1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 #include <linux/math64.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_actions_slpc_abi.h" 19 #include "abi/guc_klvs_abi.h" 20 #include "regs/xe_lrc_layout.h" 21 #include "xe_assert.h" 22 #include "xe_devcoredump.h" 23 #include "xe_device.h" 24 #include "xe_exec_queue.h" 25 #include "xe_force_wake.h" 26 #include "xe_gpu_scheduler.h" 27 #include "xe_gt.h" 28 #include "xe_gt_clock.h" 29 #include "xe_gt_printk.h" 30 #include "xe_guc.h" 31 #include "xe_guc_capture.h" 32 #include "xe_guc_ct.h" 33 #include "xe_guc_exec_queue_types.h" 34 #include "xe_guc_id_mgr.h" 35 #include "xe_guc_submit_types.h" 36 #include "xe_hw_engine.h" 37 #include "xe_hw_fence.h" 38 #include "xe_lrc.h" 39 #include "xe_macros.h" 40 #include "xe_map.h" 41 #include "xe_mocs.h" 42 #include "xe_pm.h" 43 #include "xe_ring_ops_types.h" 44 #include "xe_sched_job.h" 45 #include "xe_trace.h" 46 #include "xe_vm.h" 47 48 static struct xe_guc * 49 exec_queue_to_guc(struct xe_exec_queue *q) 50 { 51 return &q->gt->uc.guc; 52 } 53 54 /* 55 * Helpers for engine state, using an atomic as some of the bits can transition 56 * as the same time (e.g. a suspend can be happning at the same time as schedule 57 * engine done being processed). 58 */ 59 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 60 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 61 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 62 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 63 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 64 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 65 #define EXEC_QUEUE_STATE_RESET (1 << 6) 66 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 67 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 68 #define EXEC_QUEUE_STATE_BANNED (1 << 9) 69 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10) 70 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11) 71 72 static bool exec_queue_registered(struct xe_exec_queue *q) 73 { 74 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 75 } 76 77 static void set_exec_queue_registered(struct xe_exec_queue *q) 78 { 79 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 80 } 81 82 static void clear_exec_queue_registered(struct xe_exec_queue *q) 83 { 84 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 85 } 86 87 static bool exec_queue_enabled(struct xe_exec_queue *q) 88 { 89 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 90 } 91 92 static void set_exec_queue_enabled(struct xe_exec_queue *q) 93 { 94 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 95 } 96 97 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 98 { 99 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 100 } 101 102 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 103 { 104 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 105 } 106 107 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 108 { 109 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 110 } 111 112 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 113 { 114 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 115 } 116 117 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 118 { 119 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 120 } 121 122 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 123 { 124 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 125 } 126 127 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 128 { 129 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 130 } 131 132 static bool exec_queue_destroyed(struct xe_exec_queue *q) 133 { 134 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 135 } 136 137 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 138 { 139 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 140 } 141 142 static bool exec_queue_banned(struct xe_exec_queue *q) 143 { 144 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED; 145 } 146 147 static void set_exec_queue_banned(struct xe_exec_queue *q) 148 { 149 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state); 150 } 151 152 static bool exec_queue_suspended(struct xe_exec_queue *q) 153 { 154 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 155 } 156 157 static void set_exec_queue_suspended(struct xe_exec_queue *q) 158 { 159 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 160 } 161 162 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 163 { 164 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 165 } 166 167 static bool exec_queue_reset(struct xe_exec_queue *q) 168 { 169 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 170 } 171 172 static void set_exec_queue_reset(struct xe_exec_queue *q) 173 { 174 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 175 } 176 177 static bool exec_queue_killed(struct xe_exec_queue *q) 178 { 179 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 180 } 181 182 static void set_exec_queue_killed(struct xe_exec_queue *q) 183 { 184 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 185 } 186 187 static bool exec_queue_wedged(struct xe_exec_queue *q) 188 { 189 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 190 } 191 192 static void set_exec_queue_wedged(struct xe_exec_queue *q) 193 { 194 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 195 } 196 197 static bool exec_queue_check_timeout(struct xe_exec_queue *q) 198 { 199 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT; 200 } 201 202 static void set_exec_queue_check_timeout(struct xe_exec_queue *q) 203 { 204 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 205 } 206 207 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q) 208 { 209 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 210 } 211 212 static bool exec_queue_extra_ref(struct xe_exec_queue *q) 213 { 214 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF; 215 } 216 217 static void set_exec_queue_extra_ref(struct xe_exec_queue *q) 218 { 219 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state); 220 } 221 222 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 223 { 224 return (atomic_read(&q->guc->state) & 225 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED | 226 EXEC_QUEUE_STATE_BANNED)); 227 } 228 229 static void guc_submit_fini(struct drm_device *drm, void *arg) 230 { 231 struct xe_guc *guc = arg; 232 struct xe_device *xe = guc_to_xe(guc); 233 struct xe_gt *gt = guc_to_gt(guc); 234 int ret; 235 236 ret = wait_event_timeout(guc->submission_state.fini_wq, 237 xa_empty(&guc->submission_state.exec_queue_lookup), 238 HZ * 5); 239 240 drain_workqueue(xe->destroy_wq); 241 242 xe_gt_assert(gt, ret); 243 244 xa_destroy(&guc->submission_state.exec_queue_lookup); 245 } 246 247 static void guc_submit_wedged_fini(void *arg) 248 { 249 struct xe_guc *guc = arg; 250 struct xe_exec_queue *q; 251 unsigned long index; 252 253 mutex_lock(&guc->submission_state.lock); 254 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 255 if (exec_queue_wedged(q)) { 256 mutex_unlock(&guc->submission_state.lock); 257 xe_exec_queue_put(q); 258 mutex_lock(&guc->submission_state.lock); 259 } 260 } 261 mutex_unlock(&guc->submission_state.lock); 262 } 263 264 static const struct xe_exec_queue_ops guc_exec_queue_ops; 265 266 static void primelockdep(struct xe_guc *guc) 267 { 268 if (!IS_ENABLED(CONFIG_LOCKDEP)) 269 return; 270 271 fs_reclaim_acquire(GFP_KERNEL); 272 273 mutex_lock(&guc->submission_state.lock); 274 mutex_unlock(&guc->submission_state.lock); 275 276 fs_reclaim_release(GFP_KERNEL); 277 } 278 279 /** 280 * xe_guc_submit_init() - Initialize GuC submission. 281 * @guc: the &xe_guc to initialize 282 * @num_ids: number of GuC context IDs to use 283 * 284 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 285 * GuC context IDs supported by the GuC firmware should be used for submission. 286 * 287 * Only VF drivers will have to provide explicit number of GuC context IDs 288 * that they can use for submission. 289 * 290 * Return: 0 on success or a negative error code on failure. 291 */ 292 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 293 { 294 struct xe_device *xe = guc_to_xe(guc); 295 struct xe_gt *gt = guc_to_gt(guc); 296 int err; 297 298 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 299 if (err) 300 return err; 301 302 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 303 if (err) 304 return err; 305 306 gt->exec_queue_ops = &guc_exec_queue_ops; 307 308 xa_init(&guc->submission_state.exec_queue_lookup); 309 310 init_waitqueue_head(&guc->submission_state.fini_wq); 311 312 primelockdep(guc); 313 314 guc->submission_state.initialized = true; 315 316 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 317 } 318 319 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 320 { 321 int i; 322 323 lockdep_assert_held(&guc->submission_state.lock); 324 325 for (i = 0; i < xa_count; ++i) 326 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 327 328 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 329 q->guc->id, q->width); 330 331 if (xa_empty(&guc->submission_state.exec_queue_lookup)) 332 wake_up(&guc->submission_state.fini_wq); 333 } 334 335 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 336 { 337 int ret; 338 int i; 339 340 /* 341 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 342 * worse case user gets -ENOMEM on engine create and has to try again. 343 * 344 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 345 * failure. 346 */ 347 lockdep_assert_held(&guc->submission_state.lock); 348 349 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 350 q->width); 351 if (ret < 0) 352 return ret; 353 354 q->guc->id = ret; 355 356 for (i = 0; i < q->width; ++i) { 357 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup, 358 q->guc->id + i, q, GFP_NOWAIT)); 359 if (ret) 360 goto err_release; 361 } 362 363 return 0; 364 365 err_release: 366 __release_guc_id(guc, q, i); 367 368 return ret; 369 } 370 371 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 372 { 373 mutex_lock(&guc->submission_state.lock); 374 __release_guc_id(guc, q, q->width); 375 mutex_unlock(&guc->submission_state.lock); 376 } 377 378 struct exec_queue_policy { 379 u32 count; 380 struct guc_update_exec_queue_policy h2g; 381 }; 382 383 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 384 { 385 size_t bytes = sizeof(policy->h2g.header) + 386 (sizeof(policy->h2g.klv[0]) * policy->count); 387 388 return bytes / sizeof(u32); 389 } 390 391 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 392 u16 guc_id) 393 { 394 policy->h2g.header.action = 395 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 396 policy->h2g.header.guc_id = guc_id; 397 policy->count = 0; 398 } 399 400 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 401 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 402 u32 data) \ 403 { \ 404 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 405 \ 406 policy->h2g.klv[policy->count].kl = \ 407 FIELD_PREP(GUC_KLV_0_KEY, \ 408 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 409 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 410 policy->h2g.klv[policy->count].value = data; \ 411 policy->count++; \ 412 } 413 414 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 415 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 416 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 417 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY) 418 #undef MAKE_EXEC_QUEUE_POLICY_ADD 419 420 static const int xe_exec_queue_prio_to_guc[] = { 421 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 422 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 423 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 424 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 425 }; 426 427 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 428 { 429 struct exec_queue_policy policy; 430 enum xe_exec_queue_priority prio = q->sched_props.priority; 431 u32 timeslice_us = q->sched_props.timeslice_us; 432 u32 slpc_exec_queue_freq_req = 0; 433 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 434 435 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 436 437 if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY) 438 slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE; 439 440 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 441 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 442 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 443 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 444 __guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy, 445 slpc_exec_queue_freq_req); 446 447 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 448 __guc_exec_queue_policy_action_size(&policy), 0, 0); 449 } 450 451 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 452 { 453 struct exec_queue_policy policy; 454 455 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 456 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 457 458 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 459 __guc_exec_queue_policy_action_size(&policy), 0, 0); 460 } 461 462 #define parallel_read(xe_, map_, field_) \ 463 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 464 field_) 465 #define parallel_write(xe_, map_, field_, val_) \ 466 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 467 field_, val_) 468 469 static void __register_mlrc_exec_queue(struct xe_guc *guc, 470 struct xe_exec_queue *q, 471 struct guc_ctxt_registration_info *info) 472 { 473 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 474 u32 action[MAX_MLRC_REG_SIZE]; 475 int len = 0; 476 int i; 477 478 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q)); 479 480 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 481 action[len++] = info->flags; 482 action[len++] = info->context_idx; 483 action[len++] = info->engine_class; 484 action[len++] = info->engine_submit_mask; 485 action[len++] = info->wq_desc_lo; 486 action[len++] = info->wq_desc_hi; 487 action[len++] = info->wq_base_lo; 488 action[len++] = info->wq_base_hi; 489 action[len++] = info->wq_size; 490 action[len++] = q->width; 491 action[len++] = info->hwlrca_lo; 492 action[len++] = info->hwlrca_hi; 493 494 for (i = 1; i < q->width; ++i) { 495 struct xe_lrc *lrc = q->lrc[i]; 496 497 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 498 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 499 } 500 501 /* explicitly checks some fields that we might fixup later */ 502 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo == 503 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER]); 504 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo == 505 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER]); 506 xe_gt_assert(guc_to_gt(guc), q->width == 507 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS]); 508 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo == 509 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR]); 510 xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE); 511 #undef MAX_MLRC_REG_SIZE 512 513 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 514 } 515 516 static void __register_exec_queue(struct xe_guc *guc, 517 struct guc_ctxt_registration_info *info) 518 { 519 u32 action[] = { 520 XE_GUC_ACTION_REGISTER_CONTEXT, 521 info->flags, 522 info->context_idx, 523 info->engine_class, 524 info->engine_submit_mask, 525 info->wq_desc_lo, 526 info->wq_desc_hi, 527 info->wq_base_lo, 528 info->wq_base_hi, 529 info->wq_size, 530 info->hwlrca_lo, 531 info->hwlrca_hi, 532 }; 533 534 /* explicitly checks some fields that we might fixup later */ 535 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo == 536 action[XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER]); 537 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo == 538 action[XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER]); 539 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo == 540 action[XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR]); 541 542 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 543 } 544 545 static void register_exec_queue(struct xe_exec_queue *q) 546 { 547 struct xe_guc *guc = exec_queue_to_guc(q); 548 struct xe_device *xe = guc_to_xe(guc); 549 struct xe_lrc *lrc = q->lrc[0]; 550 struct guc_ctxt_registration_info info; 551 552 xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q)); 553 554 memset(&info, 0, sizeof(info)); 555 info.context_idx = q->guc->id; 556 info.engine_class = xe_engine_class_to_guc_class(q->class); 557 info.engine_submit_mask = q->logical_mask; 558 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 559 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 560 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 561 562 if (xe_exec_queue_is_parallel(q)) { 563 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 564 struct iosys_map map = xe_lrc_parallel_map(lrc); 565 566 info.wq_desc_lo = lower_32_bits(ggtt_addr + 567 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 568 info.wq_desc_hi = upper_32_bits(ggtt_addr + 569 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 570 info.wq_base_lo = lower_32_bits(ggtt_addr + 571 offsetof(struct guc_submit_parallel_scratch, wq[0])); 572 info.wq_base_hi = upper_32_bits(ggtt_addr + 573 offsetof(struct guc_submit_parallel_scratch, wq[0])); 574 info.wq_size = WQ_SIZE; 575 576 q->guc->wqi_head = 0; 577 q->guc->wqi_tail = 0; 578 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 579 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 580 } 581 582 /* 583 * We must keep a reference for LR engines if engine is registered with 584 * the GuC as jobs signal immediately and can't destroy an engine if the 585 * GuC has a reference to it. 586 */ 587 if (xe_exec_queue_is_lr(q)) 588 xe_exec_queue_get(q); 589 590 set_exec_queue_registered(q); 591 trace_xe_exec_queue_register(q); 592 if (xe_exec_queue_is_parallel(q)) 593 __register_mlrc_exec_queue(guc, q, &info); 594 else 595 __register_exec_queue(guc, &info); 596 init_policies(guc, q); 597 } 598 599 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 600 { 601 return (WQ_SIZE - q->guc->wqi_tail); 602 } 603 604 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 605 { 606 struct xe_guc *guc = exec_queue_to_guc(q); 607 struct xe_device *xe = guc_to_xe(guc); 608 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 609 unsigned int sleep_period_ms = 1; 610 611 #define AVAILABLE_SPACE \ 612 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 613 if (wqi_size > AVAILABLE_SPACE) { 614 try_again: 615 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 616 if (wqi_size > AVAILABLE_SPACE) { 617 if (sleep_period_ms == 1024) { 618 xe_gt_reset_async(q->gt); 619 return -ENODEV; 620 } 621 622 msleep(sleep_period_ms); 623 sleep_period_ms <<= 1; 624 goto try_again; 625 } 626 } 627 #undef AVAILABLE_SPACE 628 629 return 0; 630 } 631 632 static int wq_noop_append(struct xe_exec_queue *q) 633 { 634 struct xe_guc *guc = exec_queue_to_guc(q); 635 struct xe_device *xe = guc_to_xe(guc); 636 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 637 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 638 639 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 640 return -ENODEV; 641 642 xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw)); 643 644 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 645 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 646 FIELD_PREP(WQ_LEN_MASK, len_dw)); 647 q->guc->wqi_tail = 0; 648 649 return 0; 650 } 651 652 static void wq_item_append(struct xe_exec_queue *q) 653 { 654 struct xe_guc *guc = exec_queue_to_guc(q); 655 struct xe_device *xe = guc_to_xe(guc); 656 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 657 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 658 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 659 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 660 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 661 int i = 0, j; 662 663 if (wqi_size > wq_space_until_wrap(q)) { 664 if (wq_noop_append(q)) 665 return; 666 } 667 if (wq_wait_for_space(q, wqi_size)) 668 return; 669 670 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 671 FIELD_PREP(WQ_LEN_MASK, len_dw); 672 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 673 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 674 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 675 wqi[i++] = 0; 676 for (j = 1; j < q->width; ++j) { 677 struct xe_lrc *lrc = q->lrc[j]; 678 679 wqi[i++] = lrc->ring.tail / sizeof(u64); 680 } 681 682 xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32)); 683 684 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 685 wq[q->guc->wqi_tail / sizeof(u32)])); 686 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 687 q->guc->wqi_tail += wqi_size; 688 xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE); 689 690 xe_device_wmb(xe); 691 692 map = xe_lrc_parallel_map(q->lrc[0]); 693 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 694 } 695 696 #define RESUME_PENDING ~0x0ull 697 static void submit_exec_queue(struct xe_exec_queue *q) 698 { 699 struct xe_guc *guc = exec_queue_to_guc(q); 700 struct xe_lrc *lrc = q->lrc[0]; 701 u32 action[3]; 702 u32 g2h_len = 0; 703 u32 num_g2h = 0; 704 int len = 0; 705 bool extra_submit = false; 706 707 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 708 709 if (xe_exec_queue_is_parallel(q)) 710 wq_item_append(q); 711 else 712 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 713 714 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 715 return; 716 717 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 718 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 719 action[len++] = q->guc->id; 720 action[len++] = GUC_CONTEXT_ENABLE; 721 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 722 num_g2h = 1; 723 if (xe_exec_queue_is_parallel(q)) 724 extra_submit = true; 725 726 q->guc->resume_time = RESUME_PENDING; 727 set_exec_queue_pending_enable(q); 728 set_exec_queue_enabled(q); 729 trace_xe_exec_queue_scheduling_enable(q); 730 } else { 731 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 732 action[len++] = q->guc->id; 733 trace_xe_exec_queue_submit(q); 734 } 735 736 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 737 738 if (extra_submit) { 739 len = 0; 740 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 741 action[len++] = q->guc->id; 742 trace_xe_exec_queue_submit(q); 743 744 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 745 } 746 } 747 748 static struct dma_fence * 749 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 750 { 751 struct xe_sched_job *job = to_xe_sched_job(drm_job); 752 struct xe_exec_queue *q = job->q; 753 struct xe_guc *guc = exec_queue_to_guc(q); 754 struct dma_fence *fence = NULL; 755 bool lr = xe_exec_queue_is_lr(q); 756 757 xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 758 exec_queue_banned(q) || exec_queue_suspended(q)); 759 760 trace_xe_sched_job_run(job); 761 762 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 763 if (!exec_queue_registered(q)) 764 register_exec_queue(q); 765 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 766 q->ring_ops->emit_job(job); 767 submit_exec_queue(q); 768 } 769 770 if (lr) { 771 xe_sched_job_set_error(job, -EOPNOTSUPP); 772 dma_fence_put(job->fence); /* Drop ref from xe_sched_job_arm */ 773 } else { 774 fence = job->fence; 775 } 776 777 return fence; 778 } 779 780 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 781 { 782 struct xe_sched_job *job = to_xe_sched_job(drm_job); 783 784 trace_xe_sched_job_free(job); 785 xe_sched_job_put(job); 786 } 787 788 int xe_guc_read_stopped(struct xe_guc *guc) 789 { 790 return atomic_read(&guc->submission_state.stopped); 791 } 792 793 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 794 u32 action[] = { \ 795 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 796 q->guc->id, \ 797 GUC_CONTEXT_##enable_disable, \ 798 } 799 800 static void disable_scheduling_deregister(struct xe_guc *guc, 801 struct xe_exec_queue *q) 802 { 803 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 804 int ret; 805 806 set_min_preemption_timeout(guc, q); 807 smp_rmb(); 808 ret = wait_event_timeout(guc->ct.wq, 809 (!exec_queue_pending_enable(q) && 810 !exec_queue_pending_disable(q)) || 811 xe_guc_read_stopped(guc), 812 HZ * 5); 813 if (!ret) { 814 struct xe_gpu_scheduler *sched = &q->guc->sched; 815 816 xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n"); 817 xe_sched_submission_start(sched); 818 xe_gt_reset_async(q->gt); 819 xe_sched_tdr_queue_imm(sched); 820 return; 821 } 822 823 clear_exec_queue_enabled(q); 824 set_exec_queue_pending_disable(q); 825 set_exec_queue_destroyed(q); 826 trace_xe_exec_queue_scheduling_disable(q); 827 828 /* 829 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 830 * handler and we are not allowed to reserved G2H space in handlers. 831 */ 832 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 833 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 834 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 835 } 836 837 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 838 { 839 struct xe_guc *guc = exec_queue_to_guc(q); 840 struct xe_device *xe = guc_to_xe(guc); 841 842 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 843 wake_up_all(&xe->ufence_wq); 844 845 if (xe_exec_queue_is_lr(q)) 846 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 847 else 848 xe_sched_tdr_queue_imm(&q->guc->sched); 849 } 850 851 /** 852 * xe_guc_submit_wedge() - Wedge GuC submission 853 * @guc: the GuC object 854 * 855 * Save exec queue's registered with GuC state by taking a ref to each queue. 856 * Register a DRMM handler to drop refs upon driver unload. 857 */ 858 void xe_guc_submit_wedge(struct xe_guc *guc) 859 { 860 struct xe_gt *gt = guc_to_gt(guc); 861 struct xe_exec_queue *q; 862 unsigned long index; 863 int err; 864 865 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); 866 867 /* 868 * If device is being wedged even before submission_state is 869 * initialized, there's nothing to do here. 870 */ 871 if (!guc->submission_state.initialized) 872 return; 873 874 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev, 875 guc_submit_wedged_fini, guc); 876 if (err) { 877 xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; " 878 "Although device is wedged.\n"); 879 return; 880 } 881 882 mutex_lock(&guc->submission_state.lock); 883 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 884 if (xe_exec_queue_get_unless_zero(q)) 885 set_exec_queue_wedged(q); 886 mutex_unlock(&guc->submission_state.lock); 887 } 888 889 static bool guc_submit_hint_wedged(struct xe_guc *guc) 890 { 891 struct xe_device *xe = guc_to_xe(guc); 892 893 if (xe->wedged.mode != 2) 894 return false; 895 896 if (xe_device_wedged(xe)) 897 return true; 898 899 xe_device_declare_wedged(xe); 900 901 return true; 902 } 903 904 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 905 { 906 struct xe_guc_exec_queue *ge = 907 container_of(w, struct xe_guc_exec_queue, lr_tdr); 908 struct xe_exec_queue *q = ge->q; 909 struct xe_guc *guc = exec_queue_to_guc(q); 910 struct xe_gpu_scheduler *sched = &ge->sched; 911 bool wedged = false; 912 913 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q)); 914 trace_xe_exec_queue_lr_cleanup(q); 915 916 if (!exec_queue_killed(q)) 917 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 918 919 /* Kill the run_job / process_msg entry points */ 920 xe_sched_submission_stop(sched); 921 922 /* 923 * Engine state now mostly stable, disable scheduling / deregister if 924 * needed. This cleanup routine might be called multiple times, where 925 * the actual async engine deregister drops the final engine ref. 926 * Calling disable_scheduling_deregister will mark the engine as 927 * destroyed and fire off the CT requests to disable scheduling / 928 * deregister, which we only want to do once. We also don't want to mark 929 * the engine as pending_disable again as this may race with the 930 * xe_guc_deregister_done_handler() which treats it as an unexpected 931 * state. 932 */ 933 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 934 struct xe_guc *guc = exec_queue_to_guc(q); 935 int ret; 936 937 set_exec_queue_banned(q); 938 disable_scheduling_deregister(guc, q); 939 940 /* 941 * Must wait for scheduling to be disabled before signalling 942 * any fences, if GT broken the GT reset code should signal us. 943 */ 944 ret = wait_event_timeout(guc->ct.wq, 945 !exec_queue_pending_disable(q) || 946 xe_guc_read_stopped(guc), HZ * 5); 947 if (!ret) { 948 xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n", 949 q->guc->id); 950 xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n", 951 q->guc->id); 952 xe_sched_submission_start(sched); 953 xe_gt_reset_async(q->gt); 954 return; 955 } 956 } 957 958 if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0])) 959 xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id); 960 961 xe_sched_submission_start(sched); 962 } 963 964 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100) 965 966 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job) 967 { 968 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q)); 969 u32 ctx_timestamp, ctx_job_timestamp; 970 u32 timeout_ms = q->sched_props.job_timeout_ms; 971 u32 diff; 972 u64 running_time_ms; 973 974 if (!xe_sched_job_started(job)) { 975 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started", 976 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 977 q->guc->id); 978 979 return xe_sched_invalidate_job(job, 2); 980 } 981 982 ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(q->lrc[0])); 983 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]); 984 985 /* 986 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch 987 * possible overflows with a high timeout. 988 */ 989 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC); 990 991 diff = ctx_timestamp - ctx_job_timestamp; 992 993 /* 994 * Ensure timeout is within 5% to account for an GuC scheduling latency 995 */ 996 running_time_ms = 997 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff)); 998 999 xe_gt_dbg(gt, 1000 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x", 1001 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1002 q->guc->id, running_time_ms, timeout_ms, diff); 1003 1004 return running_time_ms >= timeout_ms; 1005 } 1006 1007 static void enable_scheduling(struct xe_exec_queue *q) 1008 { 1009 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 1010 struct xe_guc *guc = exec_queue_to_guc(q); 1011 int ret; 1012 1013 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1014 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1015 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1016 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1017 1018 set_exec_queue_pending_enable(q); 1019 set_exec_queue_enabled(q); 1020 trace_xe_exec_queue_scheduling_enable(q); 1021 1022 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1023 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1024 1025 ret = wait_event_timeout(guc->ct.wq, 1026 !exec_queue_pending_enable(q) || 1027 xe_guc_read_stopped(guc), HZ * 5); 1028 if (!ret || xe_guc_read_stopped(guc)) { 1029 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond"); 1030 set_exec_queue_banned(q); 1031 xe_gt_reset_async(q->gt); 1032 xe_sched_tdr_queue_imm(&q->guc->sched); 1033 } 1034 } 1035 1036 static void disable_scheduling(struct xe_exec_queue *q, bool immediate) 1037 { 1038 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 1039 struct xe_guc *guc = exec_queue_to_guc(q); 1040 1041 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1042 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1043 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1044 1045 if (immediate) 1046 set_min_preemption_timeout(guc, q); 1047 clear_exec_queue_enabled(q); 1048 set_exec_queue_pending_disable(q); 1049 trace_xe_exec_queue_scheduling_disable(q); 1050 1051 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1052 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1053 } 1054 1055 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1056 { 1057 u32 action[] = { 1058 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1059 q->guc->id, 1060 }; 1061 1062 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1063 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1064 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1065 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1066 1067 set_exec_queue_destroyed(q); 1068 trace_xe_exec_queue_deregister(q); 1069 1070 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1071 G2H_LEN_DW_DEREGISTER_CONTEXT, 1); 1072 } 1073 1074 static enum drm_gpu_sched_stat 1075 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 1076 { 1077 struct xe_sched_job *job = to_xe_sched_job(drm_job); 1078 struct xe_sched_job *tmp_job; 1079 struct xe_exec_queue *q = job->q; 1080 struct xe_gpu_scheduler *sched = &q->guc->sched; 1081 struct xe_guc *guc = exec_queue_to_guc(q); 1082 const char *process_name = "no process"; 1083 struct xe_device *xe = guc_to_xe(guc); 1084 unsigned int fw_ref; 1085 int err = -ETIME; 1086 pid_t pid = -1; 1087 int i = 0; 1088 bool wedged = false, skip_timeout_check; 1089 1090 /* 1091 * TDR has fired before free job worker. Common if exec queue 1092 * immediately closed after last fence signaled. Add back to pending 1093 * list so job can be freed and kick scheduler ensuring free job is not 1094 * lost. 1095 */ 1096 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) { 1097 xe_sched_add_pending_job(sched, job); 1098 xe_sched_submission_start(sched); 1099 1100 return DRM_GPU_SCHED_STAT_NOMINAL; 1101 } 1102 1103 /* Kill the run_job entry point */ 1104 xe_sched_submission_stop(sched); 1105 1106 /* Must check all state after stopping scheduler */ 1107 skip_timeout_check = exec_queue_reset(q) || 1108 exec_queue_killed_or_banned_or_wedged(q) || 1109 exec_queue_destroyed(q); 1110 1111 /* 1112 * If devcoredump not captured and GuC capture for the job is not ready 1113 * do manual capture first and decide later if we need to use it 1114 */ 1115 if (!exec_queue_killed(q) && !xe->devcoredump.captured && 1116 !xe_guc_capture_get_matching_and_lock(q)) { 1117 /* take force wake before engine register manual capture */ 1118 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 1119 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 1120 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n"); 1121 1122 xe_engine_snapshot_capture_for_queue(q); 1123 1124 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 1125 } 1126 1127 /* 1128 * XXX: Sampling timeout doesn't work in wedged mode as we have to 1129 * modify scheduling state to read timestamp. We could read the 1130 * timestamp from a register to accumulate current running time but this 1131 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are 1132 * genuine timeouts. 1133 */ 1134 if (!exec_queue_killed(q)) 1135 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 1136 1137 /* Engine state now stable, disable scheduling to check timestamp */ 1138 if (!wedged && exec_queue_registered(q)) { 1139 int ret; 1140 1141 if (exec_queue_reset(q)) 1142 err = -EIO; 1143 1144 if (!exec_queue_destroyed(q)) { 1145 /* 1146 * Wait for any pending G2H to flush out before 1147 * modifying state 1148 */ 1149 ret = wait_event_timeout(guc->ct.wq, 1150 (!exec_queue_pending_enable(q) && 1151 !exec_queue_pending_disable(q)) || 1152 xe_guc_read_stopped(guc), HZ * 5); 1153 if (!ret || xe_guc_read_stopped(guc)) 1154 goto trigger_reset; 1155 1156 /* 1157 * Flag communicates to G2H handler that schedule 1158 * disable originated from a timeout check. The G2H then 1159 * avoid triggering cleanup or deregistering the exec 1160 * queue. 1161 */ 1162 set_exec_queue_check_timeout(q); 1163 disable_scheduling(q, skip_timeout_check); 1164 } 1165 1166 /* 1167 * Must wait for scheduling to be disabled before signalling 1168 * any fences, if GT broken the GT reset code should signal us. 1169 * 1170 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 1171 * error) messages which can cause the schedule disable to get 1172 * lost. If this occurs, trigger a GT reset to recover. 1173 */ 1174 smp_rmb(); 1175 ret = wait_event_timeout(guc->ct.wq, 1176 !exec_queue_pending_disable(q) || 1177 xe_guc_read_stopped(guc), HZ * 5); 1178 if (!ret || xe_guc_read_stopped(guc)) { 1179 trigger_reset: 1180 if (!ret) 1181 xe_gt_warn(guc_to_gt(guc), 1182 "Schedule disable failed to respond, guc_id=%d", 1183 q->guc->id); 1184 xe_devcoredump(q, job, 1185 "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d", 1186 q->guc->id, ret, xe_guc_read_stopped(guc)); 1187 set_exec_queue_extra_ref(q); 1188 xe_exec_queue_get(q); /* GT reset owns this */ 1189 set_exec_queue_banned(q); 1190 xe_gt_reset_async(q->gt); 1191 xe_sched_tdr_queue_imm(sched); 1192 goto rearm; 1193 } 1194 } 1195 1196 /* 1197 * Check if job is actually timed out, if so restart job execution and TDR 1198 */ 1199 if (!wedged && !skip_timeout_check && !check_timeout(q, job) && 1200 !exec_queue_reset(q) && exec_queue_registered(q)) { 1201 clear_exec_queue_check_timeout(q); 1202 goto sched_enable; 1203 } 1204 1205 if (q->vm && q->vm->xef) { 1206 process_name = q->vm->xef->process_name; 1207 pid = q->vm->xef->pid; 1208 } 1209 1210 if (!exec_queue_killed(q)) 1211 xe_gt_notice(guc_to_gt(guc), 1212 "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]", 1213 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1214 q->guc->id, q->flags, process_name, pid); 1215 1216 trace_xe_sched_job_timedout(job); 1217 1218 if (!exec_queue_killed(q)) 1219 xe_devcoredump(q, job, 1220 "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx", 1221 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1222 q->guc->id, q->flags); 1223 1224 /* 1225 * Kernel jobs should never fail, nor should VM jobs if they do 1226 * somethings has gone wrong and the GT needs a reset 1227 */ 1228 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 1229 "Kernel-submitted job timed out\n"); 1230 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 1231 "VM job timed out on non-killed execqueue\n"); 1232 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 1233 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 1234 if (!xe_sched_invalidate_job(job, 2)) { 1235 clear_exec_queue_check_timeout(q); 1236 xe_gt_reset_async(q->gt); 1237 goto rearm; 1238 } 1239 } 1240 1241 /* Finish cleaning up exec queue via deregister */ 1242 set_exec_queue_banned(q); 1243 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1244 set_exec_queue_extra_ref(q); 1245 xe_exec_queue_get(q); 1246 __deregister_exec_queue(guc, q); 1247 } 1248 1249 /* Stop fence signaling */ 1250 xe_hw_fence_irq_stop(q->fence_irq); 1251 1252 /* 1253 * Fence state now stable, stop / start scheduler which cleans up any 1254 * fences that are complete 1255 */ 1256 xe_sched_add_pending_job(sched, job); 1257 xe_sched_submission_start(sched); 1258 1259 xe_guc_exec_queue_trigger_cleanup(q); 1260 1261 /* Mark all outstanding jobs as bad, thus completing them */ 1262 spin_lock(&sched->base.job_list_lock); 1263 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1264 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1265 spin_unlock(&sched->base.job_list_lock); 1266 1267 /* Start fence signaling */ 1268 xe_hw_fence_irq_start(q->fence_irq); 1269 1270 return DRM_GPU_SCHED_STAT_NOMINAL; 1271 1272 sched_enable: 1273 enable_scheduling(q); 1274 rearm: 1275 /* 1276 * XXX: Ideally want to adjust timeout based on current execution time 1277 * but there is not currently an easy way to do in DRM scheduler. With 1278 * some thought, do this in a follow up. 1279 */ 1280 xe_sched_add_pending_job(sched, job); 1281 xe_sched_submission_start(sched); 1282 1283 return DRM_GPU_SCHED_STAT_NOMINAL; 1284 } 1285 1286 static void __guc_exec_queue_fini_async(struct work_struct *w) 1287 { 1288 struct xe_guc_exec_queue *ge = 1289 container_of(w, struct xe_guc_exec_queue, fini_async); 1290 struct xe_exec_queue *q = ge->q; 1291 struct xe_guc *guc = exec_queue_to_guc(q); 1292 1293 xe_pm_runtime_get(guc_to_xe(guc)); 1294 trace_xe_exec_queue_destroy(q); 1295 1296 release_guc_id(guc, q); 1297 if (xe_exec_queue_is_lr(q)) 1298 cancel_work_sync(&ge->lr_tdr); 1299 /* Confirm no work left behind accessing device structures */ 1300 cancel_delayed_work_sync(&ge->sched.base.work_tdr); 1301 xe_sched_entity_fini(&ge->entity); 1302 xe_sched_fini(&ge->sched); 1303 1304 /* 1305 * RCU free due sched being exported via DRM scheduler fences 1306 * (timeline name). 1307 */ 1308 kfree_rcu(ge, rcu); 1309 xe_exec_queue_fini(q); 1310 xe_pm_runtime_put(guc_to_xe(guc)); 1311 } 1312 1313 static void guc_exec_queue_fini_async(struct xe_exec_queue *q) 1314 { 1315 struct xe_guc *guc = exec_queue_to_guc(q); 1316 struct xe_device *xe = guc_to_xe(guc); 1317 1318 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async); 1319 1320 /* We must block on kernel engines so slabs are empty on driver unload */ 1321 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1322 __guc_exec_queue_fini_async(&q->guc->fini_async); 1323 else 1324 queue_work(xe->destroy_wq, &q->guc->fini_async); 1325 } 1326 1327 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q) 1328 { 1329 /* 1330 * Might be done from within the GPU scheduler, need to do async as we 1331 * fini the scheduler when the engine is fini'd, the scheduler can't 1332 * complete fini within itself (circular dependency). Async resolves 1333 * this we and don't really care when everything is fini'd, just that it 1334 * is. 1335 */ 1336 guc_exec_queue_fini_async(q); 1337 } 1338 1339 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1340 { 1341 struct xe_exec_queue *q = msg->private_data; 1342 struct xe_guc *guc = exec_queue_to_guc(q); 1343 1344 xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1345 trace_xe_exec_queue_cleanup_entity(q); 1346 1347 if (exec_queue_registered(q)) 1348 disable_scheduling_deregister(guc, q); 1349 else 1350 __guc_exec_queue_fini(guc, q); 1351 } 1352 1353 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1354 { 1355 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1356 } 1357 1358 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1359 { 1360 struct xe_exec_queue *q = msg->private_data; 1361 struct xe_guc *guc = exec_queue_to_guc(q); 1362 1363 if (guc_exec_queue_allowed_to_change_state(q)) 1364 init_policies(guc, q); 1365 kfree(msg); 1366 } 1367 1368 static void __suspend_fence_signal(struct xe_exec_queue *q) 1369 { 1370 if (!q->guc->suspend_pending) 1371 return; 1372 1373 WRITE_ONCE(q->guc->suspend_pending, false); 1374 wake_up(&q->guc->suspend_wait); 1375 } 1376 1377 static void suspend_fence_signal(struct xe_exec_queue *q) 1378 { 1379 struct xe_guc *guc = exec_queue_to_guc(q); 1380 1381 xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) || 1382 xe_guc_read_stopped(guc)); 1383 xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending); 1384 1385 __suspend_fence_signal(q); 1386 } 1387 1388 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1389 { 1390 struct xe_exec_queue *q = msg->private_data; 1391 struct xe_guc *guc = exec_queue_to_guc(q); 1392 1393 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1394 exec_queue_enabled(q)) { 1395 wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING || 1396 xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q)); 1397 1398 if (!xe_guc_read_stopped(guc)) { 1399 s64 since_resume_ms = 1400 ktime_ms_delta(ktime_get(), 1401 q->guc->resume_time); 1402 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1403 since_resume_ms; 1404 1405 if (wait_ms > 0 && q->guc->resume_time) 1406 msleep(wait_ms); 1407 1408 set_exec_queue_suspended(q); 1409 disable_scheduling(q, false); 1410 } 1411 } else if (q->guc->suspend_pending) { 1412 set_exec_queue_suspended(q); 1413 suspend_fence_signal(q); 1414 } 1415 } 1416 1417 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1418 { 1419 struct xe_exec_queue *q = msg->private_data; 1420 1421 if (guc_exec_queue_allowed_to_change_state(q)) { 1422 clear_exec_queue_suspended(q); 1423 if (!exec_queue_enabled(q)) { 1424 q->guc->resume_time = RESUME_PENDING; 1425 enable_scheduling(q); 1426 } 1427 } else { 1428 clear_exec_queue_suspended(q); 1429 } 1430 } 1431 1432 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1433 #define SET_SCHED_PROPS 2 1434 #define SUSPEND 3 1435 #define RESUME 4 1436 #define OPCODE_MASK 0xf 1437 #define MSG_LOCKED BIT(8) 1438 1439 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1440 { 1441 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data)); 1442 1443 trace_xe_sched_msg_recv(msg); 1444 1445 switch (msg->opcode) { 1446 case CLEANUP: 1447 __guc_exec_queue_process_msg_cleanup(msg); 1448 break; 1449 case SET_SCHED_PROPS: 1450 __guc_exec_queue_process_msg_set_sched_props(msg); 1451 break; 1452 case SUSPEND: 1453 __guc_exec_queue_process_msg_suspend(msg); 1454 break; 1455 case RESUME: 1456 __guc_exec_queue_process_msg_resume(msg); 1457 break; 1458 default: 1459 XE_WARN_ON("Unknown message type"); 1460 } 1461 1462 xe_pm_runtime_put(xe); 1463 } 1464 1465 static const struct drm_sched_backend_ops drm_sched_ops = { 1466 .run_job = guc_exec_queue_run_job, 1467 .free_job = guc_exec_queue_free_job, 1468 .timedout_job = guc_exec_queue_timedout_job, 1469 }; 1470 1471 static const struct xe_sched_backend_ops xe_sched_ops = { 1472 .process_msg = guc_exec_queue_process_msg, 1473 }; 1474 1475 static int guc_exec_queue_init(struct xe_exec_queue *q) 1476 { 1477 struct xe_gpu_scheduler *sched; 1478 struct xe_guc *guc = exec_queue_to_guc(q); 1479 struct xe_guc_exec_queue *ge; 1480 long timeout; 1481 int err, i; 1482 1483 xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc))); 1484 1485 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1486 if (!ge) 1487 return -ENOMEM; 1488 1489 q->guc = ge; 1490 ge->q = q; 1491 init_rcu_head(&ge->rcu); 1492 init_waitqueue_head(&ge->suspend_wait); 1493 1494 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i) 1495 INIT_LIST_HEAD(&ge->static_msgs[i].link); 1496 1497 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1498 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1499 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1500 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1501 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1502 q->name, gt_to_xe(q->gt)->drm.dev); 1503 if (err) 1504 goto err_free; 1505 1506 sched = &ge->sched; 1507 err = xe_sched_entity_init(&ge->entity, sched); 1508 if (err) 1509 goto err_sched; 1510 1511 if (xe_exec_queue_is_lr(q)) 1512 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1513 1514 mutex_lock(&guc->submission_state.lock); 1515 1516 err = alloc_guc_id(guc, q); 1517 if (err) 1518 goto err_entity; 1519 1520 q->entity = &ge->entity; 1521 1522 if (xe_guc_read_stopped(guc)) 1523 xe_sched_stop(sched); 1524 1525 mutex_unlock(&guc->submission_state.lock); 1526 1527 xe_exec_queue_assign_name(q, q->guc->id); 1528 1529 trace_xe_exec_queue_create(q); 1530 1531 return 0; 1532 1533 err_entity: 1534 mutex_unlock(&guc->submission_state.lock); 1535 xe_sched_entity_fini(&ge->entity); 1536 err_sched: 1537 xe_sched_fini(&ge->sched); 1538 err_free: 1539 kfree(ge); 1540 1541 return err; 1542 } 1543 1544 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1545 { 1546 trace_xe_exec_queue_kill(q); 1547 set_exec_queue_killed(q); 1548 __suspend_fence_signal(q); 1549 xe_guc_exec_queue_trigger_cleanup(q); 1550 } 1551 1552 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1553 u32 opcode) 1554 { 1555 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q))); 1556 1557 INIT_LIST_HEAD(&msg->link); 1558 msg->opcode = opcode & OPCODE_MASK; 1559 msg->private_data = q; 1560 1561 trace_xe_sched_msg_add(msg); 1562 if (opcode & MSG_LOCKED) 1563 xe_sched_add_msg_locked(&q->guc->sched, msg); 1564 else 1565 xe_sched_add_msg(&q->guc->sched, msg); 1566 } 1567 1568 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q, 1569 struct xe_sched_msg *msg, 1570 u32 opcode) 1571 { 1572 if (!list_empty(&msg->link)) 1573 return false; 1574 1575 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED); 1576 1577 return true; 1578 } 1579 1580 #define STATIC_MSG_CLEANUP 0 1581 #define STATIC_MSG_SUSPEND 1 1582 #define STATIC_MSG_RESUME 2 1583 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1584 { 1585 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1586 1587 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1588 guc_exec_queue_add_msg(q, msg, CLEANUP); 1589 else 1590 __guc_exec_queue_fini(exec_queue_to_guc(q), q); 1591 } 1592 1593 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1594 enum xe_exec_queue_priority priority) 1595 { 1596 struct xe_sched_msg *msg; 1597 1598 if (q->sched_props.priority == priority || 1599 exec_queue_killed_or_banned_or_wedged(q)) 1600 return 0; 1601 1602 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1603 if (!msg) 1604 return -ENOMEM; 1605 1606 q->sched_props.priority = priority; 1607 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1608 1609 return 0; 1610 } 1611 1612 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1613 { 1614 struct xe_sched_msg *msg; 1615 1616 if (q->sched_props.timeslice_us == timeslice_us || 1617 exec_queue_killed_or_banned_or_wedged(q)) 1618 return 0; 1619 1620 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1621 if (!msg) 1622 return -ENOMEM; 1623 1624 q->sched_props.timeslice_us = timeslice_us; 1625 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1626 1627 return 0; 1628 } 1629 1630 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1631 u32 preempt_timeout_us) 1632 { 1633 struct xe_sched_msg *msg; 1634 1635 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1636 exec_queue_killed_or_banned_or_wedged(q)) 1637 return 0; 1638 1639 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1640 if (!msg) 1641 return -ENOMEM; 1642 1643 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1644 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1645 1646 return 0; 1647 } 1648 1649 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1650 { 1651 struct xe_gpu_scheduler *sched = &q->guc->sched; 1652 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1653 1654 if (exec_queue_killed_or_banned_or_wedged(q)) 1655 return -EINVAL; 1656 1657 xe_sched_msg_lock(sched); 1658 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND)) 1659 q->guc->suspend_pending = true; 1660 xe_sched_msg_unlock(sched); 1661 1662 return 0; 1663 } 1664 1665 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1666 { 1667 struct xe_guc *guc = exec_queue_to_guc(q); 1668 int ret; 1669 1670 /* 1671 * Likely don't need to check exec_queue_killed() as we clear 1672 * suspend_pending upon kill but to be paranoid but races in which 1673 * suspend_pending is set after kill also check kill here. 1674 */ 1675 ret = wait_event_interruptible_timeout(q->guc->suspend_wait, 1676 !READ_ONCE(q->guc->suspend_pending) || 1677 exec_queue_killed(q) || 1678 xe_guc_read_stopped(guc), 1679 HZ * 5); 1680 1681 if (!ret) { 1682 xe_gt_warn(guc_to_gt(guc), 1683 "Suspend fence, guc_id=%d, failed to respond", 1684 q->guc->id); 1685 /* XXX: Trigger GT reset? */ 1686 return -ETIME; 1687 } 1688 1689 return ret < 0 ? ret : 0; 1690 } 1691 1692 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1693 { 1694 struct xe_gpu_scheduler *sched = &q->guc->sched; 1695 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1696 struct xe_guc *guc = exec_queue_to_guc(q); 1697 1698 xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending); 1699 1700 xe_sched_msg_lock(sched); 1701 guc_exec_queue_try_add_msg(q, msg, RESUME); 1702 xe_sched_msg_unlock(sched); 1703 } 1704 1705 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1706 { 1707 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1708 } 1709 1710 /* 1711 * All of these functions are an abstraction layer which other parts of XE can 1712 * use to trap into the GuC backend. All of these functions, aside from init, 1713 * really shouldn't do much other than trap into the DRM scheduler which 1714 * synchronizes these operations. 1715 */ 1716 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1717 .init = guc_exec_queue_init, 1718 .kill = guc_exec_queue_kill, 1719 .fini = guc_exec_queue_fini, 1720 .set_priority = guc_exec_queue_set_priority, 1721 .set_timeslice = guc_exec_queue_set_timeslice, 1722 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1723 .suspend = guc_exec_queue_suspend, 1724 .suspend_wait = guc_exec_queue_suspend_wait, 1725 .resume = guc_exec_queue_resume, 1726 .reset_status = guc_exec_queue_reset_status, 1727 }; 1728 1729 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1730 { 1731 struct xe_gpu_scheduler *sched = &q->guc->sched; 1732 1733 /* Stop scheduling + flush any DRM scheduler operations */ 1734 xe_sched_submission_stop(sched); 1735 1736 /* Clean up lost G2H + reset engine state */ 1737 if (exec_queue_registered(q)) { 1738 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1739 xe_exec_queue_put(q); 1740 else if (exec_queue_destroyed(q)) 1741 __guc_exec_queue_fini(guc, q); 1742 } 1743 if (q->guc->suspend_pending) { 1744 set_exec_queue_suspended(q); 1745 suspend_fence_signal(q); 1746 } 1747 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED | 1748 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED | 1749 EXEC_QUEUE_STATE_SUSPENDED, 1750 &q->guc->state); 1751 q->guc->resume_time = 0; 1752 trace_xe_exec_queue_stop(q); 1753 1754 /* 1755 * Ban any engine (aside from kernel and engines used for VM ops) with a 1756 * started but not complete job or if a job has gone through a GT reset 1757 * more than twice. 1758 */ 1759 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1760 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1761 bool ban = false; 1762 1763 if (job) { 1764 if ((xe_sched_job_started(job) && 1765 !xe_sched_job_completed(job)) || 1766 xe_sched_invalidate_job(job, 2)) { 1767 trace_xe_sched_job_ban(job); 1768 ban = true; 1769 } 1770 } else if (xe_exec_queue_is_lr(q) && 1771 !xe_lrc_ring_is_idle(q->lrc[0])) { 1772 ban = true; 1773 } 1774 1775 if (ban) { 1776 set_exec_queue_banned(q); 1777 xe_guc_exec_queue_trigger_cleanup(q); 1778 } 1779 } 1780 } 1781 1782 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1783 { 1784 int ret; 1785 1786 if (!guc->submission_state.initialized) 1787 return 0; 1788 1789 /* 1790 * Using an atomic here rather than submission_state.lock as this 1791 * function can be called while holding the CT lock (engine reset 1792 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1793 * Atomic is not ideal, but it works to prevent against concurrent reset 1794 * and releasing any TDRs waiting on guc->submission_state.stopped. 1795 */ 1796 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1797 smp_wmb(); 1798 wake_up_all(&guc->ct.wq); 1799 1800 return ret; 1801 } 1802 1803 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1804 { 1805 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) || 1806 !xe_guc_read_stopped(guc)); 1807 } 1808 1809 void xe_guc_submit_stop(struct xe_guc *guc) 1810 { 1811 struct xe_exec_queue *q; 1812 unsigned long index; 1813 1814 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1); 1815 1816 mutex_lock(&guc->submission_state.lock); 1817 1818 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1819 /* Prevent redundant attempts to stop parallel queues */ 1820 if (q->guc->id != index) 1821 continue; 1822 1823 guc_exec_queue_stop(guc, q); 1824 } 1825 1826 mutex_unlock(&guc->submission_state.lock); 1827 1828 /* 1829 * No one can enter the backend at this point, aside from new engine 1830 * creation which is protected by guc->submission_state.lock. 1831 */ 1832 1833 } 1834 1835 static void guc_exec_queue_start(struct xe_exec_queue *q) 1836 { 1837 struct xe_gpu_scheduler *sched = &q->guc->sched; 1838 1839 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1840 int i; 1841 1842 trace_xe_exec_queue_resubmit(q); 1843 for (i = 0; i < q->width; ++i) 1844 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1845 xe_sched_resubmit_jobs(sched); 1846 } 1847 1848 xe_sched_submission_start(sched); 1849 xe_sched_submission_resume_tdr(sched); 1850 } 1851 1852 int xe_guc_submit_start(struct xe_guc *guc) 1853 { 1854 struct xe_exec_queue *q; 1855 unsigned long index; 1856 1857 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1); 1858 1859 mutex_lock(&guc->submission_state.lock); 1860 atomic_dec(&guc->submission_state.stopped); 1861 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 1862 /* Prevent redundant attempts to start parallel queues */ 1863 if (q->guc->id != index) 1864 continue; 1865 1866 guc_exec_queue_start(q); 1867 } 1868 mutex_unlock(&guc->submission_state.lock); 1869 1870 wake_up_all(&guc->ct.wq); 1871 1872 return 0; 1873 } 1874 1875 static struct xe_exec_queue * 1876 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1877 { 1878 struct xe_gt *gt = guc_to_gt(guc); 1879 struct xe_exec_queue *q; 1880 1881 if (unlikely(guc_id >= GUC_ID_MAX)) { 1882 xe_gt_err(gt, "Invalid guc_id %u\n", guc_id); 1883 return NULL; 1884 } 1885 1886 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1887 if (unlikely(!q)) { 1888 xe_gt_err(gt, "Not engine present for guc_id %u\n", guc_id); 1889 return NULL; 1890 } 1891 1892 xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id); 1893 xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width)); 1894 1895 return q; 1896 } 1897 1898 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1899 { 1900 u32 action[] = { 1901 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1902 q->guc->id, 1903 }; 1904 1905 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q)); 1906 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1907 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1908 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1909 1910 trace_xe_exec_queue_deregister(q); 1911 1912 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1913 } 1914 1915 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q, 1916 u32 runnable_state) 1917 { 1918 trace_xe_exec_queue_scheduling_done(q); 1919 1920 if (runnable_state == 1) { 1921 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q)); 1922 1923 q->guc->resume_time = ktime_get(); 1924 clear_exec_queue_pending_enable(q); 1925 smp_wmb(); 1926 wake_up_all(&guc->ct.wq); 1927 } else { 1928 bool check_timeout = exec_queue_check_timeout(q); 1929 1930 xe_gt_assert(guc_to_gt(guc), runnable_state == 0); 1931 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q)); 1932 1933 if (q->guc->suspend_pending) { 1934 suspend_fence_signal(q); 1935 clear_exec_queue_pending_disable(q); 1936 } else { 1937 if (exec_queue_banned(q) || check_timeout) { 1938 smp_wmb(); 1939 wake_up_all(&guc->ct.wq); 1940 } 1941 if (!check_timeout && exec_queue_destroyed(q)) { 1942 /* 1943 * Make sure to clear the pending_disable only 1944 * after sampling the destroyed state. We want 1945 * to ensure we don't trigger the unregister too 1946 * early with something intending to only 1947 * disable scheduling. The caller doing the 1948 * destroy must wait for an ongoing 1949 * pending_disable before marking as destroyed. 1950 */ 1951 clear_exec_queue_pending_disable(q); 1952 deregister_exec_queue(guc, q); 1953 } else { 1954 clear_exec_queue_pending_disable(q); 1955 } 1956 } 1957 } 1958 } 1959 1960 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1961 { 1962 struct xe_exec_queue *q; 1963 u32 guc_id, runnable_state; 1964 1965 if (unlikely(len < 2)) 1966 return -EPROTO; 1967 1968 guc_id = msg[0]; 1969 runnable_state = msg[1]; 1970 1971 q = g2h_exec_queue_lookup(guc, guc_id); 1972 if (unlikely(!q)) 1973 return -EPROTO; 1974 1975 if (unlikely(!exec_queue_pending_enable(q) && 1976 !exec_queue_pending_disable(q))) { 1977 xe_gt_err(guc_to_gt(guc), 1978 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u", 1979 atomic_read(&q->guc->state), q->guc->id, 1980 runnable_state); 1981 return -EPROTO; 1982 } 1983 1984 handle_sched_done(guc, q, runnable_state); 1985 1986 return 0; 1987 } 1988 1989 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 1990 { 1991 trace_xe_exec_queue_deregister_done(q); 1992 1993 clear_exec_queue_registered(q); 1994 1995 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1996 xe_exec_queue_put(q); 1997 else 1998 __guc_exec_queue_fini(guc, q); 1999 } 2000 2001 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 2002 { 2003 struct xe_exec_queue *q; 2004 u32 guc_id; 2005 2006 if (unlikely(len < 1)) 2007 return -EPROTO; 2008 2009 guc_id = msg[0]; 2010 2011 q = g2h_exec_queue_lookup(guc, guc_id); 2012 if (unlikely(!q)) 2013 return -EPROTO; 2014 2015 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 2016 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 2017 xe_gt_err(guc_to_gt(guc), 2018 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d", 2019 atomic_read(&q->guc->state), q->guc->id); 2020 return -EPROTO; 2021 } 2022 2023 handle_deregister_done(guc, q); 2024 2025 return 0; 2026 } 2027 2028 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 2029 { 2030 struct xe_gt *gt = guc_to_gt(guc); 2031 struct xe_exec_queue *q; 2032 u32 guc_id; 2033 2034 if (unlikely(len < 1)) 2035 return -EPROTO; 2036 2037 guc_id = msg[0]; 2038 2039 q = g2h_exec_queue_lookup(guc, guc_id); 2040 if (unlikely(!q)) 2041 return -EPROTO; 2042 2043 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 2044 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2045 2046 trace_xe_exec_queue_reset(q); 2047 2048 /* 2049 * A banned engine is a NOP at this point (came from 2050 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 2051 * jobs by setting timeout of the job to the minimum value kicking 2052 * guc_exec_queue_timedout_job. 2053 */ 2054 set_exec_queue_reset(q); 2055 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2056 xe_guc_exec_queue_trigger_cleanup(q); 2057 2058 return 0; 2059 } 2060 2061 /* 2062 * xe_guc_error_capture_handler - Handler of GuC captured message 2063 * @guc: The GuC object 2064 * @msg: Point to the message 2065 * @len: The message length 2066 * 2067 * When GuC captured data is ready, GuC will send message 2068 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be 2069 * called 1st to check status before process the data comes with the message. 2070 * 2071 * Returns: error code. 0 if success 2072 */ 2073 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len) 2074 { 2075 u32 status; 2076 2077 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN)) 2078 return -EPROTO; 2079 2080 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 2081 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 2082 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space"); 2083 2084 xe_guc_capture_process(guc); 2085 2086 return 0; 2087 } 2088 2089 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 2090 u32 len) 2091 { 2092 struct xe_gt *gt = guc_to_gt(guc); 2093 struct xe_exec_queue *q; 2094 u32 guc_id; 2095 2096 if (unlikely(len < 1)) 2097 return -EPROTO; 2098 2099 guc_id = msg[0]; 2100 2101 if (guc_id == GUC_ID_UNKNOWN) { 2102 /* 2103 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF 2104 * context. In such case only PF will be notified about that fault. 2105 */ 2106 xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n"); 2107 return 0; 2108 } 2109 2110 q = g2h_exec_queue_lookup(guc, guc_id); 2111 if (unlikely(!q)) 2112 return -EPROTO; 2113 2114 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 2115 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2116 2117 trace_xe_exec_queue_memory_cat_error(q); 2118 2119 /* Treat the same as engine reset */ 2120 set_exec_queue_reset(q); 2121 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2122 xe_guc_exec_queue_trigger_cleanup(q); 2123 2124 return 0; 2125 } 2126 2127 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 2128 { 2129 struct xe_gt *gt = guc_to_gt(guc); 2130 u8 guc_class, instance; 2131 u32 reason; 2132 2133 if (unlikely(len != 3)) 2134 return -EPROTO; 2135 2136 guc_class = msg[0]; 2137 instance = msg[1]; 2138 reason = msg[2]; 2139 2140 /* Unexpected failure of a hardware feature, log an actual error */ 2141 xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X", 2142 guc_class, instance, reason); 2143 2144 xe_gt_reset_async(gt); 2145 2146 return 0; 2147 } 2148 2149 static void 2150 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 2151 struct xe_guc_submit_exec_queue_snapshot *snapshot) 2152 { 2153 struct xe_guc *guc = exec_queue_to_guc(q); 2154 struct xe_device *xe = guc_to_xe(guc); 2155 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 2156 int i; 2157 2158 snapshot->guc.wqi_head = q->guc->wqi_head; 2159 snapshot->guc.wqi_tail = q->guc->wqi_tail; 2160 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 2161 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 2162 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 2163 wq_desc.wq_status); 2164 2165 if (snapshot->parallel.wq_desc.head != 2166 snapshot->parallel.wq_desc.tail) { 2167 for (i = snapshot->parallel.wq_desc.head; 2168 i != snapshot->parallel.wq_desc.tail; 2169 i = (i + sizeof(u32)) % WQ_SIZE) 2170 snapshot->parallel.wq[i / sizeof(u32)] = 2171 parallel_read(xe, map, wq[i / sizeof(u32)]); 2172 } 2173 } 2174 2175 static void 2176 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2177 struct drm_printer *p) 2178 { 2179 int i; 2180 2181 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 2182 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 2183 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 2184 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 2185 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 2186 2187 if (snapshot->parallel.wq_desc.head != 2188 snapshot->parallel.wq_desc.tail) { 2189 for (i = snapshot->parallel.wq_desc.head; 2190 i != snapshot->parallel.wq_desc.tail; 2191 i = (i + sizeof(u32)) % WQ_SIZE) 2192 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 2193 snapshot->parallel.wq[i / sizeof(u32)]); 2194 } 2195 } 2196 2197 /** 2198 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 2199 * @q: faulty exec queue 2200 * 2201 * This can be printed out in a later stage like during dev_coredump 2202 * analysis. 2203 * 2204 * Returns: a GuC Submit Engine snapshot object that must be freed by the 2205 * caller, using `xe_guc_exec_queue_snapshot_free`. 2206 */ 2207 struct xe_guc_submit_exec_queue_snapshot * 2208 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 2209 { 2210 struct xe_gpu_scheduler *sched = &q->guc->sched; 2211 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2212 int i; 2213 2214 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 2215 2216 if (!snapshot) 2217 return NULL; 2218 2219 snapshot->guc.id = q->guc->id; 2220 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 2221 snapshot->class = q->class; 2222 snapshot->logical_mask = q->logical_mask; 2223 snapshot->width = q->width; 2224 snapshot->refcount = kref_read(&q->refcount); 2225 snapshot->sched_timeout = sched->base.timeout; 2226 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 2227 snapshot->sched_props.preempt_timeout_us = 2228 q->sched_props.preempt_timeout_us; 2229 2230 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 2231 GFP_ATOMIC); 2232 2233 if (snapshot->lrc) { 2234 for (i = 0; i < q->width; ++i) { 2235 struct xe_lrc *lrc = q->lrc[i]; 2236 2237 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 2238 } 2239 } 2240 2241 snapshot->schedule_state = atomic_read(&q->guc->state); 2242 snapshot->exec_queue_flags = q->flags; 2243 2244 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 2245 if (snapshot->parallel_execution) 2246 guc_exec_queue_wq_snapshot_capture(q, snapshot); 2247 2248 spin_lock(&sched->base.job_list_lock); 2249 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 2250 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 2251 sizeof(struct pending_list_snapshot), 2252 GFP_ATOMIC); 2253 2254 if (snapshot->pending_list) { 2255 struct xe_sched_job *job_iter; 2256 2257 i = 0; 2258 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 2259 snapshot->pending_list[i].seqno = 2260 xe_sched_job_seqno(job_iter); 2261 snapshot->pending_list[i].fence = 2262 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 2263 snapshot->pending_list[i].finished = 2264 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 2265 ? 1 : 0; 2266 i++; 2267 } 2268 } 2269 2270 spin_unlock(&sched->base.job_list_lock); 2271 2272 return snapshot; 2273 } 2274 2275 /** 2276 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 2277 * @snapshot: Previously captured snapshot of job. 2278 * 2279 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 2280 */ 2281 void 2282 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2283 { 2284 int i; 2285 2286 if (!snapshot || !snapshot->lrc) 2287 return; 2288 2289 for (i = 0; i < snapshot->width; ++i) 2290 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 2291 } 2292 2293 /** 2294 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 2295 * @snapshot: GuC Submit Engine snapshot object. 2296 * @p: drm_printer where it will be printed out. 2297 * 2298 * This function prints out a given GuC Submit Engine snapshot object. 2299 */ 2300 void 2301 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2302 struct drm_printer *p) 2303 { 2304 int i; 2305 2306 if (!snapshot) 2307 return; 2308 2309 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id); 2310 drm_printf(p, "\tName: %s\n", snapshot->name); 2311 drm_printf(p, "\tClass: %d\n", snapshot->class); 2312 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 2313 drm_printf(p, "\tWidth: %d\n", snapshot->width); 2314 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 2315 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 2316 drm_printf(p, "\tTimeslice: %u (us)\n", 2317 snapshot->sched_props.timeslice_us); 2318 drm_printf(p, "\tPreempt timeout: %u (us)\n", 2319 snapshot->sched_props.preempt_timeout_us); 2320 2321 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 2322 xe_lrc_snapshot_print(snapshot->lrc[i], p); 2323 2324 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 2325 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 2326 2327 if (snapshot->parallel_execution) 2328 guc_exec_queue_wq_snapshot_print(snapshot, p); 2329 2330 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 2331 i++) 2332 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 2333 snapshot->pending_list[i].seqno, 2334 snapshot->pending_list[i].fence, 2335 snapshot->pending_list[i].finished); 2336 } 2337 2338 /** 2339 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 2340 * snapshot. 2341 * @snapshot: GuC Submit Engine snapshot object. 2342 * 2343 * This function free all the memory that needed to be allocated at capture 2344 * time. 2345 */ 2346 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2347 { 2348 int i; 2349 2350 if (!snapshot) 2351 return; 2352 2353 if (snapshot->lrc) { 2354 for (i = 0; i < snapshot->width; i++) 2355 xe_lrc_snapshot_free(snapshot->lrc[i]); 2356 kfree(snapshot->lrc); 2357 } 2358 kfree(snapshot->pending_list); 2359 kfree(snapshot); 2360 } 2361 2362 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 2363 { 2364 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2365 2366 snapshot = xe_guc_exec_queue_snapshot_capture(q); 2367 xe_guc_exec_queue_snapshot_print(snapshot, p); 2368 xe_guc_exec_queue_snapshot_free(snapshot); 2369 } 2370 2371 /** 2372 * xe_guc_submit_print - GuC Submit Print. 2373 * @guc: GuC. 2374 * @p: drm_printer where it will be printed out. 2375 * 2376 * This function capture and prints snapshots of **all** GuC Engines. 2377 */ 2378 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2379 { 2380 struct xe_exec_queue *q; 2381 unsigned long index; 2382 2383 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2384 return; 2385 2386 mutex_lock(&guc->submission_state.lock); 2387 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2388 guc_exec_queue_print(q, p); 2389 mutex_unlock(&guc->submission_state.lock); 2390 } 2391