * GuC context IDs supported by the GuC firmware should be used for submission.
273  *
274  * Only VF drivers will have to provide explicit number of GuC context IDs
275  * that they can use for submission.
276  *
277  * Return: 0 on success or a negative error code on failure.
278  */
279 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
280 {
281 	struct xe_device *xe = guc_to_xe(guc);
282 	struct xe_gt *gt = guc_to_gt(guc);
283 	int err;
284 
285 	err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
286 	if (err)
287 		return err;
288 
289 	err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
290 	if (err)
291 		return err;
292 
293 	gt->exec_queue_ops = &guc_exec_queue_ops;
294 
295 	xa_init(&guc->submission_state.exec_queue_lookup);
296 
297 	init_waitqueue_head(&guc->submission_state.fini_wq);
298 
299 	primelockdep(guc);
300 
301 	return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
302 }
303 
304 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
305 {
306 	int i;
307 
308 	lockdep_assert_held(&guc->submission_state.lock);
309 
310 	for (i = 0; i < xa_count; ++i)
311 		xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
312 
313 	xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
314 				     q->guc->id, q->width);
315 
316 	if (xa_empty(&guc->submission_state.exec_queue_lookup))
317 		wake_up(&guc->submission_state.fini_wq);
318 }
319 
320 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
321 {
322 	int ret;
323 	int i;
324 
325 	/*
326 	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
327 	 * worse case user gets -ENOMEM on engine create and has to try again.
328 	 *
329 	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
330 	 * failure.
331 	 */
332 	lockdep_assert_held(&guc->submission_state.lock);
333 
334 	ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
335 					   q->width);
336 	if (ret < 0)
337 		return ret;
338 
339 	q->guc->id = ret;
340 
341 	for (i = 0; i < q->width; ++i) {
342 		ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
343 				      q->guc->id + i, q, GFP_NOWAIT));
344 		if (ret)
345 			goto err_release;
346 	}
347 
348 	return 0;
349 
350 err_release:
351 	__release_guc_id(guc, q, i);
352 
353 	return ret;
354 }
355 
356 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
357 {
358 	mutex_lock(&guc->submission_state.lock);
359 	__release_guc_id(guc, q, q->width);
360 	mutex_unlock(&guc->submission_state.lock);
361 }
362 
363 struct exec_queue_policy {
364 	u32 count;
365 	struct guc_update_exec_queue_policy h2g;
366 };
367 
368 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
369 {
370 	size_t bytes = sizeof(policy->h2g.header) +
371 		       (sizeof(policy->h2g.klv[0]) * policy->count);
372 
373 	return bytes / sizeof(u32);
374 }
375 
376 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
377 					      u16 guc_id)
378 {
379 	policy->h2g.header.action =
380 		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
381 	policy->h2g.header.guc_id = guc_id;
382 	policy->count = 0;
383 }
384 
385 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
386 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
387 					   u32 data) \
388 { \
389 	XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
390 \
391 	policy->h2g.klv[policy->count].kl = \
392 		FIELD_PREP(GUC_KLV_0_KEY, \
393 			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
394 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
395 	policy->h2g.klv[policy->count].value = data; \
396 	policy->count++; \
397 }
398 
399 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
400 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
401 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
402 #undef MAKE_EXEC_QUEUE_POLICY_ADD
403 
404 static const int xe_exec_queue_prio_to_guc[] = {
405 	[XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
406 	[XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
407 	[XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
408 	[XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
409 };
410 
411 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
412 {
413 	struct exec_queue_policy policy;
414 	struct xe_device *xe = guc_to_xe(guc);
415 	enum xe_exec_queue_priority prio = q->sched_props.priority;
416 	u32 timeslice_us = q->sched_props.timeslice_us;
417 	u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
418 
419 	xe_assert(xe, exec_queue_registered(q));
420 
421 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
422 	__guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
423 	__guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
424 	__guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
425 
426 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
427 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
428 }
429 
430 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
431 {
432 	struct exec_queue_policy policy;
433 
434 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
435 	__guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
436 
437 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
438 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
439 }
440 
441 #define parallel_read(xe_, map_, field_) \
442 	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
443 			field_)
444 #define parallel_write(xe_, map_, field_, val_) \
445 	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
446 			field_, val_)
447 
448 static void __register_mlrc_exec_queue(struct xe_guc *guc,
449 				       struct xe_exec_queue *q,
450 				       struct guc_ctxt_registration_info *info)
451 {
452 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
453 	struct xe_device *xe = guc_to_xe(guc);
454 	u32 action[MAX_MLRC_REG_SIZE];
455 	int len = 0;
456 	int i;
457 
458 	xe_assert(xe, xe_exec_queue_is_parallel(q));
459 
460 	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
461 	action[len++] = info->flags;
462 	action[len++] = info->context_idx;
463 	action[len++] = info->engine_class;
464 	action[len++] = info->engine_submit_mask;
465 	action[len++] = info->wq_desc_lo;
466 	action[len++] = info->wq_desc_hi;
467 	action[len++] = info->wq_base_lo;
468 	action[len++] = info->wq_base_hi;
469 	action[len++] = info->wq_size;
470 	action[len++] = q->width;
471 	action[len++] = info->hwlrca_lo;
472 	action[len++] = info->hwlrca_hi;
473 
474 	for (i = 1; i < q->width; ++i) {
475 		struct xe_lrc *lrc = q->lrc[i];
476 
477 		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
478 		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
479 	}
480 
481 	xe_assert(xe, len <= MAX_MLRC_REG_SIZE);
482 #undef MAX_MLRC_REG_SIZE
483 
484 	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
485 }
486 
487 static void __register_exec_queue(struct xe_guc *guc,
488 				  struct guc_ctxt_registration_info *info)
489 {
490 	u32 action[] = {
491 		XE_GUC_ACTION_REGISTER_CONTEXT,
492 		info->flags,
493 		info->context_idx,
494 		info->engine_class,
495 		info->engine_submit_mask,
496 		info->wq_desc_lo,
497 		info->wq_desc_hi,
498 		info->wq_base_lo,
499 		info->wq_base_hi,
500 		info->wq_size,
501 		info->hwlrca_lo,
502 		info->hwlrca_hi,
503 	};
504 
505 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
506 }
507 
508 static void register_exec_queue(struct xe_exec_queue *q)
509 {
510 	struct xe_guc *guc = exec_queue_to_guc(q);
511 	struct xe_device *xe = guc_to_xe(guc);
512 	struct xe_lrc *lrc = q->lrc[0];
513 	struct guc_ctxt_registration_info info;
514 
515 	xe_assert(xe, !exec_queue_registered(q));
516 
517 	memset(&info, 0, sizeof(info));
518 	info.context_idx = q->guc->id;
519 	info.engine_class = xe_engine_class_to_guc_class(q->class);
520 	info.engine_submit_mask = q->logical_mask;
521 	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
522 	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
523 	info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
524 
525 	if (xe_exec_queue_is_parallel(q)) {
526 		u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
527 		struct iosys_map map = xe_lrc_parallel_map(lrc);
528 
529 		info.wq_desc_lo = lower_32_bits(ggtt_addr +
530 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
531 		info.wq_desc_hi = upper_32_bits(ggtt_addr +
532 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
533 		info.wq_base_lo = lower_32_bits(ggtt_addr +
534 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
535 		info.wq_base_hi = upper_32_bits(ggtt_addr +
536 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
537 		info.wq_size = WQ_SIZE;
538 
539 		q->guc->wqi_head = 0;
540 		q->guc->wqi_tail = 0;
541 		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
542 		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
543 	}
544 
545 	/*
546 	 * We must keep a reference for LR engines if engine is registered with
547 	 * the GuC as jobs signal immediately and can't destroy an engine if the
548 	 * GuC has a reference to it.
549 	 */
550 	if (xe_exec_queue_is_lr(q))
551 		xe_exec_queue_get(q);
552 
553 	set_exec_queue_registered(q);
554 	trace_xe_exec_queue_register(q);
555 	if (xe_exec_queue_is_parallel(q))
556 		__register_mlrc_exec_queue(guc, q, &info);
557 	else
558 		__register_exec_queue(guc, &info);
559 	init_policies(guc, q);
560 }
561 
562 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
563 {
564 	return (WQ_SIZE - q->guc->wqi_tail);
565 }
566 
567 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
568 {
569 	struct xe_guc *guc = exec_queue_to_guc(q);
570 	struct xe_device *xe = guc_to_xe(guc);
571 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
572 	unsigned int sleep_period_ms = 1;
573 
574 #define AVAILABLE_SPACE \
575 	CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
576 	if (wqi_size > AVAILABLE_SPACE) {
577 try_again:
578 		q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
579 		if (wqi_size > AVAILABLE_SPACE) {
580 			if (sleep_period_ms == 1024) {
581 				xe_gt_reset_async(q->gt);
582 				return -ENODEV;
583 			}
584 
585 			msleep(sleep_period_ms);
586 			sleep_period_ms <<= 1;
587 			goto try_again;
588 		}
589 	}
590 #undef AVAILABLE_SPACE
591 
592 	return 0;
593 }
594 
595 static int wq_noop_append(struct xe_exec_queue *q)
596 {
597 	struct xe_guc *guc = exec_queue_to_guc(q);
598 	struct xe_device *xe = guc_to_xe(guc);
599 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
600 	u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
601 
602 	if (wq_wait_for_space(q, wq_space_until_wrap(q)))
603 		return -ENODEV;
604 
605 	xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw));
606 
607 	parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
608 		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
609 		       FIELD_PREP(WQ_LEN_MASK, len_dw));
610 	q->guc->wqi_tail = 0;
611 
612 	return 0;
613 }
614 
615 static void wq_item_append(struct xe_exec_queue *q)
616 {
617 	struct xe_guc *guc = exec_queue_to_guc(q);
618 	struct xe_device *xe = guc_to_xe(guc);
619 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
620 #define WQ_HEADER_SIZE	4	/* Includes 1 LRC address too */
621 	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
622 	u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
623 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
624 	int i = 0, j;
625 
626 	if (wqi_size > wq_space_until_wrap(q)) {
627 		if (wq_noop_append(q))
628 			return;
629 	}
630 	if (wq_wait_for_space(q, wqi_size))
631 		return;
632 
633 	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
634 		FIELD_PREP(WQ_LEN_MASK, len_dw);
635 	wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
636 	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
637 		FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
638 	wqi[i++] = 0;
639 	for (j = 1; j < q->width; ++j) {
640 		struct xe_lrc *lrc = q->lrc[j];
641 
642 		wqi[i++] = lrc->ring.tail / sizeof(u64);
643 	}
644 
645 	xe_assert(xe, i == wqi_size / sizeof(u32));
646 
647 	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
648 				      wq[q->guc->wqi_tail / sizeof(u32)]));
649 	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
650 	q->guc->wqi_tail += wqi_size;
651 	xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE);
652 
653 	xe_device_wmb(xe);
654 
655 	map = xe_lrc_parallel_map(q->lrc[0]);
656 	parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
657 }
658 
659 #define RESUME_PENDING	~0x0ull
660 static void submit_exec_queue(struct xe_exec_queue *q)
661 {
662 	struct xe_guc *guc = exec_queue_to_guc(q);
663 	struct xe_device *xe = guc_to_xe(guc);
664 	struct xe_lrc *lrc = q->lrc[0];
665 	u32 action[3];
666 	u32 g2h_len = 0;
667 	u32 num_g2h = 0;
668 	int len = 0;
669 	bool extra_submit = false;
670 
671 	xe_assert(xe, exec_queue_registered(q));
672 
673 	if (xe_exec_queue_is_parallel(q))
674 		wq_item_append(q);
675 	else
676 		xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
677 
678 	if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
679 		return;
680 
681 	if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
682 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
683 		action[len++] = q->guc->id;
684 		action[len++] = GUC_CONTEXT_ENABLE;
685 		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
686 		num_g2h = 1;
687 		if (xe_exec_queue_is_parallel(q))
688 			extra_submit = true;
689 
690 		q->guc->resume_time = RESUME_PENDING;
691 		set_exec_queue_pending_enable(q);
692 		set_exec_queue_enabled(q);
693 		trace_xe_exec_queue_scheduling_enable(q);
694 	} else {
695 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
696 		action[len++] = q->guc->id;
697 		trace_xe_exec_queue_submit(q);
698 	}
699 
700 	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
701 
702 	if (extra_submit) {
703 		len = 0;
704 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
705 		action[len++] = q->guc->id;
706 		trace_xe_exec_queue_submit(q);
707 
708 		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
709 	}
710 }
711 
712 static struct dma_fence *
713 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
714 {
715 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
716 	struct xe_exec_queue *q = job->q;
717 	struct xe_guc *guc = exec_queue_to_guc(q);
718 	struct xe_device *xe = guc_to_xe(guc);
719 	bool lr = xe_exec_queue_is_lr(q);
720 
721 	xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
722 		  exec_queue_banned(q) || exec_queue_suspended(q));
723 
724 	trace_xe_sched_job_run(job);
725 
726 	if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
727 		if (!exec_queue_registered(q))
728 			register_exec_queue(q);
729 		if (!lr)	/* LR jobs are emitted in the exec IOCTL */
730 			q->ring_ops->emit_job(job);
731 		submit_exec_queue(q);
732 	}
733 
734 	if (lr) {
735 		xe_sched_job_set_error(job, -EOPNOTSUPP);
736 		return NULL;
737 	} else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) {
738 		return job->fence;
739 	} else {
740 		return dma_fence_get(job->fence);
741 	}
742 }
743 
744 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
745 {
746 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
747 
748 	trace_xe_sched_job_free(job);
749 	xe_sched_job_put(job);
750 }
751 
752 static int guc_read_stopped(struct xe_guc *guc)
753 {
754 	return atomic_read(&guc->submission_state.stopped);
755 }
756 
757 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)			\
758 	u32 action[] = {						\
759 		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
760 		q->guc->id,						\
761 		GUC_CONTEXT_##enable_disable,				\
762 	}
763 
764 static void disable_scheduling_deregister(struct xe_guc *guc,
765 					  struct xe_exec_queue *q)
766 {
767 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
768 	struct xe_device *xe = guc_to_xe(guc);
769 	int ret;
770 
771 	set_min_preemption_timeout(guc, q);
772 	smp_rmb();
773 	ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) ||
774 				 guc_read_stopped(guc), HZ * 5);
775 	if (!ret) {
776 		struct xe_gpu_scheduler *sched = &q->guc->sched;
777 
778 		drm_warn(&xe->drm, "Pending enable failed to respond");
779 		xe_sched_submission_start(sched);
780 		xe_gt_reset_async(q->gt);
781 		xe_sched_tdr_queue_imm(sched);
782 		return;
783 	}
784 
785 	clear_exec_queue_enabled(q);
786 	set_exec_queue_pending_disable(q);
787 	set_exec_queue_destroyed(q);
788 	trace_xe_exec_queue_scheduling_disable(q);
789 
790 	/*
791 	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
792 	 * handler and we are not allowed to reserved G2H space in handlers.
793 	 */
794 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
795 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
796 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
797 }
798 
799 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
800 {
801 	struct xe_guc *guc = exec_queue_to_guc(q);
802 	struct xe_device *xe = guc_to_xe(guc);
803 
804 	/** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
805 	wake_up_all(&xe->ufence_wq);
806 
807 	if (xe_exec_queue_is_lr(q))
808 		queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
809 	else
810 		xe_sched_tdr_queue_imm(&q->guc->sched);
811 }
812 
813 /**
814  * xe_guc_submit_wedge() - Wedge GuC submission
815  * @guc: the GuC object
816  *
817  * Save exec queue's registered with GuC state by taking a ref to each queue.
818  * Register a DRMM handler to drop refs upon driver unload.
819  */
820 void xe_guc_submit_wedge(struct xe_guc *guc)
821 {
822 	struct xe_device *xe = guc_to_xe(guc);
823 	struct xe_exec_queue *q;
824 	unsigned long index;
825 	int err;
826 
827 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
828 
829 	err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
830 				       guc_submit_wedged_fini, guc);
831 	if (err) {
832 		drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n");
833 		return;
834 	}
835 
836 	mutex_lock(&guc->submission_state.lock);
837 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
838 		if (xe_exec_queue_get_unless_zero(q))
839 			set_exec_queue_wedged(q);
840 	mutex_unlock(&guc->submission_state.lock);
841 }
842 
843 static bool guc_submit_hint_wedged(struct xe_guc *guc)
844 {
845 	struct xe_device *xe = guc_to_xe(guc);
846 
847 	if (xe->wedged.mode != 2)
848 		return false;
849 
850 	if (xe_device_wedged(xe))
851 		return true;
852 
853 	xe_device_declare_wedged(xe);
854 
855 	return true;
856 }
857 
858 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
859 {
860 	struct xe_guc_exec_queue *ge =
861 		container_of(w, struct xe_guc_exec_queue, lr_tdr);
862 	struct xe_exec_queue *q = ge->q;
863 	struct xe_guc *guc = exec_queue_to_guc(q);
864 	struct xe_device *xe = guc_to_xe(guc);
865 	struct xe_gpu_scheduler *sched = &ge->sched;
866 	bool wedged;
867 
868 	xe_assert(xe, xe_exec_queue_is_lr(q));
869 	trace_xe_exec_queue_lr_cleanup(q);
870 
871 	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
872 
873 	/* Kill the run_job / process_msg entry points */
874 	xe_sched_submission_stop(sched);
875 
876 	/*
877 	 * Engine state now mostly stable, disable scheduling / deregister if
878 	 * needed. This cleanup routine might be called multiple times, where
879 	 * the actual async engine deregister drops the final engine ref.
880 	 * Calling disable_scheduling_deregister will mark the engine as
881 	 * destroyed and fire off the CT requests to disable scheduling /
882 	 * deregister, which we only want to do once. We also don't want to mark
883 	 * the engine as pending_disable again as this may race with the
884 	 * xe_guc_deregister_done_handler() which treats it as an unexpected
885 	 * state.
886 	 */
887 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
888 		struct xe_guc *guc = exec_queue_to_guc(q);
889 		int ret;
890 
891 		set_exec_queue_banned(q);
892 		disable_scheduling_deregister(guc, q);
893 
894 		/*
895 		 * Must wait for scheduling to be disabled before signalling
896 		 * any fences, if GT broken the GT reset code should signal us.
897 		 */
898 		ret = wait_event_timeout(guc->ct.wq,
899 					 !exec_queue_pending_disable(q) ||
900 					 guc_read_stopped(guc), HZ * 5);
901 		if (!ret) {
902 			drm_warn(&xe->drm, "Schedule disable failed to respond");
903 			xe_sched_submission_start(sched);
904 			xe_gt_reset_async(q->gt);
905 			return;
906 		}
907 	}
908 
909 	xe_sched_submission_start(sched);
910 }
911 
912 #define ADJUST_FIVE_PERCENT(__t)	mul_u64_u32_div(__t, 105, 100)
913 
914 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
915 {
916 	struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
917 	u32 ctx_timestamp, ctx_job_timestamp;
918 	u32 timeout_ms = q->sched_props.job_timeout_ms;
919 	u32 diff;
920 	u64 running_time_ms;
921 
922 	if (!xe_sched_job_started(job)) {
923 		xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
924 			   xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
925 			   q->guc->id);
926 
927 		return xe_sched_invalidate_job(job, 2);
928 	}
929 
930 	ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]);
931 	ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
932 
933 	/*
934 	 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
935 	 * possible overflows with a high timeout.
936 	 */
937 	xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
938 
939 	if (ctx_timestamp < ctx_job_timestamp)
940 		diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
941 	else
942 		diff = ctx_timestamp - ctx_job_timestamp;
943 
944 	/*
945 	 * Ensure timeout is within 5% to account for an GuC scheduling latency
946 	 */
947 	running_time_ms =
948 		ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
949 
950 	xe_gt_dbg(gt,
951 		  "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
952 		  xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
953 		  q->guc->id, running_time_ms, timeout_ms, diff);
954 
955 	return running_time_ms >= timeout_ms;
956 }
957 
958 static void enable_scheduling(struct xe_exec_queue *q)
959 {
960 	MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
961 	struct xe_guc *guc = exec_queue_to_guc(q);
962 	int ret;
963 
964 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
965 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
966 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
967 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
968 
969 	set_exec_queue_pending_enable(q);
970 	set_exec_queue_enabled(q);
971 	trace_xe_exec_queue_scheduling_enable(q);
972 
973 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
974 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
975 
976 	ret = wait_event_timeout(guc->ct.wq,
977 				 !exec_queue_pending_enable(q) ||
978 				 guc_read_stopped(guc), HZ * 5);
979 	if (!ret || guc_read_stopped(guc)) {
980 		xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
981 		set_exec_queue_banned(q);
982 		xe_gt_reset_async(q->gt);
983 		xe_sched_tdr_queue_imm(&q->guc->sched);
984 	}
985 }
986 
987 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
988 {
989 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
990 	struct xe_guc *guc = exec_queue_to_guc(q);
991 
992 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
993 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
994 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
995 
996 	if (immediate)
997 		set_min_preemption_timeout(guc, q);
998 	clear_exec_queue_enabled(q);
999 	set_exec_queue_pending_disable(q);
1000 	trace_xe_exec_queue_scheduling_disable(q);
1001 
1002 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1003 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1004 }
1005 
1006 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1007 {
1008 	u32 action[] = {
1009 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1010 		q->guc->id,
1011 	};
1012 
1013 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1014 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1015 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1016 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1017 
1018 	set_exec_queue_destroyed(q);
1019 	trace_xe_exec_queue_deregister(q);
1020 
1021 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1022 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1023 }
1024 
1025 static enum drm_gpu_sched_stat
1026 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1027 {
1028 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
1029 	struct xe_sched_job *tmp_job;
1030 	struct xe_exec_queue *q = job->q;
1031 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1032 	struct xe_guc *guc = exec_queue_to_guc(q);
1033 	const char *process_name = "no process";
1034 	int err = -ETIME;
1035 	pid_t pid = -1;
1036 	int i = 0;
1037 	bool wedged, skip_timeout_check;
1038 
1039 	/*
1040 	 * TDR has fired before free job worker. Common if exec queue
1041 	 * immediately closed after last fence signaled. Add back to pending
1042 	 * list so job can be freed and kick scheduler ensuring free job is not
1043 	 * lost.
1044 	 */
1045 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1046 		xe_sched_add_pending_job(sched, job);
1047 		xe_sched_submission_start(sched);
1048 
1049 		return DRM_GPU_SCHED_STAT_NOMINAL;
1050 	}
1051 
1052 	/* Kill the run_job entry point */
1053 	xe_sched_submission_stop(sched);
1054 
1055 	/* Must check all state after stopping scheduler */
1056 	skip_timeout_check = exec_queue_reset(q) ||
1057 		exec_queue_killed_or_banned_or_wedged(q) ||
1058 		exec_queue_destroyed(q);
1059 
1060 	/*
1061 	 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1062 	 * modify scheduling state to read timestamp. We could read the
1063 	 * timestamp from a register to accumulate current running time but this
1064 	 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1065 	 * genuine timeouts.
1066 	 */
1067 	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1068 
1069 	/* Engine state now stable, disable scheduling to check timestamp */
1070 	if (!wedged && exec_queue_registered(q)) {
1071 		int ret;
1072 
1073 		if (exec_queue_reset(q))
1074 			err = -EIO;
1075 
1076 		if (!exec_queue_destroyed(q)) {
1077 			/*
1078 			 * Wait for any pending G2H to flush out before
1079 			 * modifying state
1080 			 */
1081 			ret = wait_event_timeout(guc->ct.wq,
1082 						 !exec_queue_pending_enable(q) ||
1083 						 guc_read_stopped(guc), HZ * 5);
1084 			if (!ret || guc_read_stopped(guc))
1085 				goto trigger_reset;
1086 
1087 			/*
1088 			 * Flag communicates to G2H handler that schedule
1089 			 * disable originated from a timeout check. The G2H then
1090 			 * avoid triggering cleanup or deregistering the exec
1091 			 * queue.
1092 			 */
1093 			set_exec_queue_check_timeout(q);
1094 			disable_scheduling(q, skip_timeout_check);
1095 		}
1096 
1097 		/*
1098 		 * Must wait for scheduling to be disabled before signalling
1099 		 * any fences, if GT broken the GT reset code should signal us.
1100 		 *
1101 		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1102 		 * error) messages which can cause the schedule disable to get
1103 		 * lost. If this occurs, trigger a GT reset to recover.
1104 		 */
1105 		smp_rmb();
1106 		ret = wait_event_timeout(guc->ct.wq,
1107 					 !exec_queue_pending_disable(q) ||
1108 					 guc_read_stopped(guc), HZ * 5);
1109 		if (!ret || guc_read_stopped(guc)) {
1110 trigger_reset:
1111 			if (!ret)
1112 				xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond");
1113 			set_exec_queue_extra_ref(q);
1114 			xe_exec_queue_get(q);	/* GT reset owns this */
1115 			set_exec_queue_banned(q);
1116 			xe_gt_reset_async(q->gt);
1117 			xe_sched_tdr_queue_imm(sched);
1118 			goto rearm;
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Check if job is actually timed out, if so restart job execution and TDR
1124 	 */
1125 	if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1126 	    !exec_queue_reset(q) && exec_queue_registered(q)) {
1127 		clear_exec_queue_check_timeout(q);
1128 		goto sched_enable;
1129 	}
1130 
1131 	if (q->vm && q->vm->xef) {
1132 		process_name = q->vm->xef->process_name;
1133 		pid = q->vm->xef->pid;
1134 	}
1135 	xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1136 		     xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1137 		     q->guc->id, q->flags, process_name, pid);
1138 
1139 	trace_xe_sched_job_timedout(job);
1140 
1141 	if (!exec_queue_killed(q))
1142 		xe_devcoredump(job);
1143 
1144 	/*
1145 	 * Kernel jobs should never fail, nor should VM jobs if they do
1146 	 * somethings has gone wrong and the GT needs a reset
1147 	 */
1148 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1149 		   "Kernel-submitted job timed out\n");
1150 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1151 		   "VM job timed out on non-killed execqueue\n");
1152 	if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1153 			(q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1154 		if (!xe_sched_invalidate_job(job, 2)) {
1155 			clear_exec_queue_check_timeout(q);
1156 			xe_gt_reset_async(q->gt);
1157 			goto rearm;
1158 		}
1159 	}
1160 
1161 	/* Finish cleaning up exec queue via deregister */
1162 	set_exec_queue_banned(q);
1163 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1164 		set_exec_queue_extra_ref(q);
1165 		xe_exec_queue_get(q);
1166 		__deregister_exec_queue(guc, q);
1167 	}
1168 
1169 	/* Stop fence signaling */
1170 	xe_hw_fence_irq_stop(q->fence_irq);
1171 
1172 	/*
1173 	 * Fence state now stable, stop / start scheduler which cleans up any
1174 	 * fences that are complete
1175 	 */
1176 	xe_sched_add_pending_job(sched, job);
1177 	xe_sched_submission_start(sched);
1178 
1179 	xe_guc_exec_queue_trigger_cleanup(q);
1180 
1181 	/* Mark all outstanding jobs as bad, thus completing them */
1182 	spin_lock(&sched->base.job_list_lock);
1183 	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1184 		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1185 	spin_unlock(&sched->base.job_list_lock);
1186 
1187 	/* Start fence signaling */
1188 	xe_hw_fence_irq_start(q->fence_irq);
1189 
1190 	return DRM_GPU_SCHED_STAT_NOMINAL;
1191 
1192 sched_enable:
1193 	enable_scheduling(q);
1194 rearm:
1195 	/*
1196 	 * XXX: Ideally want to adjust timeout based on current exection time
1197 	 * but there is not currently an easy way to do in DRM scheduler. With
1198 	 * some thought, do this in a follow up.
1199 	 */
1200 	xe_sched_add_pending_job(sched, job);
1201 	xe_sched_submission_start(sched);
1202 
1203 	return DRM_GPU_SCHED_STAT_NOMINAL;
1204 }
1205 
1206 static void __guc_exec_queue_fini_async(struct work_struct *w)
1207 {
1208 	struct xe_guc_exec_queue *ge =
1209 		container_of(w, struct xe_guc_exec_queue, fini_async);
1210 	struct xe_exec_queue *q = ge->q;
1211 	struct xe_guc *guc = exec_queue_to_guc(q);
1212 
1213 	xe_pm_runtime_get(guc_to_xe(guc));
1214 	trace_xe_exec_queue_destroy(q);
1215 
1216 	if (xe_exec_queue_is_lr(q))
1217 		cancel_work_sync(&ge->lr_tdr);
1218 	release_guc_id(guc, q);
1219 	xe_sched_entity_fini(&ge->entity);
1220 	xe_sched_fini(&ge->sched);
1221 
1222 	kfree(ge);
1223 	xe_exec_queue_fini(q);
1224 	xe_pm_runtime_put(guc_to_xe(guc));
1225 }
1226 
1227 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1228 {
1229 	struct xe_guc *guc = exec_queue_to_guc(q);
1230 	struct xe_device *xe = guc_to_xe(guc);
1231 
1232 	INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1233 
1234 	/* We must block on kernel engines so slabs are empty on driver unload */
1235 	if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1236 		__guc_exec_queue_fini_async(&q->guc->fini_async);
1237 	else
1238 		queue_work(xe->destroy_wq, &q->guc->fini_async);
1239 }
1240 
1241 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1242 {
1243 	/*
1244 	 * Might be done from within the GPU scheduler, need to do async as we
1245 	 * fini the scheduler when the engine is fini'd, the scheduler can't
1246 	 * complete fini within itself (circular dependency). Async resolves
1247 	 * this we and don't really care when everything is fini'd, just that it
1248 	 * is.
1249 	 */
1250 	guc_exec_queue_fini_async(q);
1251 }
1252 
1253 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1254 {
1255 	struct xe_exec_queue *q = msg->private_data;
1256 	struct xe_guc *guc = exec_queue_to_guc(q);
1257 	struct xe_device *xe = guc_to_xe(guc);
1258 
1259 	xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1260 	trace_xe_exec_queue_cleanup_entity(q);
1261 
1262 	if (exec_queue_registered(q))
1263 		disable_scheduling_deregister(guc, q);
1264 	else
1265 		__guc_exec_queue_fini(guc, q);
1266 }
1267 
1268 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1269 {
1270 	return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1271 }
1272 
1273 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1274 {
1275 	struct xe_exec_queue *q = msg->private_data;
1276 	struct xe_guc *guc = exec_queue_to_guc(q);
1277 
1278 	if (guc_exec_queue_allowed_to_change_state(q))
1279 		init_policies(guc, q);
1280 	kfree(msg);
1281 }
1282 
1283 static void __suspend_fence_signal(struct xe_exec_queue *q)
1284 {
1285 	if (!q->guc->suspend_pending)
1286 		return;
1287 
1288 	WRITE_ONCE(q->guc->suspend_pending, false);
1289 	wake_up(&q->guc->suspend_wait);
1290 }
1291 
1292 static void suspend_fence_signal(struct xe_exec_queue *q)
1293 {
1294 	struct xe_guc *guc = exec_queue_to_guc(q);
1295 	struct xe_device *xe = guc_to_xe(guc);
1296 
1297 	xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) ||
1298 		  guc_read_stopped(guc));
1299 	xe_assert(xe, q->guc->suspend_pending);
1300 
1301 	__suspend_fence_signal(q);
1302 }
1303 
1304 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1305 {
1306 	struct xe_exec_queue *q = msg->private_data;
1307 	struct xe_guc *guc = exec_queue_to_guc(q);
1308 
1309 	if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1310 	    exec_queue_enabled(q)) {
1311 		wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING ||
1312 			   guc_read_stopped(guc));
1313 
1314 		if (!guc_read_stopped(guc)) {
1315 			s64 since_resume_ms =
1316 				ktime_ms_delta(ktime_get(),
1317 					       q->guc->resume_time);
1318 			s64 wait_ms = q->vm->preempt.min_run_period_ms -
1319 				since_resume_ms;
1320 
1321 			if (wait_ms > 0 && q->guc->resume_time)
1322 				msleep(wait_ms);
1323 
1324 			set_exec_queue_suspended(q);
1325 			disable_scheduling(q, false);
1326 		}
1327 	} else if (q->guc->suspend_pending) {
1328 		set_exec_queue_suspended(q);
1329 		suspend_fence_signal(q);
1330 	}
1331 }
1332 
1333 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1334 {
1335 	struct xe_exec_queue *q = msg->private_data;
1336 
1337 	if (guc_exec_queue_allowed_to_change_state(q)) {
1338 		clear_exec_queue_suspended(q);
1339 		if (!exec_queue_enabled(q)) {
1340 			q->guc->resume_time = RESUME_PENDING;
1341 			enable_scheduling(q);
1342 		}
1343 	} else {
1344 		clear_exec_queue_suspended(q);
1345 	}
1346 }
1347 
1348 #define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1349 #define SET_SCHED_PROPS	2
1350 #define SUSPEND		3
1351 #define RESUME		4
1352 #define OPCODE_MASK	0xf
1353 #define MSG_LOCKED	BIT(8)
1354 
1355 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1356 {
1357 	struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1358 
1359 	trace_xe_sched_msg_recv(msg);
1360 
1361 	switch (msg->opcode) {
1362 	case CLEANUP:
1363 		__guc_exec_queue_process_msg_cleanup(msg);
1364 		break;
1365 	case SET_SCHED_PROPS:
1366 		__guc_exec_queue_process_msg_set_sched_props(msg);
1367 		break;
1368 	case SUSPEND:
1369 		__guc_exec_queue_process_msg_suspend(msg);
1370 		break;
1371 	case RESUME:
1372 		__guc_exec_queue_process_msg_resume(msg);
1373 		break;
1374 	default:
1375 		XE_WARN_ON("Unknown message type");
1376 	}
1377 
1378 	xe_pm_runtime_put(xe);
1379 }
1380 
1381 static const struct drm_sched_backend_ops drm_sched_ops = {
1382 	.run_job = guc_exec_queue_run_job,
1383 	.free_job = guc_exec_queue_free_job,
1384 	.timedout_job = guc_exec_queue_timedout_job,
1385 };
1386 
1387 static const struct xe_sched_backend_ops xe_sched_ops = {
1388 	.process_msg = guc_exec_queue_process_msg,
1389 };
1390 
1391 static int guc_exec_queue_init(struct xe_exec_queue *q)
1392 {
1393 	struct xe_gpu_scheduler *sched;
1394 	struct xe_guc *guc = exec_queue_to_guc(q);
1395 	struct xe_device *xe = guc_to_xe(guc);
1396 	struct xe_guc_exec_queue *ge;
1397 	long timeout;
1398 	int err, i;
1399 
1400 	xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc)));
1401 
1402 	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1403 	if (!ge)
1404 		return -ENOMEM;
1405 
1406 	q->guc = ge;
1407 	ge->q = q;
1408 	init_waitqueue_head(&ge->suspend_wait);
1409 
1410 	for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1411 		INIT_LIST_HEAD(&ge->static_msgs[i].link);
1412 
1413 	timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1414 		  msecs_to_jiffies(q->sched_props.job_timeout_ms);
1415 	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1416 			    NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1417 			    timeout, guc_to_gt(guc)->ordered_wq, NULL,
1418 			    q->name, gt_to_xe(q->gt)->drm.dev);
1419 	if (err)
1420 		goto err_free;
1421 
1422 	sched = &ge->sched;
1423 	err = xe_sched_entity_init(&ge->entity, sched);
1424 	if (err)
1425 		goto err_sched;
1426 
1427 	if (xe_exec_queue_is_lr(q))
1428 		INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1429 
1430 	mutex_lock(&guc->submission_state.lock);
1431 
1432 	err = alloc_guc_id(guc, q);
1433 	if (err)
1434 		goto err_entity;
1435 
1436 	q->entity = &ge->entity;
1437 
1438 	if (guc_read_stopped(guc))
1439 		xe_sched_stop(sched);
1440 
1441 	mutex_unlock(&guc->submission_state.lock);
1442 
1443 	xe_exec_queue_assign_name(q, q->guc->id);
1444 
1445 	trace_xe_exec_queue_create(q);
1446 
1447 	return 0;
1448 
1449 err_entity:
1450 	mutex_unlock(&guc->submission_state.lock);
1451 	xe_sched_entity_fini(&ge->entity);
1452 err_sched:
1453 	xe_sched_fini(&ge->sched);
1454 err_free:
1455 	kfree(ge);
1456 
1457 	return err;
1458 }
1459 
1460 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1461 {
1462 	trace_xe_exec_queue_kill(q);
1463 	set_exec_queue_killed(q);
1464 	__suspend_fence_signal(q);
1465 	xe_guc_exec_queue_trigger_cleanup(q);
1466 }
1467 
1468 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1469 				   u32 opcode)
1470 {
1471 	xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1472 
1473 	INIT_LIST_HEAD(&msg->link);
1474 	msg->opcode = opcode & OPCODE_MASK;
1475 	msg->private_data = q;
1476 
1477 	trace_xe_sched_msg_add(msg);
1478 	if (opcode & MSG_LOCKED)
1479 		xe_sched_add_msg_locked(&q->guc->sched, msg);
1480 	else
1481 		xe_sched_add_msg(&q->guc->sched, msg);
1482 }
1483 
1484 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1485 				       struct xe_sched_msg *msg,
1486 				       u32 opcode)
1487 {
1488 	if (!list_empty(&msg->link))
1489 		return false;
1490 
1491 	guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1492 
1493 	return true;
1494 }
1495 
1496 #define STATIC_MSG_CLEANUP	0
1497 #define STATIC_MSG_SUSPEND	1
1498 #define STATIC_MSG_RESUME	2
1499 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1500 {
1501 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1502 
1503 	if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1504 		guc_exec_queue_add_msg(q, msg, CLEANUP);
1505 	else
1506 		__guc_exec_queue_fini(exec_queue_to_guc(q), q);
1507 }
1508 
1509 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1510 				       enum xe_exec_queue_priority priority)
1511 {
1512 	struct xe_sched_msg *msg;
1513 
1514 	if (q->sched_props.priority == priority ||
1515 	    exec_queue_killed_or_banned_or_wedged(q))
1516 		return 0;
1517 
1518 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1519 	if (!msg)
1520 		return -ENOMEM;
1521 
1522 	q->sched_props.priority = priority;
1523 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1524 
1525 	return 0;
1526 }
1527 
1528 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1529 {
1530 	struct xe_sched_msg *msg;
1531 
1532 	if (q->sched_props.timeslice_us == timeslice_us ||
1533 	    exec_queue_killed_or_banned_or_wedged(q))
1534 		return 0;
1535 
1536 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1537 	if (!msg)
1538 		return -ENOMEM;
1539 
1540 	q->sched_props.timeslice_us = timeslice_us;
1541 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1542 
1543 	return 0;
1544 }
1545 
1546 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1547 					      u32 preempt_timeout_us)
1548 {
1549 	struct xe_sched_msg *msg;
1550 
1551 	if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1552 	    exec_queue_killed_or_banned_or_wedged(q))
1553 		return 0;
1554 
1555 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1556 	if (!msg)
1557 		return -ENOMEM;
1558 
1559 	q->sched_props.preempt_timeout_us = preempt_timeout_us;
1560 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1561 
1562 	return 0;
1563 }
1564 
1565 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1566 {
1567 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1568 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1569 
1570 	if (exec_queue_killed_or_banned_or_wedged(q))
1571 		return -EINVAL;
1572 
1573 	xe_sched_msg_lock(sched);
1574 	if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1575 		q->guc->suspend_pending = true;
1576 	xe_sched_msg_unlock(sched);
1577 
1578 	return 0;
1579 }
1580 
1581 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1582 {
1583 	struct xe_guc *guc = exec_queue_to_guc(q);
1584 	int ret;
1585 
1586 	/*
1587 	 * Likely don't need to check exec_queue_killed() as we clear
1588 	 * suspend_pending upon kill but to be paranoid but races in which
1589 	 * suspend_pending is set after kill also check kill here.
1590 	 */
1591 	ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1592 					       !READ_ONCE(q->guc->suspend_pending) ||
1593 					       exec_queue_killed(q) ||
1594 					       guc_read_stopped(guc),
1595 					       HZ * 5);
1596 
1597 	if (!ret) {
1598 		xe_gt_warn(guc_to_gt(guc),
1599 			   "Suspend fence, guc_id=%d, failed to respond",
1600 			   q->guc->id);
1601 		/* XXX: Trigger GT reset? */
1602 		return -ETIME;
1603 	}
1604 
1605 	return ret < 0 ? ret : 0;
1606 }
1607 
1608 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1609 {
1610 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1611 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1612 	struct xe_guc *guc = exec_queue_to_guc(q);
1613 	struct xe_device *xe = guc_to_xe(guc);
1614 
1615 	xe_assert(xe, !q->guc->suspend_pending);
1616 
1617 	xe_sched_msg_lock(sched);
1618 	guc_exec_queue_try_add_msg(q, msg, RESUME);
1619 	xe_sched_msg_unlock(sched);
1620 }
1621 
1622 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1623 {
1624 	return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1625 }
1626 
1627 /*
1628  * All of these functions are an abstraction layer which other parts of XE can
1629  * use to trap into the GuC backend. All of these functions, aside from init,
1630  * really shouldn't do much other than trap into the DRM scheduler which
1631  * synchronizes these operations.
1632  */
1633 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1634 	.init = guc_exec_queue_init,
1635 	.kill = guc_exec_queue_kill,
1636 	.fini = guc_exec_queue_fini,
1637 	.set_priority = guc_exec_queue_set_priority,
1638 	.set_timeslice = guc_exec_queue_set_timeslice,
1639 	.set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1640 	.suspend = guc_exec_queue_suspend,
1641 	.suspend_wait = guc_exec_queue_suspend_wait,
1642 	.resume = guc_exec_queue_resume,
1643 	.reset_status = guc_exec_queue_reset_status,
1644 };
1645 
1646 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1647 {
1648 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1649 
1650 	/* Stop scheduling + flush any DRM scheduler operations */
1651 	xe_sched_submission_stop(sched);
1652 
1653 	/* Clean up lost G2H + reset engine state */
1654 	if (exec_queue_registered(q)) {
1655 		if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1656 			xe_exec_queue_put(q);
1657 		else if (exec_queue_destroyed(q))
1658 			__guc_exec_queue_fini(guc, q);
1659 	}
1660 	if (q->guc->suspend_pending) {
1661 		set_exec_queue_suspended(q);
1662 		suspend_fence_signal(q);
1663 	}
1664 	atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1665 		   EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1666 		   EXEC_QUEUE_STATE_SUSPENDED,
1667 		   &q->guc->state);
1668 	q->guc->resume_time = 0;
1669 	trace_xe_exec_queue_stop(q);
1670 
1671 	/*
1672 	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1673 	 * started but not complete job or if a job has gone through a GT reset
1674 	 * more than twice.
1675 	 */
1676 	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1677 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1678 		bool ban = false;
1679 
1680 		if (job) {
1681 			if ((xe_sched_job_started(job) &&
1682 			    !xe_sched_job_completed(job)) ||
1683 			    xe_sched_invalidate_job(job, 2)) {
1684 				trace_xe_sched_job_ban(job);
1685 				ban = true;
1686 			}
1687 		} else if (xe_exec_queue_is_lr(q) &&
1688 			   (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) {
1689 			ban = true;
1690 		}
1691 
1692 		if (ban) {
1693 			set_exec_queue_banned(q);
1694 			xe_guc_exec_queue_trigger_cleanup(q);
1695 		}
1696 	}
1697 }
1698 
1699 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1700 {
1701 	int ret;
1702 
1703 	/*
1704 	 * Using an atomic here rather than submission_state.lock as this
1705 	 * function can be called while holding the CT lock (engine reset
1706 	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1707 	 * Atomic is not ideal, but it works to prevent against concurrent reset
1708 	 * and releasing any TDRs waiting on guc->submission_state.stopped.
1709 	 */
1710 	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1711 	smp_wmb();
1712 	wake_up_all(&guc->ct.wq);
1713 
1714 	return ret;
1715 }
1716 
1717 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1718 {
1719 	wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1720 		   !guc_read_stopped(guc));
1721 }
1722 
1723 void xe_guc_submit_stop(struct xe_guc *guc)
1724 {
1725 	struct xe_exec_queue *q;
1726 	unsigned long index;
1727 	struct xe_device *xe = guc_to_xe(guc);
1728 
1729 	xe_assert(xe, guc_read_stopped(guc) == 1);
1730 
1731 	mutex_lock(&guc->submission_state.lock);
1732 
1733 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1734 		/* Prevent redundant attempts to stop parallel queues */
1735 		if (q->guc->id != index)
1736 			continue;
1737 
1738 		guc_exec_queue_stop(guc, q);
1739 	}
1740 
1741 	mutex_unlock(&guc->submission_state.lock);
1742 
1743 	/*
1744 	 * No one can enter the backend at this point, aside from new engine
1745 	 * creation which is protected by guc->submission_state.lock.
1746 	 */
1747 
1748 }
1749 
1750 static void guc_exec_queue_start(struct xe_exec_queue *q)
1751 {
1752 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1753 
1754 	if (!exec_queue_killed_or_banned_or_wedged(q)) {
1755 		int i;
1756 
1757 		trace_xe_exec_queue_resubmit(q);
1758 		for (i = 0; i < q->width; ++i)
1759 			xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1760 		xe_sched_resubmit_jobs(sched);
1761 	}
1762 
1763 	xe_sched_submission_start(sched);
1764 	xe_sched_submission_resume_tdr(sched);
1765 }
1766 
1767 int xe_guc_submit_start(struct xe_guc *guc)
1768 {
1769 	struct xe_exec_queue *q;
1770 	unsigned long index;
1771 	struct xe_device *xe = guc_to_xe(guc);
1772 
1773 	xe_assert(xe, guc_read_stopped(guc) == 1);
1774 
1775 	mutex_lock(&guc->submission_state.lock);
1776 	atomic_dec(&guc->submission_state.stopped);
1777 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1778 		/* Prevent redundant attempts to start parallel queues */
1779 		if (q->guc->id != index)
1780 			continue;
1781 
1782 		guc_exec_queue_start(q);
1783 	}
1784 	mutex_unlock(&guc->submission_state.lock);
1785 
1786 	wake_up_all(&guc->ct.wq);
1787 
1788 	return 0;
1789 }
1790 
1791 static struct xe_exec_queue *
1792 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1793 {
1794 	struct xe_device *xe = guc_to_xe(guc);
1795 	struct xe_exec_queue *q;
1796 
1797 	if (unlikely(guc_id >= GUC_ID_MAX)) {
1798 		drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1799 		return NULL;
1800 	}
1801 
1802 	q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1803 	if (unlikely(!q)) {
1804 		drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1805 		return NULL;
1806 	}
1807 
1808 	xe_assert(xe, guc_id >= q->guc->id);
1809 	xe_assert(xe, guc_id < (q->guc->id + q->width));
1810 
1811 	return q;
1812 }
1813 
1814 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1815 {
1816 	u32 action[] = {
1817 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1818 		q->guc->id,
1819 	};
1820 
1821 	xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1822 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1823 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1824 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1825 
1826 	trace_xe_exec_queue_deregister(q);
1827 
1828 	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1829 }
1830 
1831 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1832 			      u32 runnable_state)
1833 {
1834 	trace_xe_exec_queue_scheduling_done(q);
1835 
1836 	if (runnable_state == 1) {
1837 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1838 
1839 		q->guc->resume_time = ktime_get();
1840 		clear_exec_queue_pending_enable(q);
1841 		smp_wmb();
1842 		wake_up_all(&guc->ct.wq);
1843 	} else {
1844 		bool check_timeout = exec_queue_check_timeout(q);
1845 
1846 		xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1847 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1848 
1849 		clear_exec_queue_pending_disable(q);
1850 		if (q->guc->suspend_pending) {
1851 			suspend_fence_signal(q);
1852 		} else {
1853 			if (exec_queue_banned(q) || check_timeout) {
1854 				smp_wmb();
1855 				wake_up_all(&guc->ct.wq);
1856 			}
1857 			if (!check_timeout)
1858 				deregister_exec_queue(guc, q);
1859 		}
1860 	}
1861 }
1862 
1863 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1864 {
1865 	struct xe_device *xe = guc_to_xe(guc);
1866 	struct xe_exec_queue *q;
1867 	u32 guc_id = msg[0];
1868 	u32 runnable_state = msg[1];
1869 
1870 	if (unlikely(len < 2)) {
1871 		drm_err(&xe->drm, "Invalid length %u", len);
1872 		return -EPROTO;
1873 	}
1874 
1875 	q = g2h_exec_queue_lookup(guc, guc_id);
1876 	if (unlikely(!q))
1877 		return -EPROTO;
1878 
1879 	if (unlikely(!exec_queue_pending_enable(q) &&
1880 		     !exec_queue_pending_disable(q))) {
1881 		xe_gt_err(guc_to_gt(guc),
1882 			  "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1883 			  atomic_read(&q->guc->state), q->guc->id,
1884 			  runnable_state);
1885 		return -EPROTO;
1886 	}
1887 
1888 	handle_sched_done(guc, q, runnable_state);
1889 
1890 	return 0;
1891 }
1892 
1893 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1894 {
1895 	trace_xe_exec_queue_deregister_done(q);
1896 
1897 	clear_exec_queue_registered(q);
1898 
1899 	if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1900 		xe_exec_queue_put(q);
1901 	else
1902 		__guc_exec_queue_fini(guc, q);
1903 }
1904 
1905 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1906 {
1907 	struct xe_device *xe = guc_to_xe(guc);
1908 	struct xe_exec_queue *q;
1909 	u32 guc_id = msg[0];
1910 
1911 	if (unlikely(len < 1)) {
1912 		drm_err(&xe->drm, "Invalid length %u", len);
1913 		return -EPROTO;
1914 	}
1915 
1916 	q = g2h_exec_queue_lookup(guc, guc_id);
1917 	if (unlikely(!q))
1918 		return -EPROTO;
1919 
1920 	if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1921 	    exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1922 		xe_gt_err(guc_to_gt(guc),
1923 			  "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
1924 			  atomic_read(&q->guc->state), q->guc->id);
1925 		return -EPROTO;
1926 	}
1927 
1928 	handle_deregister_done(guc, q);
1929 
1930 	return 0;
1931 }
1932 
1933 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1934 {
1935 	struct xe_gt *gt = guc_to_gt(guc);
1936 	struct xe_device *xe = guc_to_xe(guc);
1937 	struct xe_exec_queue *q;
1938 	u32 guc_id = msg[0];
1939 
1940 	if (unlikely(len < 1)) {
1941 		drm_err(&xe->drm, "Invalid length %u", len);
1942 		return -EPROTO;
1943 	}
1944 
1945 	q = g2h_exec_queue_lookup(guc, guc_id);
1946 	if (unlikely(!q))
1947 		return -EPROTO;
1948 
1949 	xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
1950 		   xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
1951 
1952 	/* FIXME: Do error capture, most likely async */
1953 
1954 	trace_xe_exec_queue_reset(q);
1955 
1956 	/*
1957 	 * A banned engine is a NOP at this point (came from
1958 	 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
1959 	 * jobs by setting timeout of the job to the minimum value kicking
1960 	 * guc_exec_queue_timedout_job.
1961 	 */
1962 	set_exec_queue_reset(q);
1963 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
1964 		xe_guc_exec_queue_trigger_cleanup(q);
1965 
1966 	return 0;
1967 }
1968 
1969 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
1970 					       u32 len)
1971 {
1972 	struct xe_gt *gt = guc_to_gt(guc);
1973 	struct xe_device *xe = guc_to_xe(guc);
1974 	struct xe_exec_queue *q;
1975 	u32 guc_id = msg[0];
1976 
1977 	if (unlikely(len < 1)) {
1978 		drm_err(&xe->drm, "Invalid length %u", len);
1979 		return -EPROTO;
1980 	}
1981 
1982 	q = g2h_exec_queue_lookup(guc, guc_id);
1983 	if (unlikely(!q))
1984 		return -EPROTO;
1985 
1986 	xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
1987 		  xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
1988 
1989 	trace_xe_exec_queue_memory_cat_error(q);
1990 
1991 	/* Treat the same as engine reset */
1992 	set_exec_queue_reset(q);
1993 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
1994 		xe_guc_exec_queue_trigger_cleanup(q);
1995 
1996 	return 0;
1997 }
1998 
1999 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2000 {
2001 	struct xe_device *xe = guc_to_xe(guc);
2002 	u8 guc_class, instance;
2003 	u32 reason;
2004 
2005 	if (unlikely(len != 3)) {
2006 		drm_err(&xe->drm, "Invalid length %u", len);
2007 		return -EPROTO;
2008 	}
2009 
2010 	guc_class = msg[0];
2011 	instance = msg[1];
2012 	reason = msg[2];
2013 
2014 	/* Unexpected failure of a hardware feature, log an actual error */
2015 	drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
2016 		guc_class, instance, reason);
2017 
2018 	xe_gt_reset_async(guc_to_gt(guc));
2019 
2020 	return 0;
2021 }
2022 
2023 static void
2024 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2025 				   struct xe_guc_submit_exec_queue_snapshot *snapshot)
2026 {
2027 	struct xe_guc *guc = exec_queue_to_guc(q);
2028 	struct xe_device *xe = guc_to_xe(guc);
2029 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2030 	int i;
2031 
2032 	snapshot->guc.wqi_head = q->guc->wqi_head;
2033 	snapshot->guc.wqi_tail = q->guc->wqi_tail;
2034 	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2035 	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2036 	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2037 							  wq_desc.wq_status);
2038 
2039 	if (snapshot->parallel.wq_desc.head !=
2040 	    snapshot->parallel.wq_desc.tail) {
2041 		for (i = snapshot->parallel.wq_desc.head;
2042 		     i != snapshot->parallel.wq_desc.tail;
2043 		     i = (i + sizeof(u32)) % WQ_SIZE)
2044 			snapshot->parallel.wq[i / sizeof(u32)] =
2045 				parallel_read(xe, map, wq[i / sizeof(u32)]);
2046 	}
2047 }
2048 
2049 static void
2050 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2051 				 struct drm_printer *p)
2052 {
2053 	int i;
2054 
2055 	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2056 		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2057 	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2058 		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2059 	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2060 
2061 	if (snapshot->parallel.wq_desc.head !=
2062 	    snapshot->parallel.wq_desc.tail) {
2063 		for (i = snapshot->parallel.wq_desc.head;
2064 		     i != snapshot->parallel.wq_desc.tail;
2065 		     i = (i + sizeof(u32)) % WQ_SIZE)
2066 			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2067 				   snapshot->parallel.wq[i / sizeof(u32)]);
2068 	}
2069 }
2070 
2071 /**
2072  * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2073  * @q: faulty exec queue
2074  *
2075  * This can be printed out in a later stage like during dev_coredump
2076  * analysis.
2077  *
2078  * Returns: a GuC Submit Engine snapshot object that must be freed by the
2079  * caller, using `xe_guc_exec_queue_snapshot_free`.
2080  */
2081 struct xe_guc_submit_exec_queue_snapshot *
2082 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2083 {
2084 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2085 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2086 	int i;
2087 
2088 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2089 
2090 	if (!snapshot)
2091 		return NULL;
2092 
2093 	snapshot->guc.id = q->guc->id;
2094 	memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2095 	snapshot->class = q->class;
2096 	snapshot->logical_mask = q->logical_mask;
2097 	snapshot->width = q->width;
2098 	snapshot->refcount = kref_read(&q->refcount);
2099 	snapshot->sched_timeout = sched->base.timeout;
2100 	snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2101 	snapshot->sched_props.preempt_timeout_us =
2102 		q->sched_props.preempt_timeout_us;
2103 
2104 	snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2105 				      GFP_ATOMIC);
2106 
2107 	if (snapshot->lrc) {
2108 		for (i = 0; i < q->width; ++i) {
2109 			struct xe_lrc *lrc = q->lrc[i];
2110 
2111 			snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2112 		}
2113 	}
2114 
2115 	snapshot->schedule_state = atomic_read(&q->guc->state);
2116 	snapshot->exec_queue_flags = q->flags;
2117 
2118 	snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2119 	if (snapshot->parallel_execution)
2120 		guc_exec_queue_wq_snapshot_capture(q, snapshot);
2121 
2122 	spin_lock(&sched->base.job_list_lock);
2123 	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2124 	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2125 					       sizeof(struct pending_list_snapshot),
2126 					       GFP_ATOMIC);
2127 
2128 	if (snapshot->pending_list) {
2129 		struct xe_sched_job *job_iter;
2130 
2131 		i = 0;
2132 		list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2133 			snapshot->pending_list[i].seqno =
2134 				xe_sched_job_seqno(job_iter);
2135 			snapshot->pending_list[i].fence =
2136 				dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2137 			snapshot->pending_list[i].finished =
2138 				dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2139 				? 1 : 0;
2140 			i++;
2141 		}
2142 	}
2143 
2144 	spin_unlock(&sched->base.job_list_lock);
2145 
2146 	return snapshot;
2147 }
2148 
2149 /**
2150  * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2151  * @snapshot: Previously captured snapshot of job.
2152  *
2153  * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2154  */
2155 void
2156 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2157 {
2158 	int i;
2159 
2160 	if (!snapshot || !snapshot->lrc)
2161 		return;
2162 
2163 	for (i = 0; i < snapshot->width; ++i)
2164 		xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2165 }
2166 
2167 /**
2168  * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2169  * @snapshot: GuC Submit Engine snapshot object.
2170  * @p: drm_printer where it will be printed out.
2171  *
2172  * This function prints out a given GuC Submit Engine snapshot object.
2173  */
2174 void
2175 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2176 				 struct drm_printer *p)
2177 {
2178 	int i;
2179 
2180 	if (!snapshot)
2181 		return;
2182 
2183 	drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id);
2184 	drm_printf(p, "\tName: %s\n", snapshot->name);
2185 	drm_printf(p, "\tClass: %d\n", snapshot->class);
2186 	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2187 	drm_printf(p, "\tWidth: %d\n", snapshot->width);
2188 	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2189 	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2190 	drm_printf(p, "\tTimeslice: %u (us)\n",
2191 		   snapshot->sched_props.timeslice_us);
2192 	drm_printf(p, "\tPreempt timeout: %u (us)\n",
2193 		   snapshot->sched_props.preempt_timeout_us);
2194 
2195 	for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2196 		xe_lrc_snapshot_print(snapshot->lrc[i], p);
2197 
2198 	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2199 	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2200 
2201 	if (snapshot->parallel_execution)
2202 		guc_exec_queue_wq_snapshot_print(snapshot, p);
2203 
2204 	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2205 	     i++)
2206 		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2207 			   snapshot->pending_list[i].seqno,
2208 			   snapshot->pending_list[i].fence,
2209 			   snapshot->pending_list[i].finished);
2210 }
2211 
2212 /**
2213  * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2214  * snapshot.
2215  * @snapshot: GuC Submit Engine snapshot object.
2216  *
2217  * This function free all the memory that needed to be allocated at capture
2218  * time.
2219  */
2220 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2221 {
2222 	int i;
2223 
2224 	if (!snapshot)
2225 		return;
2226 
2227 	if (snapshot->lrc) {
2228 		for (i = 0; i < snapshot->width; i++)
2229 			xe_lrc_snapshot_free(snapshot->lrc[i]);
2230 		kfree(snapshot->lrc);
2231 	}
2232 	kfree(snapshot->pending_list);
2233 	kfree(snapshot);
2234 }
2235 
2236 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2237 {
2238 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2239 
2240 	snapshot = xe_guc_exec_queue_snapshot_capture(q);
2241 	xe_guc_exec_queue_snapshot_print(snapshot, p);
2242 	xe_guc_exec_queue_snapshot_free(snapshot);
2243 }
2244 
2245 /**
2246  * xe_guc_submit_print - GuC Submit Print.
2247  * @guc: GuC.
2248  * @p: drm_printer where it will be printed out.
2249  *
2250  * This function capture and prints snapshots of **all** GuC Engines.
2251  */
2252 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2253 {
2254 	struct xe_exec_queue *q;
2255 	unsigned long index;
2256 
2257 	if (!xe_device_uc_enabled(guc_to_xe(guc)))
2258 		return;
2259 
2260 	mutex_lock(&guc->submission_state.lock);
2261 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2262 		guc_exec_queue_print(q, p);
2263 	mutex_unlock(&guc->submission_state.lock);
2264 }
2265